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ABSTRACT In this work, we propose an approach to generate multistability based on a class of unstable
systems that have all their roots in the right complex half-plane. Multistability is the coexistence of multiple
stable states for a set of system parameters. The approach is realized by using linear third order differential
equations that consists of two parameters. The first bifurcation parameter transforms the unstable system with
all its roots in the right complex half-plane into an unstable system with one root in the left complex half-plane
and two roots remaining in the right complex half-plane. With this first transformation, the system is capable of
generating attractors by means of a piecewise linear function and the system presents monostability. We then
use the another bifurcation parameter to switch from a monostable multiscroll attractor to several multistable
states showing a single-scroll attractor.
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INTRODUCTION

The coexistence of two or more attractors, for a given set of pa-
rameters, is called multistability and the convergence to one of the
different attractors depends only on the initial condition. The co-
existence of multiple behaviors is a universal phenomenon found
in many area of science and in nature, from electronic devices and
chemical reactions to weather and the brain. One of the pioneering
studies on multistability was reported on visual perception (At-
tneave 1971). In electronic devices, the phenomenon of bistability
has been widely explored and its applications in technological
devices such as cell phones, computers, etc. Many studies have
reported various multistability phenomena through different types
of systems, for example, through coupled systems, delayed feed-
back systems, stochastic systems, among others (Feudel 2008).

There are different mechanisms for multistability emergence
in dynamical systems. We can find in the reported literature the
generation of multistable systems via Unstable Dissipative Systems
(UDS). These dissipative systems with unstable dynamics defined
in the space can be of type I or II. The system based on UDS-
type I presents a one-dimensional stable manifold leading the
trajectory to the equilibrium point and a two-dimensional unstable
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manifold leading the trajectory away from the equilibrium point.
The UDS-type II presents a two-dimensional stable manifold and
a one-dimensional unstable manifold, see Anzo-Hernández et al.
(2018), Gilardi-Velázquez et al. (2017). In this work we focus on the
creation of multistable systems from an proposed unstable system
which is transformed into a system UDS-I.This class of systems
UDS-I are useful for the generation of multiscroll attractors through
a linear function by parts (PWL), and thus through a bifurcation
parameter to obtain the multistability.

Recently, the fractional calculus has been used to make mul-
tistable systems based on fractional derivatives instead of in-
teger derivatives in PWL systems that display multiple scrolls
Echenausía-Monroy et al. (2022). The mechanisms that produce
multistable behavior in integer and fractional PWL systems are
currently a topic of research. In Gilardi-Velázquez et al. (2022)
a PWL system showing multistable behavior was presented, in
this system the nearest integer function was used to control the
switching processes and the corresponding equilibrium between
the individual switching surfaces was found.

In this paper our approach to generate chaotic systems is based
on an transformation of unstable system to a class of unstable dissi-
pative systems (UDS). Therefore, the chaotic self-excited attractor
emerges from saddle equilibria. The manifolds of these hyperbolic
equilibrium points are determined by the eigenvalues associated
to the linear operator of the system. Therefore, the first require-
ment is to obtain a system based on a linear operator that has a
complex conjugate eigenvalue pair with a positive real part and a
negative real eigenvalue. With this first transformation, the system
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is capable of generating a monostable attractor. The next step is to
switch the system from monostability to multistability.

The manuscript is organized in the following sections: In the
first section , definitions are given for clarity in developing the
approach to obtaining multistability. In the second section , we
classify the types of unstable systems capable of generating fami-
lies of systems that can generate multiscroll. In the third section by
using another bifurcation parameter, we generate multistability in
the given system. Finally, in the last section, the conclusions are
given.

PRELIMINARIES

In this section, we give some basic definitions to understand the
coexistence of multiple chaotic attractors. Two important features
of chaotic system solutions are unpredictable behavior and trajec-
tory divergence. A chaotic system usually displays the types of
behavior listed above. The following definitions can be reviewed
in Lynch (2004).

Definition 1 A minimal closed invariant set A, F(A) ⊂ A, that at-
tracts nearby trajectories that are in the basin of attraction B, A ⊂ B,
towards it is called an attractor.

Definition 2 A strange attractor generated by a chaotic system is an
attractor that shows fractal structure and sensitivity to initial conditions.

