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ABSTRACT
Complex systems pervade nature and form the core of many technological applications. An exciting feature
of these systems is that they exhibit a wide range of temporal behaviors, ranging from collective motion,
synchronization, pattern formation, and chaos, among others. This has not only caught the attention of
scientists, but also the interest of a wider audience. Consequently, our goal in this work is to provide a simple
but descriptive explanation of some concepts related to complex systems. Specifically, the reader embarks on
a journey that begins in the 17th century with the discovery of synchronization by Dutch scientist Christiaan
Huygens and ends in the chaotic world explored by meteorologist Edward Lorenz around 1963. The journey is
filled with examples, including synchronized clocks and metronomes, electronic fireflies that flash harmoniously,
and even a chaotic dress.
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INTRODUCTION

The term complex system is increasingly used nowadays. It is is
used for describing phenomena ranging from our daily lives to
behaviors typical of the scientific field, and has implications for
social sciences, anthropology, mathematics, and biology, to name
a few (Ottino 2003; Larsen-Freeman and Cameron 2008). This in-
terdisciplinary field of science aims to study, characterize, and un-
derstand complex systems, their interactions, physical/biological
effects, and the mechanisms that produce their particular behaviors
(Huerta-Cuéllar et al. 2022).

It is relatively easy to identify a complex system using climate as
an example, but it is somewhat more complex to clearly define the
concept itself. This is because this definition changes depending
on the field of application and adapts to the research subject’s own
needs. For example, in computer science, a complex system may
refer to the computational time required by the processor to esti-
mate the solution, while in biology it may refer to the interactions
between different species in a wild area.

Although different definitions can be found in the literature,
complex systems have in common the fact that they consist of
various interconnected, interdependent, adaptive, and temporally
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changing actors whose interactions lead to emergent phenomena
(Ladyman et al. 2013). In general, we can define a complex system
as an organized and inseparable entity that consists of different in-
terconnected parts and, considered as a whole, exhibits properties
and behaviors that do not result from the sum of the individual
parts or behaviors of any of its elements.

In other words, it is possible to know each of the agents that
are part of a Complex System (CS), as well as their independent
dynamics, but since they are interconnected and interact with
each other, behaviors arise that are not very obvious based on
individual knowledge of each element. Because of this peculiarity,
complex systems are studied as living entities where it is necessary
to consider all the elements and interactions that make them up.
Let us take as an example the flight of a bird compared to the flight
of a flock (Wang and Lu 2019). We can study individually the
behavior of a bird and the mechanisms it needs to take to the skies.

We are able to understand the mechanics of wing flapping,
the dynamics of the airflow that allows it to fly, the density and
distribution of its feathers, and the limitations of the bird when
flying at higher altitudes or speeds. Knowing all this about a single
bird, one cannot predict (without prior knowledge) that a flock of
birds (of the same species) will behave in such a way and form
the flight patterns necessary to fly long distances or to protect the
young from predators. This lack of answers in extrapolating data
is the prerequisite for studying complex systems as living entities,
and it is the behavior that arises from the interactions between
them that we call emergent behavior, i.e., it is impossible to obtain
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said result by studying and interacting only one of the entities that
make up the CS.

Once the concept of complex system is defined, realize that
they are present in many of the phenomena that surround us, that
we are a part of them, and that this type of behavior exists in
our bodies. Classic examples of complex systems can be found in
something as mundane as the behavior of climate, which is one of
the most studied complex systems. The behavior of stocks and all
currencies, or the dynamics of planets and galaxies are examples
of complex systems. The brain behavior and the transmission of
information by neurons are examples of CS’s which takes place in
our bodies. The transmission of electrical energy, traffic in the air
and on land are also clear examples of complex systems.

