On The Para-Octonions; a Non-Associative Normed Algebra

Mehdi JAFARI
Department of Mathematics, Technical and Vocational University, Urmia, Iran

Abstract

ABSTARCT In this paper, para-octonions and their algebraic properties are provided by using the Cayley-Dickson multiplication rule between the octonionic basis elements. The trigonometric form of a para-octonion is similar to the trigonometric form of dual number and quasi-quaternion. We study the De-Moivre's theorem for para-octonions, extending results obtained for real octonions and defining generalize Euler's formula for para-octonions.

Keywords: Alternativity, Cayley-Dickson construction, De-Moivre's formula, Para-octonion

Para-Ktonyonlar Üzerine; Bir İlişkisel Olmayan Normlu Cebir

Abstract

ÖZET Bu çalışmada, octonyonik baz elemanları arasında Cayley-Dickson çarpım kuralı kullanılarak para-octonyonlar ve cebirsel özellikleri verilmiştir. Bir para-octonyonun trigonometrik formu bir dual-sayının ve bir quasi-kuaterniyonun trigonometrik formuna benzerdir. Para-octonyonlar içn De-Moivre'nin teoremi ele alınarak reel-octonyonlar için elde edilen sonuçlar genelleştirilmiştir. Ayrıca, para-octonyonlar için genel Euler formülleri tanımlanmıştır.

Anahtar kelimeler: Alternatiflik, Cayley-Dickson yapı, De-Moivre formu, para-oktoniyon

1. INTRODUCTION

The real octonions algebra as the ordered couple of real quaternions, was invented by J. T. Graves (1843) and A. Cayley (1845) independently. In mathematics, the real octonions form a normed division algebra over the real numbers, usually represented by 0 . In our previous works, we studied some algebraic properties of real, split, complex, semi-octonions, and quasi-octonions.

In this paper, we study some algebraic properties of para-octonions, which is called $1 / 8-$ octonions in [9]. A pare-octonions can be written in form a dual quasi-quaternions. We review the generalized octonions algebra, and show that if put $\alpha=\beta=\gamma=0$, we obtain para-octonions algebra. Like real octonions, para-octonions form a non-associative algebra, but unlike real octonions, they are not division algebra. We investigate the De Moivre's formula for these
octonions and by using this formula, we obtain any power of a para-octonion. We hope that this work will contribute to the study of physics and other sciences.

2. THEORETICAL BACKGROUND

In this section, we give a brief summary of the generalized octonions. For detailed information about these octonions, we refer the reader to [1].

Definition 1. A generalized octonion x is defined as

$$
x=a_{0} e_{0}+a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}+a_{4} e_{4}+a_{5} e_{5}+a_{6} e_{6}+a_{7} e_{7}
$$

where a_{0}, \ldots, a_{7} are real numbers and $e_{i},(0 \leq i \leq 7)$ are octonionic units satisfying the equalities that are given in the following table;

The multiplication rules among the basis elements of octonions e_{i} can be expressed in the form:

\cdot	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}
e_{1}	$-\alpha$	e_{3}	$-\alpha e_{2}$	e_{5}	$-\alpha e_{4}$	$-e_{7}$	αe_{6}
e_{2}	$-e_{3}$	$-\beta$	βe_{1}	e_{6}	e_{7}	$-\beta e_{4}$	$-\beta e_{5}$
e_{3}	αe_{2}	$-\beta e_{1}$	$-\alpha \beta$	e_{7}	$-\alpha e_{6}$	βe_{5}	$-\alpha \beta e_{4}$
e_{4}	$-e_{5}$	$-e_{6}$	$-e_{7}$	$-\gamma$	γe_{1}	γe_{2}	γe_{3}
e_{5}	αe_{4}	$-e_{7}$	αe_{6}	$-\gamma e_{1}$	$-\alpha \gamma$	$-\gamma e_{3}$	$\alpha \gamma e_{2}$
e_{6}	e_{7}	βe_{4}	$-\beta e_{5}$	$-\gamma e_{2}$	γe_{3}	$-\beta \gamma$	$\beta \gamma$
e_{7}	$-\alpha e_{6}$	βe_{5}	$\alpha \beta e_{4}$	$-\gamma e_{3}$	$-\alpha \gamma e_{2}$	$\beta \gamma e_{1}$	$-\alpha \beta \gamma$

Special Cases:

