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Abstract: Let N  be a left near ring. A map NNd :   is called a nonzero multiplicative derivation if 

yxdyxdxyd )()(=)(   holds for all ., Nyx   In the present paper, we shall extend some well known 

results concerning commutativity of prime rings for nonzero multiplicative derivations of a left prime near-ring 

.N  
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Çarpımsal Türevli Asal Yakın Halkalar Üzerine Notlar 

 

Özet: N bir sol yakın halka olsun. NNd :  dönüşümü her Nyx ,  için yxdyxdxyd )()(=)(   

koşulunu sağlıyorsa 𝑑 ye bir çarpımsal türev denir. Bu makalede, asal halkalarda iyi bilinen bazı komütatiflik 

koşulları, çarpımsal türevli sol asal yakın halkalar için genelleştirilecektir. 

Anahtar Kelimeler: Asal halka, yakın halka, türev, çarpımsal türev 

 

1. INTRODUCTION 

An additively written group ),( N  equipped with a binary operation ,),(,:. xyyxNN   such 

that zxyyzx )(=)(  and xzxyzyx  =)(  for all Nzyx ,,  is called a left near-ring. A near-ring 

N  is called zero symmetric if 0=0x  for all Nx  (recall that left distributive yields 0)=0x . A near-

ring N  is said to be 3-prime if {0}=xNy  implies 0=x  or 0.=y  For any ,, Nyx   as usual 

yxxyyx =],[  and yxxyxoy =  will denote the well-known Lie and Jordan products respectively. 

The set xyyxNxZ =|{=   for all }Ny  is called multiplicative center of .N  A mapping 

NNd :   is said to be a derivation if yxdyxdxyd )()(=)(   for all Nyx , . N  is said to be 

2 torsion free if Nx  and 0=xx  implies 0.=x  

Since Posner published his paper [11] in 1957, many authors have investigated properties of derivations 

of prime and semiprime rings. The study of derivations of near-rings was initiated by Bell and Mason 

in 1987 [1]. There has been a great deal of work concerning commutativity of prime and semiprime 

rings and near-rings with derivations satisfying with certain differential identities. (see references for a 

partial bibliography). 
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In [7], Herstein has proved that if R  is a prime ring of characteristic different from 2 and if d  is a 

nonzero derivation of R  such that ,)( ZRd   then R  is commutative. In [3], Bell and Kappe have 

proved that d  is a derivation of R  which is either a homomorphism or an anti-homomorphism in 

semiprime ring R  or a nonzero right ideal of R  then 0.=d  In [5], Daif and Bell proved that if R  is 

semiprime ring, U  is a nonzero ideal of R  and d  is a derivation of R  such that    ,,=),( yxyxd   

for all ,, Uyx   then .ZU   All of these results were extended to near rings. 

In [4], the notion of multiplicative derivation was introduced by Daif motivated by Martindale in [8]. 

RRd :  is called a multiplicative derivation if yxdyxdxyd )()(=)(   holds for all ., Ryx   

These maps are not additive. In [6], Goldman and Semrl gave the complete description of these maps. 

We have [0,1],= CR  the ring of all continuous (real or complex valued) functions and define a map 

RRd :  such as 

.
otherwise0,

0)(,)(log)(
=))((







 xfxfxf

xfd  

It is clear that d  is multiplicative derivation, but d  is not additive. 

Recently, some results concerning commutativity of prime rings with derivations were proved for 

multiplicative derivations. It is natural to look for comparable results with multiplicative derivations of 

near-rings. In the present paper, we shall extend above mentioned results for multiplicative derivations 

of 3-prime near-ring .N  Also, we will prove some commutativity conditions. 

Chapter 1:  

Lemma 1 [2, Lemma 1.2]Let N  be a 3 prime near-ring. 

 i  If  0\Zz , then z  is not a zero divisor. 

 ii  If Z  contains a nonzero element z  for which Zzz  , then  ,N  is abelian. 