There are many approaches to check that a system has chaotic
behavior. For instance, Lyapunov exponents is a widely used method
to verify whether a system is chaotic or not. A chaotic system
presents a positive Lyapunov exponent and if the system presents
two positive Lyapunov exponents it is called hyperchaotic. Other
approach to generate chaotic behavior is by using homoclinic and
heteroclinic orbits, this chaotic behavior is known as homoclinic
and heteroclinic chaos. Two chaotic trajectories with very close
initial conditions in the strange attractor will separate with a rate
of divergence given by the positive Lyapunov exponent.

Lyapunov exponents can be computed by different methods
and their performance can be consulted in Geist et al. (1990). Three-
dimensional autonomous systems have been useful for modeling
many phenomena of nature. For example, the highly simplified
model of a convective fluid proposed by Edward Lorenz to gener-
ate meteorological data Lorenz (1963). A wide variety of behaviors
was discovered in the simplified Lorenz model, finding that for
some parameter values the system behave chaotically. Sparrow’s
work on the Lorenz system is an excellent reference for more details
about the system, see Sparrow (1982).

The trajectories revolve around two equilibrium points C1 and
C2 in an apparently stochastic way, which makes the trajectories
unpredictable. This pioneer model has been widely study, for
example, Guanrong Chen and Tetsushi Ueta introduced a vari-
ation on the Lorenz model. Another iconic chaotic system was
introduced by Leon O. Chua in the mid-1980s, his system was
implemented electronically and is known as the Chua circuit, and
it exhibits a variety of behaviors. A review of Chua’s circuit is pre-
sented in Madan (1993) and exhibits many interesting bifurcation
and chaotic phenomena.

As the Lorenz system as the Chua system generate attractors
that present a double scroll attractor. In this paper, one of our
objectives is to control an attractor that present five scrolls, we
called this attractor multiscroll attractor. One of the approaches
used to generate a multiscroll attractor is by means the use of a
piecewise linear function in the system ẋ = Ax + B, see Campos-
Cantón et al. (2010, 2012).

Dissipative systems and attractors
Let us consider a system given a set of nonlinear autonomous
differential equations, as follows

ẋ = F(x),

where x ∈ R3 is the state vector. Important information is obtained
by the equilibrium points x∗ that satisfy F(x∗) = 0. These points
give qualitative information about the local behaviors of its so-
lutions. The local behavior of a nonlinear system is obtained by
the Jacobian matrix DF(x∗). For a hyperbolic equilibrium point, the
eigenvalues of the Jacobian matrix DF(x∗) are nonzero. Hartman-
Grobman Theorem states that in a vicinity of a hyperbolic equilib-
rium point x∗ in which the phase portrait for the nonlinear system
ẋ = F(x) resembles the linearization. The linearization is given as
follows:

ẋ = DF(x∗)
= Ax. (1)

What we have is that the phase portraits are qualitatively equiva-
lent in the neighborhood of a hyperbolic critical point, see Hartman
(1964). Other important concept is the volume contraction rate of a
dynamical system

ẋ = F(x),
where x = (x, y, z)T is the state vector and F(x) =
(F1(x), F2(x), F3(x)) determines the evolution of the system, then
the volume contraction rate is given by:

Λ = ∇ · F(x) =
∂F1
∂x

+
∂F2
∂y

+
∂F3
∂z

.

Notice that the time evolution in phase space is determined by
V(t) = V0eΛt, where V0 = V(0) and Λ is a constant. When a
system is capable of dissipating energy, it is known as a dissipative
system and is given for a negative value of Λ. When Λ is negative
it leads to a fast exponential shrinks of the volume in state space.
If the system is dissipative, it can develop attractors. Without loss
of generality we analyze a jerk system. On the other hand, for
the given system to be dissipative, it is necessary and sufficient
that the sum of the roots of the characteristic polynomial be a
negative quantity. That is, the eigenvalues associated with the
matrix A ∈ R3 of the system (1) is ∑3

i=1 λi < 0. The saddle
equilibria of a system in R3 can be characterized into two types
according to the eigenvalues associated with matrix A.

Definition 3 Let us consider a system defined by (1) in the space with
eigenvalues λj, j = 1, . . . , 3 associated with matrix A. The system is
called Unstable Dissipative System (UDS) Type I if one eigenvalue
λ1 ∈ R−, the other two λ2,3 ∈ C+, and the sum of the eigenvalues
is negative. Where R− and C+ denote the negative real numbers and
complex conjugate numbers with a positive real part, respectively.

Definition 4 Let us consider a system given by (1) in R3 with eigen-
values λi, i = 1, 2, 3 associated with matrix A. The system is said UDS
Type II if one eigenvalue λ1 is positive real number and the other two are
complex conjugate numbers with a negative real part, and the sum of the
eigenvalues is negative.