1. If $\alpha=\beta=\gamma=1$, is considered, then $\mathrm{O}(\alpha, \beta, \gamma)$ is the algebra of real octonions O [5].
2. If $\alpha=\beta=1, \gamma=-1$, is considered, then $\mathrm{O}(\alpha, \beta, \gamma)$ is the algebra of split octonions (Psoudo-octonions) O^{\prime} [4].
3. If $\alpha=\beta=1, \gamma=0$, is considered, then $\mathrm{O}(\alpha, \beta, \gamma)$ is the algebra of semi-octonions O_{S} [3].
4. If $\alpha=\beta=-1, \gamma=0$, is considered, then $\mathrm{O}(\alpha, \beta, \gamma)$ is the algebra of split semi-octonions O_{S}^{\prime} [5].
5. If $\alpha=1, \beta=\gamma=0$, is considered, then $\mathrm{O}(\alpha, \beta, \gamma)$ is the algebra of quasi-octonions $\mathrm{O}_{q}[6]$.
6. If $\alpha=-1, \beta=\gamma=0$, is considered, then $\mathrm{O}(\alpha, \beta, \gamma)$ is the algebra of split quasi-octonions O_{q}^{\prime} [8].
7. If $\alpha=\beta=\gamma=0$, is considered, then $\mathrm{O}(\alpha, \beta, \gamma)$ is the algebra of para-octonions O_{p}.
The generalized octonions algebra, $\mathrm{O}(\alpha, \beta, \gamma)$, is a non-commutative, non-associative, alternative, flexible and power-associative [1].

3. PARA-OCTONIONS ALGEBRA

Definition 2. A para-octonion x is expressed as a real linear combination of the unit octonions $\left(e_{0}, e_{1}, \ldots, e_{7}\right)$, i.e.

$$
x=\left(x_{0}, x_{1}, \ldots, x_{7}\right)=x_{0} e_{0}+\sum_{i=1}^{7} x_{i} e_{i}
$$

where x_{0}, \ldots, x_{7} are real numbers and $e_{i},(0 \leq i \leq 7)$ are imaginary octonion units satisfying the non-commutative multiplication rules;

$$
\begin{array}{cc}
e_{k}^{2}=0, & k=0, \ldots, 7 \\
e_{1} e_{2}=e_{3}=-e_{2} e_{1}, & e_{2} e_{4}=e_{6}=-e_{4} e_{2} \\
e_{1} e_{4}=e_{5}=-e_{4} e_{1}, & e_{2} e_{5}=e_{7}=-e_{5} e_{2} \\
e_{1} e_{6}=-e_{7}=-e_{6} e_{1}, & e_{3} e_{4}=e_{7}=-e_{4} e_{3}
\end{array}
$$

The above multiplication rules are given in the following Table;

\cdot	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}
e_{1}	0	e_{3}	0	e_{5}	0	$-e_{7}$	0
e_{2}	$-e_{3}$	0	0	e_{6}	e_{7}	0	0
e_{3}	0	0	0	e_{7}	0	0	0
e_{4}	$-e_{5}$	$-e_{6}$	$-e_{7}$	0	0	0	0
e_{5}	0	$-e_{7}$	0	0	0	0	0
e_{6}	e_{7}	0	0	0	0	0	0
e_{7}	0	0	0	0	0	0	0

This form, $x=x_{0} e_{0}+\sum_{i=1}^{7} x_{i} e_{i}$, is called the standard form of a para-octonion. By using the Cayley-Dickson construction, a para-octonion x can also be written as

$$
x=\left(a_{0} e_{0}+a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}\right)+\left(a_{4}+a_{5} e_{1}+a_{6} e_{2}+a_{7} e_{3}\right) e_{4}=q+q^{\prime} l
$$

where $l^{2}=0$ and q, q^{\prime} are quasi-quaternions (1/4-quaternions) [2], i.e.

$$
q, q^{\prime} \in \mathrm{H}_{q}^{\circ}=\left\{q=a_{0}+a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3} \mid e_{1}^{2}=e_{2}^{2}=e_{3}^{2}=0, e_{1} e_{2}=e_{3}, e_{1} e_{3}=0=e_{2} e_{3}, a_{i} \in \mathrm{R}\right\}
$$

This construction lets us view the para-octonions as a two dimensional vector space over quasi-quaternions. A para-octonion x can be decomposed in terms of its scalar $\left(S_{x}\right)$ and vector $\left(\vec{V}_{x}\right)$ parts as

$$
S_{x}=a_{0}, \quad \vec{V}_{x}=a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}+a_{4} e_{4}+a_{5} e_{5}+a_{6} e_{6}+a_{7} e_{7}
$$

For two para-octonions $x=\sum_{i=0}^{7} a_{i} e_{i}$ and $w=\sum_{i=0}^{7} b_{i} e_{i}$, the summation and substraction processes are given as $x \pm w=\sum_{i=0}^{7}\left(a_{i} \pm b_{i}\right) e_{i}$.