Note that in each of these examples it is possible to know the
behavior of the individual elements that compose the CS, but we
cannot estimate their behavior on the basis of individual dynamics.
Take the example of land traffic in a city: it is possible to know the
number of vehicles, the layout of roads and their traffic direction,
the position of stop signs and traffic lights. But even with all
this information and knowledge of the individual elements, it is
impossible to predict the exact location and timing of a traffic jam.
To understand the complex traffic system, one must study it as a
living entity.

The rest of the article deals with two of the most common behav-
iors in complex systems: Synchronization and Chaos. Equations
and proofs are deliberately omitted, and the text focuses on describ-
ing and explaining the main ideas about these behaviors. These
are in turn illustrated with everyday references and illustrated
with videos of simple experiments that the reader can consult on
the Internet. The last part of the paper draws some preliminary
conclusions.

SYNCHRONIZATION

In our time we speak more and more often of synchronization.
We speak of synchrony between a user’s cell phone, his TV and
his computer. We also speak of synchronization in sports, for ex-
ample synchronized swimming or rowing, and even in electronic
transfers with dynamic keys linked to the cell phone number. Al-
though the meaning of synchronization yields something obvious
and commonplace, it can be defined as the coincidence in time of
two or more events resulting from the interaction between two
dynamic entities, which can be of almost any kind and nature.
This makes synchronization an omnipresent behavior that can be
found everywhere. The occurrence of synchronized behavior is
very common in nature, with examples in biology, ecology, clima-
tology, sociology, technology, and even art (Pikovsky et al. 2003;
Strogatz 2004; Osipov et al. 2007).

To show how widespread this exciting phenomenon is, let us
consider the universe, and in particular the Moon, which orbits
our planet. The Moon spins on its own axis (rotation) at the same
speed it spins around the Earth (translation), in other words, the
Moon’s rotation and translation speeds are synchronized. Because
of this timing, we always see the same side of the moon. This
behavior is also found in the animal kingdom. Have you ever
observed birds flying in a "V" formation and flapping their wings
at the same time? This allows them to use less energy and travel
greater distances. Another example of synchronization in animals
is a school of fish. A school is a group of synchronized fish that all
move at the same speed and in the same direction as their nearest
neighbors. Fish join together in schools for two main reasons: to
protect themselves and to migrate. Just like birds that migrate or
cyclists that group together, fish move in sync to move faster and

expend less energy, which helps them survive.
People also synchronize, for example, the members of an orches-

tra playing in perfect synchronicity. A ballet performing a routine
in time to the music, and even at the Olympic Games synchroniza-
tion is present. There is also a symphony of synchronized rhythms
in our bodies. For example, each beat of our heart is controlled by
thousands of pacemaker cells that send out electrical impulses that
stimulate the heart cells and cause them to contract or relax in a
perfectly synchronized rhythm.

The first precursor in literature dealing with the concept of
synchronization is the work of the extraordinary Dutch scientist
Christiaan Huygens, mathematician, physicist and inventor of
the pendulum clock (Pena Ramirez and Nijmeijer 2020). In 1665,
Huygens noticed that two pendulum clocks suspended side by
side from a crossbeam showed a kind of sympathy, that is, the
pendulums of each clock swung at the same frequency, and when
disturbed, they returned to the same rate of oscillation after about
thirty minutes. In his writings Huygens points out that the main
reason for this fact is the connection between the clocks, the cross-
bar being the said means of communication. Figure 1 shows the
original hand drawing made by Huygens. It shows two pendulum
clocks suspended from a wooden rod supported by two chairs.

Figure 1 Synchronization scheme developed by Huygens for two
pendulum clocks

To demonstrate in a simple way the synchronization between
two inanimate objects, and inspired by the same Huygens ex-
periment, we consider three monumental pendulum clocks (they
are known as monumental clocks because this type of mecha-
nism is used in towers, churches, obelisks and other monuments)
(Pena Ramirez et al. 2016). Two of them are connected by a simple
wooden rod, while the third has no connection with the other two,
see Figure 2 and (Echenausía-Monroy 2022g). Some time after
the clocks are set in motion, the two connected mechanisms syn-
chronize, their pendulums working at the same time and in the
same direction, while the third clock is free and never follows the
rhythm or time of the two synchronized clocks. This illustrates
three important points:

• Synchronization is ubiquitous and can be found in living and inani-
mate systems;

• For synchronization you need at least two systems, agents, complex
systems or dynamic units to be synchronized;

• For the phenomenon to appear, there must be a means of communi-
cation: physical, optical, acoustic, gravitational, electronic, etc.