Attractors in R3 are generated by several kind of dynamical sys-
tems, and particularly PWL systems based on the aforementioned
two types of UDS have been employed to generate multiscroll
attractors. Also some systems present the two types of UDS’s
to generate attractors, For example, the Chua system mentioned
above considers two UDS Type I equilibria to generate the scrolls of
the attractos and another UDS Type II equilibrium point between
the two UDS Type I equilibria. This last equilibrium point does
not generate a scroll in the attractor.
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FROM UNSTABLE SYSTEMS TO SYSTEMS THAT GENER-
ATE ATTRACTORS

In this section we generate attractors that present multiscroll. In
this work we are interested in continuous piecewise functions as
controllers for the generation of multiscroll atractors. We use a
similar technique as in Díaz-González et al. (2017) where a bifurca-
tion parameter is used to generate a family of multiscroll attractors.
The idea is to destabilize Hurwitz polynomial for the generation
of a class of systems that display multiscroll attractor based on
unstable dissipative systems. One of our goals in this paper is to
explain how to transform a totally unstable system into an unstable
system capable of generating attractor through a piecewise linear
function.

Unstable systems
Let us propose the following controlled linear system

ẋ = Ax + bu(r, ν) + B(ν)S, (2)

where A ∈ R3×3 is a linear operator, b = (0, 0, 1)T is a constant
vector, and B = (0, 0, ν)T with ν ∈ R. We apply a feedback of the
form

u(r, ν) = cT(r, ν) · x,

where S = S(x) is the following step function:

S =



s1 for c1 < x,

s2 for c2 < x ≤ c1,
...

sm for x ≤ cm,

leads
ẋ = A(ν)x + B(ν)S. (3)

which describes a closed-loop or feedback system. The way to
select the values of c′is in such a way that they help to develop UDS
systems will be explained below. For the generation of multiscroll
attractors we take ν = 1 to analyze the location of the parameter
r. Our goal is to set the appropriate value of the parameter r in
such a way that the control linear system generates multiscroll
attractors. Firstly we assume that u(r, ν) equal to 0, B = 0 and
Re(λ) > 0 for all λ ∈ σ(A) where σ(A) is the set of eigenvalues of
A. If all eigenvalues of A have positive real part, then the system
is totally unstable. For the system (2), the equilibrium point 0 has
a neighborhood such that every nonzero solution that starts in the
neighborhood must eventually leave the neighborhood and not
return in the future time. Without loss of generality we consider
the matrix form of the third-order jerk equation x′′′ + a1x′′ + a2x′ +
a3x + β = 0, where a1, a2, a3, β ∈ R. The generated system is of the
form (2) with u ≡ 0 where the matrix A has the following form:

A =


0 1 0

0 0 1

−a3 −a2 −a1

 (4)

where B = (b1, b2, b3)
T is a vector with the following entries

B = (0, 0,−β)T . The characteristic polynomial associated with
A is defined by p(t) = t3 + a1t2 + a2t + a3. We are going to char-
acterize the unstable systems that can generate attractors through

a bifurcation parameter. We begin with a test to characterize the
roots of a polynomial of degree three.

Lemma 1 The polynomial p(t) = t3 + a1t2 + a2t + a3 has a positive
real root and two complex conjugate roots α ± β with α > 0 and β ̸= 0
if and only if 4a3

2 + 27a2
3 + 4a3

1a3 − a2
1a2

2 − 18a1a2a3 > 0.

Proof 1 Consider the polynomial p(t)given by the following form
p(t) = t3 + a1t2 + a2t + a3, we define ∆ = 4a3

2 + 27a2
3 + 4a3

1a3 −
a2

1a2
2 − 18a1a2a3. The proof is obtained from Cardano’s formulas to

obtain the roots of a cubic equation, see Uspensky (1987).

Example 1 If we consider the following polynomial p(t) = t3 −
0.86t2 + 2.65t − 0.24, we can see that it satisfies 4a3

2 + 27a2
3 + 4a3

1a3 −
a2

1a2
2 − 18a1a2a3 = 61.56 > 0. That is, p(t) satisfies condition from

Lemma 1, so it has one real positive root and two roots in the form α + iβ
with α > 0 and β ̸= 0.

Instability parameter to generate unstability and multiscrolls at-
tractors
We will use a polynomial approach that will help us to find bounds
that will allow us to obtain the necessary instability in UDS-I to
generate attractors by using an instability parameter. The unstabil-
ity parameter of p(t) is set according to the following definition.