The product of two para-octonions $x=S_{x}+\vec{V}_{x}, w=S_{w}+\vec{V}_{w}$ is expressed as

$$
x . w=S_{x} S_{w}-\left\langle\vec{V}_{x}, \vec{V}_{w}\right\rangle+S_{x} \vec{V}_{w}+S_{w} \vec{V}_{x}+\vec{V}_{x} \times \vec{V}_{w}
$$

This product can be described by a matrix-vector product as

$$
x . w=\left[\begin{array}{cccccccc}
a_{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
a_{1} & a_{0} & 0 & 0 & 0 & 0 & 0 & 0 \\
a_{2} & 0 & a_{0} & 0 & 0 & 0 & 0 & 0 \\
a_{3} & -a_{2} & a_{1} & a_{0} & 0 & 0 & 0 & 0 \\
a_{4} & 0 & 0 & 0 & a_{0} & a_{1} & 0 & 0 \\
a_{5} & -a_{4} & 0 & 0 & a_{1} & a_{0} & 0 & 0 \\
a_{6} & 0 & -a_{4} & 0 & a_{2} & 0 & a_{0} & 0 \\
a_{7} & a_{6} & -a_{5} & -a_{4} & a_{3} & a_{2} & -a_{1} & a_{0}
\end{array}\right]\left[\begin{array}{l}
b_{0} \\
b_{1} \\
b_{2} \\
b_{3} \\
b_{4} \\
b_{5} \\
b_{6} \\
b_{7}
\end{array}\right] .
$$

Para-octonions multiplication is not associative, since

$$
\begin{aligned}
& e_{1}\left(e_{2} e_{4}\right)=e_{1} e_{6}=-e_{7} \\
& \left(e_{1} e_{2}\right) e_{4}=e_{3} e_{4}=e_{7}
\end{aligned}
$$

But it has the property of alternativity, that is, any two elements in it generate an associative subalgebra isomorphic to $\mathrm{R}, \mathbb{C}^{0}, \mathrm{H}^{0}$.
e_{0} and $e_{i}(1 \leq i \leq 7)$ generate a subalgebra isomorphic to dual numbers \mathbb{C}^{0},

Subalgebra with bases $e_{0}, e_{i}, e_{j}, e_{k}(1 \leq i, j, k \leq 7)$ is isomorphic to quasi-quaternions algebra H_{q}^{0}.

2.1 Some Properties of Para-octonions

The conjugate of para-octonion $x=\sum_{i=0}^{7} a_{i} e_{i}=S_{x}+\vec{V}_{x}$ is

$$
\bar{x}=a_{0} e_{0}-\sum_{i=1}^{7} a_{i} e_{i}=S_{x}-\vec{V}_{x}
$$

Conjugate of product of two para-octonions and its own are described as

$$
\overline{x y}=\bar{y} \bar{x}, \overline{\bar{x}}=x
$$

It is clear that the scalar and vector parts of x is denoted by $S_{x}=\frac{x+\bar{x}}{2}$ and $\vec{V}_{x}=\frac{x-\bar{x}}{2}$.

1) The norm of x is

$$
N_{x}=x \bar{x}=\bar{x} x=|x|^{2}=a_{0}^{2}
$$

It satisfies the following property

$$
N_{x y}=N_{x} N_{y}=N_{y} N_{x}
$$

If $N_{x}=1$, then x is called a unit para-octonion. We will use to denote the set of unit para-octonions.
2) The inverse of x with $N_{x} \neq 0$, is

$$
x^{-1}=\frac{1}{N_{x}} \bar{x}
$$

4) The trace of element x is defined as $t(x)=x+\bar{x}$.

The para-octonions algebra is not division algebra, because for every nonzero $x \in \mathrm{O}_{P}$ the relation $N_{x}=0$, implies $x \neq 0$.
Example 1. Consider the para-octonions

$$
\begin{gathered}
x_{1}=1+(1,-1,2,-2,0,1,1), \\
x_{2}=0+(1,-1,1,-2,0,1,1) \text { and } \\
x_{3}=-2+(1,-1, \sqrt{2},-2,2,1,1)
\end{gathered}
$$