Regardless of the size of the object, synchronization is possi-
ble. Now consider metronomes, variable frequency pendulum
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Figure 2 Modern version of the Huygens experiment, synchro-
nizing two monumental clocks. Note that the means of commu-
nication between the two clocks is the orange wooden stick.

clocks that help music students keep time. These metronomes
are mounted on a suspended floor structure, with the base free to
move depending on the tension of the struts supporting it. When
the metronomes are put into operation, they transmit their motion
to the base on which they stand, which starts moving according to
the number of metronomes. After a certain time, the base transmits
this movement back to the metronomes and serves as a means of
communication (coupling), giving the metronomes a synchronized
response, see Figure 3 and (Echenausía-Monroy 2022c).

Figure 3 Hanging platform with synchronized metronomes
(Echenausía-Monroy 2022c).

This phenomenon is similar to that observed when crossing a
suspension bridge, where the movement of the pedestrians causes
the bridge itself to vibrate so that it sways in the direction of
travel, or to the phenomenon observed at the inauguration of the
Millennium Bridge in London (2000), where the bridge swayed
to the same extent as the pedestrians due to the lightness of the
tensioners and the large number of visitors.

As with the size transition between monumental clocks and
metronomes, it is possible to reduce the number of clocks and
the size of the base to achieve a synchronous response. Now
consider three metronomes on a 50 cm board standing on two
cans of iced tea. If the clocks operate according to the scheme
described, synchronization will occur between the metronomes as

they transfer their motion to the table, causing the cans to move
slightly and act in place of the struts. After a short time, this
transfer of motion will cause the metronomes to operate at the
same time and in the same direction. The experimental setup is
shown in Figure 4, and the operation can be found in (Echenausía-
Monroy 2022i).

Figure 4 Experimental set-up to synchronize 3 metronomes.

As mentioned earlier, synchronization is not an unknown phe-
nomenon in the animal kingdom; take fireflies, for example. These
small insects, which are capable of biologically producing light
(bioluminescence), are one of the many examples where synchro-
nization occurs in animals (Buck and Buck 1976). During the
breeding season, fireflies migrate to specific forested regions that
meet certain climatic conditions. Once there, the males, like males
of almost all species, try to attract the attention of females, in this
case by the brightness and rhythm of their light. As expected, there
is not just one male and one female, but hundreds of them, which
leads to the males "seeing" each other. The fact that they see the
light of the other male fireflies causes them to synchronize the
rhythm of their blinking.

Figure 5 Electronic design of a firefly that can synchronize in
four directions.

Using the electronic circuit shown in Figure 5, cf. (Arellano-
Delgado et al. 2015), it is possible to electronically reproduce the
behavior of a firefly. And in turn, it is possible to mimic the synchro-
nization of these insects without having to enter their reproductive
habitats. So these are friendly and didactic devices with which
we show that synchronization is ubiquitous and that the type of
communication between systems does not matter, as long as there
is one, synchronization will emerge. In Figure 6 you can see the
electronic firefly, and in (Echenausía-Monroy 2022h) you can see
its operation in a beehive.
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Figure 6 Electronic firefly that can synchronize in four directions.
The picture shows the circuit without components and the final
version.