Definition 5 Let p(t) be the characteristic polynomial of A and t1, t2,
. . . , tn are its zeros in the complex right half-plane (C+). The abscissa
of instability σp of the polynomial p(t) is defined as follows

σp = min
1≤i≤n

{Re (ti)}. (5)

If σp and σp are numbers such that σp ≤ σp ≤ σp, then they are named
lower and upper bound, respectively.

Now we are going to follow a similar approach to Aguirre-
Hernández et al. (2015) where a polynomial approach is given.
The characteristic polynomial of the system (3) is given by fr(t) =
p(t − r), note that fr(t) is a set of polynomials such that f0(t) =
p(t) is an unstable polynomial. Now by Taylor’s theorem fr(t) can
be rewritten as

fr(t) = tn +
p(n−1)(−r)
(n − 1)!

tn−1 + · · ·+ p′(−r)
1!

t + p(−r)

= tn + An−1(r)tn−1 + · · ·+ A1(r)t + A0(r). (6)

Our goal is to generate the chaotic behavior with a translation of
the characteristic polynomial with an upper bound of the abscissa
of instability. The roots of fr(t) are in the imaginary axis when
r = −σp. Therefore the system (2) could generate multiscroll
attractors for r in an interval contained in (−σp,−σp), where σp is
an upper bound of the abscissa of instability.

Maximal instability interval
It is important to know the maximum range of the r parameter
in order to control that the system remains UDS-I. In addition,
a necessary condition for generating attractors is that system (2)
satisfies the condition of dissipativity. Thus we have the following
lemma for a system of dimension three.

Lemma 2 Let p(t) = t3 + a1t2 + a2t + a3 be a real unstable character-
istic polynomial with roots t1 = α1, t2 = α2 + iβ2 and t3 = α2 − iβ2,
(α2 > α1), in the complex right half-plane. If fr(t) = p(t − r) is un-
stable and dissipative, then we have that the following conditions are
fulfilled.

i) r < a1
3 .
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ii) r > −α2.

Proof 2 If the sum of its roots, r + tj, is negative, then the family fr(t)
is dissipative if the sum of its roots. So, 2α2 + α1 + 3r < 0 and hence
r < −2α2−α1

3 . On the other hand

p(t) = t3 − (α1 + 2α2)t2 + (2α1α2 + α2
2 − β2

2)t − α1α2
2 + α1β2

2

= t3 + a1t2 + a2t + a3.

Therefore we have that r < a1
3 . (ii) The roots of fr(t) are in the imaginary

axis for r = −σu, if α2 + r > 0, then fr(t) is UDS-I. So r > −α2.

Let us summarize all of this in a theorem.

Theorem 1 Let p(t) be the unstable polynomial of degree three with a
pair of conjugate complex roots and one real root as in Lemma 2. Then
fr(t) is UDS-type I if and only if r ∈ (−α2, a1

3 ).

Proof 3 The proof follows from Lemma 2.

Example 2 Consider the system given by (2) for

A =


0 1 0

0 0 1

0.15 −2.36 0.687


whose characteristic polynomial is p(t) = t3 − 0.687t2 + 2.36t − 0.15,
from Lemma (1) we have that 4a3

2 + 27a2
3 + 4a3

1a3 − a2
1a2

2 − 18a1a2a3 =
46.3728 > 0. That is, p(t) satisfies the condition from Lemma 1, so it
has one real positive root and two roots in the form α + iβ with α > 0
and β ̸= 0. The abscissa of instability of the polynomials is σu =
0.0647. Now we will use the result of Theorem 1 taking the value of
r = −0.3 for the created fr(t). We obtain the polynomial f−0.3(t) =
t3 + 0.663t2 + 1.1342t + 1.1422 whose eigenvalues are λ1 = −0.8695,
λ2,3 = 0.1032±i1.1415.

Therefore, for f−0.3(t) we have an UDS type I capable of generating
multiscroll attractors by using a piecewise linear function.

Generation of multiscroll

Now, let us consider a control PWL system to generate multiscroll
attractors as follows

ẋ = Ax + bu(r) + BS (7)

where x = (x, y, z)T ∈ R3 is the state vector, b = B = (0, 0, 1)T is
a constant vector, A = [aij] ∈ R3×3 with i, j = 1, 2, 3 denotes a
nonsingular linear matrix.

We have that pA(t) is the characteristic polynomial of the sys-
tem and S is a step function defined as follows

S =



s1 for c1 < x,

s2 for c2 < x ≤ c1,
...

sm for x ≤ cm.