1. The vector parts of x_{1}, x_{2} are

$$
\vec{V}_{x_{1}}=(1,-1,2,-2,0,1,1), \vec{V}_{x_{2}}=(1,-1,1,-2,0,1,1) .
$$

2. The conjugates of x_{1}, x_{2} are
$\bar{x}_{1}=1-(1,-1,2,-2,0,1,1), \bar{x}_{2}=0-(1,-1,1,-2,0,1,1)$.
3. The norms are given by

$$
N_{x_{1}}=1, N_{x_{2}}=0, N_{x_{3}}=4
$$

4. The inverses are
$x_{1}^{-1}=1-(1,-1,2,-2,0,1,1), x_{3}^{-1}=\frac{1}{4}[-2-(1,-1, \sqrt{2},-2,2,1,1)]$, and x_{2} not invertible.
5. One can realize the following operations

$$
\begin{gathered}
x_{1}+x_{2}=1+(2,-2,3,-4,0,2,2) \\
x_{1}-x_{2}=2+(0,0,1,0,0,0) \\
x_{1} x_{2}=0+(1,-1,1,-2,0,1,-1) \\
x_{2} x_{1}=0+(1,-1,1,-2,0,1,3) \\
\quad N_{x_{1} x_{2}}=N_{x_{1}} N_{x_{2}}=N_{x_{2} x_{1}}=0 .
\end{gathered}
$$

Theorem 1.4. The set O_{P}^{1} of unit split semi-octonions is a subgroup of the group O_{P}^{0} where $\mathrm{O}_{P}^{0}=\mathrm{O}_{P}-[0-\overrightarrow{0}]$.

Proof: Let $x, y \in \mathrm{O}_{P}^{1}$. We have $N_{x y}=1$, i.e. $x y \in \mathrm{O}_{P}^{1}$ and thus the first subgroup requirement is satisfied. Also, by the property

$$
N_{x}=N_{\bar{x}}=N_{x^{-1}}=1,
$$

the second subgroup requirement $x^{-1} \in \mathrm{O}_{P}^{1}$.

3.2 Trigonometric form and De Moivre's theorem

The trigonometric (polar) form of a nonzero para-octonion $x=\sum_{i=0}^{7} a_{i} e_{i}$ is

$$
x=r(\cos \varphi+\vec{w} \sin \varphi)
$$

where $r=|x|=\sqrt{N_{x}}$ is the modulus of x,

$$
\cos \varphi=\frac{a_{0}}{r}, \quad \sin \varphi=\varphi=\frac{\left(\sum_{i=1}^{7} a_{i}^{2}\right)^{1 / 2}}{r} \text { and }
$$

$$
\vec{w}=\left(w_{1}, w_{2}, \ldots, w_{7}\right)=\frac{1}{\left(\sum_{i=1}^{7} a_{i}^{2}\right)^{1 / 2}}\left(a_{1}, a_{2}, \ldots, a_{7}\right) .
$$

This is similar to polar coordinate expression of a qua-si-quaternion and dual number.

Example 2. The trigonometric forms of the para-octonions

$$
\begin{aligned}
& x_{1}=1+(1,-1,0,1,1,1,-1) \text { is } x_{1}=\cos \varphi+\vec{w}_{1} \sin \varphi \\
& x_{2}=-2+(2,-1,0,1,-1,2,1) \text { is } x_{2}=2\left[\cos \varphi+\vec{w}_{2} \sin \varphi\right]
\end{aligned}
$$

where

$$
\begin{gathered}
\vec{w}_{1}=\frac{1}{\sqrt{6}}(1,-1,0,1,1,1,-1), \vec{w}_{2}=\frac{1}{\sqrt{12}}(2,-1,0,1,-1,2,1) \\
\text { and } N_{\vec{w}_{1}}=N_{\vec{w}_{2}}=0
\end{gathered}
$$

Theorem 1.5. (De Moivre's theorem) If $x=r(\cos \varphi+\vec{w} \sin \varphi)$ be a para-octonion and n is any positive integer, then

$$
x^{n}=r^{n}(\cos n \varphi+\vec{w} \sin n \varphi)
$$

Proof: The proof easily follows by induction on n. The Theorem holds for all integers n, since

$$
\begin{gathered}
q^{-1}=\cos \varphi-\vec{w} \sin \varphi, \\
q^{-n}=\cos (-n \varphi)+\vec{w} \sin (-n \varphi) \\
=\cos n \varphi-\vec{w} \sin n \varphi .
\end{gathered}
$$

Example 3. Let $x=1+(1,-1,2,1,2,2,-1)$. Find x^{10} and x^{-45}.