It should be noted that in the above examples, the systems com-
pletely synchronize: the pendulums of the monumental clocks
oscillate in harmony, moving in the same direction and with the
same amplitudes; the electronic fireflies fire in unison, i.e., at the
same frequency and with the same intensity, and also, the triplet of
metronomes keep a rhythmic behavior such that their pendulums
move with the same amplitude, frequency, and phase. However,
many other types of synchronous motion can also be observed, like
for example, the pendulum clocks moving at the same frequency
but in opposite direction, a phenomenon called anti-phase syn-
chronization, the electronic fireflies flashing at the unison but with
different light intensities, which is referred to as frequency syn-
chronization, and in the triplet of metronomes, they can produce a
synchronized rotating wave: the metronomes oscillate a the same
frequency and amplitude, but the pendulums of the metronomes
have a phase difference of 120 degrees between them (Martens
et al. 2013; Goldsztein et al. 2021).

Finally, it is important to note that in all the experiments de-
scribed above, we can formally explain the onset of spontaneous
synchronization using mathematical tools such as Lyapunov stabil-
ity theory, the master stability function approach, or perturbation
methods such as Poincaré’s method (Ramirez and Nijmeijer 2016).

CHAOS

In the wonder world of complex systems (Cuesta-García 2022;
Echenausía-Monroy 2022j), we are mostly dealing with nonlin-
ear systems. This means that the dynamics of these systems are
described by equations of motion with nonlinear terms, such as
multiplications between variables of the same system, powers
with degree greater than two, special nonlinear functions such as
trigonometric or Piece Wise Linear (PWL) functions, to name a
few (Drazin and Drazin 1992; Echenausía-Monroy et al. 2020). This
type of complex systems does not respond to the superposition
principle, where the system response cannot be decomposed as
the sum of two or more responses corresponding to the number
of system variables. In this type of system, it is possible to find
chaotic behaviors or chaotic dynamics.

When we speak of "chaos" in science, we do not refer to the
Greek cosmological stories that point to what existed before the
existence of everything "before the gods and the elemental forces there
was CHAOS". Nor do we refer to the absence of rules or order.
Colloquially, chaos is often confused with examples such as a
teenager’s messy room, the actions of an angry mob, the behavior
of an elementary school class when the teacher is absent for more
than three minutes, or the mental disaster left behind after failing
to conquer a summer love.

Mathematical chaos, which is generated by deterministic equa-
tions, is bounded aperiodic behavior that cannot be predicted.
Also, a particular feature of chaotic behavior, which in general
tends to be of oscillatory nature, is a high sensitivity to initial con-
ditions, i.e., for two arbitrarily close starting points, the distance
between the generated trajectories will exponentially diverge in
time, see e.g. (Sprott 2010; Devaney 2018). When we say it is aperi-
odic, it simply means that there is no recurrence pattern and it is
not known when the event occurs. When we say it is sensitive to
initial conditions, it means that a small change at the beginning can
cause a very large change over time. The first person to discover
chaos was the famous polymath Henry Poincaré when he was
working on solving the three-body problem (Chenciner 2015). A
cinematic allusion to chaos is found in the first Jurassic Park movie,
where Dr. Ian Malcolm (played by Jeff Goldblum) explains that
chaos is unpredictable, citing as an example the trajectory of two
drops of water in the hand of a beautiful lady.

This unpredictable behavior is also known as the "butterfly
effect," which also appears in pop culture in the movie of the same
name (The Butterfly Effect, starring Ashton Kutcher). In this movie,
the protagonist travels to his past and can change certain events.
Changing a small event in his past causes very big changes in his
future, which is the essence of the Butterfly Effect.

(a) (b)

Figure 7 (a) Numerically determined Lorenz attractor for σ =
10, r = 28, b = 8/3 and all initial conditions are set to one. (b)
Analogy of the Lorenz butterfly with the attractor formed by the
system of the same name.