Define the linear control u = cT(r) · x = [a3 − A0(r), a2 −
A1(r), a1 − A2(r)] · x, where Aj(r) =

pj(−r)
j! . Therefore the con-

trolled system can be given as follows

ẋ =


0 1 0

0 0 1

−A0(r) −A1(r) −A2(r)

 x + BS = Acx + BS. (8)

Then, the closed-loop characteristic polynomial is given by:

fr(t) = t3 + A2(r)t2 + A1(r)t + A0(r),
= pA(t − r).

The equilibrium points of the system (8) are x∗i = −A−1
c BS, with

i = 1, . . . , m, and each entry si of the PWL system is considered
to preserve bounded trajectories of system and let the generation
of an attractor. Therefore, the choice of c′is determines the atoms
D′

i s in step function S. Each atom D′
i s of the partition of the space

contains an equilibrium x∗i . The design of the si depends on the
region we want to place the equilibrium point and the switching
surfaces, we choose them so that the equilibrium point is in the
center of these varieties, that is, we calculate the Euclidean distance

d(x∗0 , x∗1) =
√
(x∗0 − x∗1)

2 + (y∗0 − y∗1)
2 + (z∗0 − z∗1)

2,

which has to be the same between each equilibrium point. Con-
sider the following system to illustrate the generation of multiscroll
attractors.

ẋ =


0 1 0

0 0 1

0.15 −2.36 0.687

 x +


0

0

1

 u +


0

0

1

 S. (9)

For this example, we define S as follows:

S(x) =



1.0280, for 0.7500 < x;

0.6853, for 0.4500 < x ≤ 0.7500;

0.3427, for 0.1500 < x ≤ 0.4500;

0, for − 0.1500 < x ≤ 0.1500;

−0.3427 for x ≤ −0.1500.

and u(r) = (−0.15 − p(−r), 2.36 − p′(−r)
1! ,−0.687 − p′′(−r)

2! )x
where p(t) = t3 − 0.687t2 + 2.36t − 0.15 is unstable.

The controlled system is

ẋ =


0 1 0

0 0 1

−p(−r) −−p′(−r)
1! −−p′′(−r)

2!

 x +


0

0

1

 S. (10)

We have that fr(t) = t3 +
p′′(−r)

2! t2 +
p′(−r)

1! t + p(−r). For r = 0,
f0(t) = t3 − 0.687t2 + 2.36t − 0.15 is a unstable polynomial and
there is not multiscroll. The instability parameter of f0(t) is

CHAOS Theory and Applications 237



σf0 = 0.0647. Then other behavior could appear when r ∈
(−Udiss(pA),−σpA ). By example 2 for r = −0.3 we have that
f−0.3(t) = t3 + 0.663t2 + 1.1342t + 1.1422. Hence ∑3

j=1 tj < 0
consequently the system (10) is dissipative when r = −0.3.

Next, in the following Figure 1 the generation of the attractor
from the system (10) is illustrated. The following Figure 2 shows

a)

b)

c)

Figure 1 Attractor generated by the system (10) for r = −0.30.
a) Solution of the system (10) with initial condition x0 =
(0.2, 0.0, 0.0)T . b) Projections of the attractor on the planes: b)
(x, y). And c) (x, z).

the generation of attractors for five different conditions: a) x0 =
(−0.4, 0, 0)T , b) x0 = (−0.1, 0.0, 0.0)T , c) x0 = (0.2, 0.0, 0.0)T , d)

x0 = (0.5, 0.0, 0.0)T and e) x0 = (0.8, 0.0, 0.0)T .

a)

b)

c)

Figure 2 Generation of five attractors with five different condi-
tions. a) [Blue, x0 = (−0.4, 0.0, 0.0)T ; red, x0 = (−0.1, 0.0, 0.0)T ;
green, x0 = (0.2, 0.0, 0.0)T ; cyan, x0 = (0.5, 0.0, 0.0)T and yellow,
x0 = (0.8, 0.0, 0.0)T . Projections of the attractor on the planes: b)
(x, y). And c) (x, z).