Solution: First write x in trigonometric form.

$$
x=\cos \varphi+\vec{w} \sin \varphi
$$

where $\cos \varphi=1, \sin \varphi=4, \vec{w}=1 / 4(1,-1,2,1,2,2,-1)$.
Applying de Moivre's theorem gives:
$x^{10}=\cos 10 \varphi+\vec{w} \sin 10 \varphi=1+40 \vec{w}=1+10(1,-1,2,1,2,2,-1)$
$x^{-45}=\cos (-45 \varphi)+\vec{w} \sin (-45 \varphi)=1-45(1,-1,2,1,2,2,-1)$.

Corollary 1.5. The equation 1 , doesn't have solution for a unit para-octonion.
Example 3.5. Let $x=-1+(1,-1,2,1,1,0,-1)$ be a unit pa-ra-octonion. There is no $n(n>0)$ such that $x^{n}=1$.

For any unit para-octonion $x=\cos \varphi+\vec{w} \sin \varphi$, since $\vec{w}^{2}=0$, a natural generalization of Euler's formula is

Conclusion

In this paper, we defined and gave some of algebraic properties of para-octonions and showed that the trigonometric form of para-octonions is similar to quasi-quaternions and dual numbers. The De Moivre's formulas for these octonions is obtained. We gave some examples for clarification.

Further Work

We will give a complete investigation to real matrix representations of para-octonions, and give any powers of these matrices.

REFERENCES

$e^{\vec{w} \varphi}=1+\vec{w} \varphi+\frac{(\vec{w} \varphi)^{2}}{2!}+\frac{(\vec{w} \varphi)^{3}}{3!}+\ldots=1+\vec{w} \varphi=\cos \varphi+\vec{w} \sin \varphi=x,{ }^{[1]}$

3.3 Roots of Para-octonion

Theorem 1.6. Let $x=r(\cos \varphi+\vec{w} \sin \varphi)$ be a para-octonion. The equation $a^{n}=x$ has only one root and this is

$$
a=\sqrt[n]{r}\left(\cos \frac{\varphi}{n}+\vec{w} \sin \frac{\varphi}{n}\right)
$$

Proof: We assume that $a=M(\cos \lambda+\vec{w} \sin \lambda)$ is a root of the equation $a^{n}=x$, since the vector parts of x and a are the same. From Theorem 4.5, we have

$$
a^{n}=M^{n}(\cos n \lambda+\vec{w} \sin n \lambda)
$$

Now, we find

$$
M=\sqrt[n]{r}, \quad \cos \varphi=\cos n \lambda, \quad \sin \varphi=\sin n \lambda
$$

So, $\quad a=\sqrt[n]{r}\left(\cos \frac{\varphi}{n}+\vec{w} \sin \frac{\varphi}{n}\right)$ is a root of equation $a^{n}=x$. If we suppose that there are two roots satisfying the equality, we obtain that these roots must be equal to each other.

Example 1.6. Let $x=8+(1,0,-\sqrt{2}, 0,2,-1,0)$ be a pa-ra-octonion. The cube root of the octonion x is

$$
\begin{aligned}
x^{1 / 3} & =\sqrt[3]{8}\left(\cos \frac{\varphi}{3}+\vec{w} \sin \frac{\varphi}{3}\right) \\
& =2\left(1+\frac{1}{3 \sqrt{8}} \vec{w}\right)
\end{aligned}
$$

Flaut, C., \& Shpakivskyi V., (2015). An efficient method for solving equations in generalized quaternion and octonion algebras, Advance in Applied Clifford algebra, 25 (2), 337350.
[2] Jafari M., On the Properties of Quasi-Quaternions Algebra, (2014). Communications, faculty of science, university of Ankara, Series A1: Mathematics and statistics, 63(1), 1-10.
[3] Jafari M., (2015). A viewpoint on semi-octonion algebra, Journal of Selcuk university natural and applied science, 4(4), 46-53.
[4] Jafari M., (2015). Split Octonion Analysis, Representation Theory and Geometry, Submitted for publication.
[5] Jafari M., Azanchiler H., (2015). On the structure of the octonion matrices, Submitted for publication.
[6] Jafari M., (2015). An Introduction to Quasi-Octonions and Their Representation, DOI: 10.131 40/RG.2.1.3833.0082
[7] Mortazaasl H., Jafari M., (2013). A study on Semi-quaternions Algebra in Semi-Euclidean 4-Space, Mathematical Sciences and Applications E-Notes, 1(2) 20-27.
[8] Jafari M., (2015). The Fundamental Algebraic Properties of Split Quasi-Octonions, DOI: 10. 13140/RG .2.1.3348.2728
[9] Rosenfeld B. A., Geometry of Lie Groups, Kluwer Academic Publishers, Dordrecht, 1997.