Edward Lorenz, an American mathematician and meteorolo-
gist, discovered this behavior in 1963 when he studied and reduced
a system of twelve differential equations that described climatolog-
ical behavior (Lorenz 1963). Lorenz programmed these equations
into a computer and analyzed the results, which were accurate to
six decimal places. He then took a value that the computer had
already provided as a system solution and set it as the initial value
so that the computer could "get on" with the simulation. After
running the simulation again, Lorenz made himself a cup of coffee.
When he returned, he hoped that the graphs he received were the
same or very similar to the original ones. To his surprise, the re-
sults seemed to match at first, but after a while they diverged and
no longer matched. Thus Lorenz proved sensitivity to initial condi-
tions, and the analogy to the butterfly effect was born, summed up
in Lorenz’s maxim: "Does the flap of a butterfly’s wings in Brazil
set off a tornado in Texas?". The mathematical model of the Lorenz
system is described by the folowing set of equations

ẋ = −σ(x + y),

ẏ = x(r − z)− y,

ż = xy − bz,

(1)
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which is derived from the simplified equations of convection rolls
in the dynamical equations of the Earth’s atmosphere (see (Lorenz
2000; Ambika 2015) and references therein for further information).
The state variables (x, y, z) describe the behavior of the velocity
and the direction of circulation of the convection rolls for state
x, y is proportional to the temperature difference between the
updrafts and downdrafts, and z is proportional to the deviation
of the vertical temperature gradient from linearity. If the state
variables of this system of equations are plotted on the x − z plane,
the result is a so-called attractor resembling the shape of a butterfly
(Figure 7).

To easily introduce and demonstrate the concept of the butterfly
effect, imagine a touch screen onto which a numerical simulation of
the Lorenz attractor is projected. Since the butterfly effect is based
on changing the initial conditions of the system, the simulation
considers the touch point (on the touch screen) as the initial condi-
tion, so that when you repeatedly touch "the same point", you get
different trajectories of the Lorenz system under different colors,
which initially agree in their behavior, but diverge over time and
follow completely different paths. Figure 8 shows an experiment
based on the demonstration of the butterfly effect, the video of this
experiment is available on (Echenausía-Monroy 2022f).

Figure 8 Experimental setup of the touchscreen to illustrate the
butterfly effect of the Lorenz attractor.

Chaos is not only found in systems as complex as climate, but
can also be observed in relatively simple models. Consider the
behavior of a pendulum, like that of a wall clock, which behaves
in a completely predictable, periodic, and monotonic manner; it
always moves from left to right as long as the clock has a battery.
Now, if the pendulum is disconnected from the clock, it will only
move from left to right for a certain amount of time until it loses
its energy and stops moving. If you attach another pendulum to
the end of the system, you get a double pendulum. Since you
know the behavior of a simple pendulum, you can assume that
the new system will behave similarly to the first one. Surprisingly,
the double pendulum follows unpredictable paths that change
depending on the starting point of the pendulum, i.e., it shows
chaotic behavior.

To observe the behavior of a double pendulum, consider its con-
struction attached to an ultraviolet light-sensitive screen with a UV
LED at the bottom. This allows visualization of the trajectories of
the system when the pendulum is started in very similar positions,
and the effects of initial conditions. Figure 9 shows the trajec-
tory of the photoluminescent double pendulum, and the video of
the experiment in operation can be found at (Echenausía-Monroy
2022b).

Figure 9 Double pendulum working with UV led placed on the
tip of the second join. The image was taken with ISO 125 and a
shutter speed of 4 seconds.

Chaos is not a phenomenon unique to weather or mechani-
cal systems; rather, it is a quantifiable property (see (Wolff 1992;
Abraham et al. 2013) and the references therein). As mentioned
earlier, it is a phenomenon that surrounds us and that we can take
advantage of. Take, for example, the logistic map, described by Eq.
(2):

xn+1 = rxn(1 − xn), (2)

which is one of the most studied complex systems in discrete time
and has been applied in studying the dynamics of population
growth (see (May 2004) for more information). In 2003, Professor
Kazuyuki Aihara, a professor emeritus at the University of Tokyo,
found that the bifurcation diagram of the logistic map (the behavior
over time when a parameter changes) has a shape that resembles
the silhouette of a dress, as shown in Figure 10 (a). This result was
presented at Tokyo Fashion Week later that year ((Bulletin 2019))
and gave us a new perspective on the applications of chaos in our
lives. A version of Aihara’s chaotic dress can be seen in Figure 10
(b). For a 360° view, see (Echenausía-Monroy 2022e).