GENERATION OF MULTISTABILITY FROM INSTABILITY

In this section, we present the way to move from a system with
monostability to a system that generates multistability through
moving the stable and unstable varieties. The phenomenon of
having two attractors coexisting generated by a nonlinear system
has been reported by Arecchi et al. (1985), who called this behavior
generalized multistability. Two problems related to the coexistence
of attractions have been studied. The first problem is about choos-
ing a desired attractor to which the system should converge, and
the second problem is about excluding certain unwanted attractors
from the dynamics (Pisarchik and Feudel 2014).
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By moving the stable and unstable varieties of the system we
can trap the trajectory of the system in different attractors, where
any initial condition belonging to some basin of attraction will
always converge to the same attractor, that is, a single attractor of
the different ones that coexist. Depending on the initial condition
that is split, the trajectory remains oscillating around of any of
the equilibrium points of the system, and all the dynamics will
be maintained in the attractor where the system’s trajectory is
enclosed. The region of coexistence of these attractors is critical,
since a small noise can commute the physical system, adding a
new characteristic to usual chaotic scenarios. In such cases, the
properties of the areas of attraction are largely determined by the
structure of saddle-type equilibrium points.

Description of the model
Consider the system UDS-I

ẋ = A(ν)x + B(ν)S (11)

where x = (x, y, z) ∈ R3 is vector states, B = (0, 0, ν)T with ν ∈ R,
S function linear piecewise and A(ν) = (aij) ∈ R3 is of the form

A(ν) =


0 1 0

0 0 1

− pAc (−r)
0! · ν − p′Ac (−r)

1! · ν − p′′Ac (−r)
2! · ν

 . (12)

The mission of the parameter ν, better known as the bifurcation
parameter, is to control the stable and unstable varieties in each
si to catch the trajectories in a single attraction. This parameter
can affect the dissipativity of the system since the dissipativity is

given by − p′′Ac (−r)
2! · ν. For ν = 1 system (11) is a system capable of

generating attractor multiscroll, when ν varies we need the system

to remain dissipative, this is true if − p′′Ac (−r)
2! · ν < 0, which allows

us to obtain qualitative information about the interval where ν

can vary and generate multistability. If we take − p′′Ac (−r)
2! · ν = −1

we obtain that ν = 1.5383 and for this value the system (11) can
generate multistability as shown in the following example.

Example 3 Consider the system

ẋ = A(ν)x + B(ν)S (13)

with

S(x) =



1.028, for 0.75 < x;

0.6853, for 0.45 < x ≤ 0.75;

0.3427, for 0.15 < x ≤ 0.45;

0, for − 0.15 < x≤0.15;

−0.3427 for x ≤ −0.15.

and

A =


0 1 0

0 0 1

−1.1422 · ν −1.1342 · ν −0.663 · ν


with characteristic polynomial p(t) = t3 + 0.663t2 + 1.1342t + 1.1422
the system (13) is UDS-I for ν = 1. As mentioned, our first challenge

is that we need the sum of the eigenvalues of the system to be negative.

Taking the value of ν from the equation − p′′Ac (−r)
2! · ν = −1 we have that

ν = 1.5083. For this value the system has the following form:

ẋ =


0 1 0

0 0 1

−1.7228 −1.7107 −1

 x +


0

0

1.5083

 S. (14)

We can observe in the Figure 3 the graphical representation of multista-
bility.

a)

b)

c)

Figure 3 a) Attractors for five different initial conditions: (blue)
x0 = (−0.4, 0.0, 0.0)t, (red) x0 = (−0.1, 0.0, 0.0)t, (green)
x0 = (0.2, 0.0, 0.0)t,(cian ) x0 = (0.5, 0.0, 0.0)t,(yellow)
x0 = (0.8, 0.0, 0.0)t. Projections of the attractors on the planes:
b) (x, y); c) (x, z).

In Figure 3 we can see that for five different initial conditions, the
dynamics of the system remains trapped in a single attractor of the
five attractors coexisting, this depends on the initial condition
is within the attraction basin of one of the five attractors that
coexist. In the graph of the Figure 3 c) we can see how to move the
bifurcation parameter ν such that the stable and unstable manifolds
can be controlled, that is, at the moment trajectory of the system
leaves by the unstable manifolds Wu, the stable manifolds Ws

manages to catch the trajectory to again maintain it within the
domain of the equilibrium point.
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The initial conditions to generate multistability are the same as
those used in the figure 2. Thus the dynamics of the system remain
trapped in some region depending on the initial condition that is
chosen.

CONCLUSION

By using a system of linear differential equations we generate mul-
tistability starting from a totally unstable system. First, we use a
parameter for moving the eigenvalues of the associated matrix and
to obtain a UDS-I system. Next, by means of another parameter
we control the stable and unstable manifolds of the system to catch
the generated trajectory from a given initial condition only in an
attractor.
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