It has already been mentioned that there are chaotic dynamics
in our body, which include the behavior of neurons. An example
of this is the Hindmarsh-Rose model (HR), which describes the
behavior of a single neuron in terms of axion potentials and the
sodium-calcium channels that activate them (see (Shilnikov and
Kolomiets 2008; Barrio et al. 2017) for more information). Although
this complex system describes the behavior of a neuron and its
excitatory agents, it is possible to take this model as a basis and
use it to improve daily life.

Imagine a homemade blender spinning at a certain speed in the
same direction. If we give the same blender a chaotic behavior, that
is, it spins randomly in one direction or another and for different
periods of time, it is possible to obtain a much faster homogeneous
shake. This is exactly what Ricardo Núñez, an experimentalist
researched based at CICESE, did when he developed a chaotic
stirrer based on the Chua system. His idea, like Lorenz’s discovery,
was based on the morning coffee in the office and the time it takes
to dissolve the different ingredients we add to the invigorating
drink. As a result, he obtained a stirrer that homogenizes solutions
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(a) (b)

Figure 10 (a) Section of interest from the bifurcation diagram
of the logistic map by varying parameter r in Eq. (2). (b) Dress
based on the logistic map designed by the authors. The original
dress presented by Prof. Ahihara can be found at (Bulletin 2019).

more efficiently and in less time than a conventional one, Figure 11.
For a video of the chaotic mixer in action, see (Echenausía-Monroy
2022d), and for more information, see (Núñez-Pérez 2022).

(a)

(b)

Figure 11 Stirrers mixing honey in water. The periodic shaker
is shown on the left and the shaker based on a chaotic system is
shown on the right. (a) 4 seconds of shaking versus (b) 12 sec-
onds (Núñez-Pérez 2022).

In the last section, we described examples of how chaos occurs
in our environment, how we can observe it, and how it can even
help us in our daily lives. But for those of us who explore this
exciting area of mathematics and physics, chaos has a beauty all
its own. Each of the behaviors and models described can be repre-
sented by systems of equations. These, in turn, can be observed
geometrically through so-called "attractors" that can be interpreted

as the face of any system. In these chaotic attractors the whole
beauty of chaos is shown. For example, consider the work of the
Swiss artist "Chaotic Atmospheres", who has projected in his portfo-
lio various chaotic attractors as graphic works of art, which you
can find at (Atmospheres 2022). With the same idea and using 3D
printing, it is possible to turn a system of differential equations
into something tangible and bring chaos to the real plane, as seen
in Figure 12, where four 3D-printed chaotic attractors are shown.
This is not only a clear example of the use of technology to provide
new educational tools, but also serves to explain and teach com-
plex concepts such as chaos to people with visual impairments.
Printed attractors can be found at (Echenausía-Monroy 2022a).

Figure 12 Chaotic attractors printted in 3D. (a) Lorenz, (b)
Rössler, (c) Dequan Li, and (d) Thomas attractor.

Finally, it should be noted that the chaotic behavior discussed
in this section and the phenomenon of synchronization presented
in the previous section are two related concepts. Indeed, a pair
or network of chaotic systems can synchronize provided they are
suitably coupled, as shown in the pioneering work of Fujisaka and
Yamada (Fujisaka and Yamada 1983).

CONCLUSION

It is our believe that the examples presented in this work may
be useful for introducing concepts from complex systems like
synchronization, emergent behavior and chaos, to non specialist
and to further motivate the excitement for investigating these
systems in the new generations.
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