)(iii  If  0\Zz  and Nx  such that Zxz  or ,Zzx  then .Zx  

Lemma 2 [2, Lemma 1.5] Let N  be a 3 prime near ring. If Z  contains a nonzero semigroup ideal 

of ,N  then N  is commutative ring.  

Lemma 3 [9, Lemma 2.1]A near-ring N  admits a multiplicative derivation if and only if it is zero 

symmetric. 

Lemma 4 Let N  be a near-ring and NNd :  multiplicative derivation of .N  Then 

.,, allfor ,)()(=))()(( Nzyxyzxdzyxdzyxdyxd   

Proof: By calculating )(xyzd  in two different ways, we see that 
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zxydzxydzxyd )()(=))((   

and 

   

.)()()(=

=))((

yzxdzyxdzxyd

yzxdyzxdyzxd




 

Hence we have 

zyxdzxydzxyd )()(=)(   

and so 

.,, allfor ,)()(=))()(( Nzyxyzxdzyxdzyxdyxd   

Lemma 5 Let N  be a 3-prime near-ring and .Na  If N  admits a nonzero multiplicative derivation 

d  such that 0=)( aNd  (or 0=)(Nad ), then 0.=a  

Proof. By the hypothesis, we get 

., allfor 0,=)( Nyxaxyd   

Expanding this equation with Lemma 4 and using the hypothesis, we have 

. allfor (0),=)( NxNaxd   

Since N  is 3-prime near-ring and 0,d  we obtain that 0.=a  

0=)(Nad  can be proved by applying the same techniques. 

Theorem 1 Let N  be a 3-prime near-ring. If N  admits a nonzero multiplicative derivation d  such 

that ,)( ZNd   then N  is a commutative ring. 

Proof. For any ,, Nyx   we get ,)( Zxyd   and so 

).(=)( xyydyxyd  

That is 

).)()((=))()(( yxdyxdyyyxdyxd   

Using Lemma 4, we get 

.)()(=)()( yxydyyxdyyxdyyxd   
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Since ,)( ZNd   we arrive at 

 yyxdyxydyyxdxyyd )()(=)()(   

and so 

0.=],)[( yxyd  

Using Lemma 1 (i), we have for each fixed Ny  either 0=)(yd   or .Zy  

Now, we assume 0.=)(yd  For any ,Nx  we have Zxyd )(  by the hypothesis. Since 0,=)(yd  

we get ,)(=)( Zyxdxyd   for all .Nx  By Lemma 1 (iii), we get 0,=)(xd  for all Nx   or  

.Zy  Since 0,d  we must have  .Zy  Hence we arrive at  Zy  for any cases. That is ,ZN   

and so N  is commutative near-ring by Lemma 2. 

Theorem 2 Let N  be a 3-prime near-ring and d a multiplicative derivation of N  such that 

),()(=)( ydxdxyd  for all ,, Nyx   then 0.=d  

Proof. In view of our hypothesis, we have 

., allfor  ),()(=)()( Nyxydxdyxdyxd   (2.1) 

Replacing y  by yz  in (2.1), we get 

).()(=)()( yzdxdyzxdyzxd   

By our hypothesis, we have 

)()()(=)()()( zdydxdyzxdzdyxd   

and so 

).()(=)()()( zdxydyzxdzdyxd   

Since d  is multiplicative derivation of ,N  we arrive at 

).())()((=)()()( zdyxdyxdyzxdzdyxd   

By Lemma 4, we get 

.,, allfor  ),()()()(=)()()( Nzyxzydxdzdyxdyzxdzdyxd   

That is  
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.,, allfor  ),()(=)( Nzyxzydxdyzxd   

Since N  is left near-ring, we have 

., allfor (0),=))(()( NzxzzdNxd   

By the 3-primeness of ,N  we arrive at  

. allfor  ,=)(or  0= Nzzzdd   

If ,=)( zzd  for all ,Nz  then  

yxdyxdxyd )()(=)(   

xyxyxy =  

., allfor  0,= Nyxxy   

This yields that (0),=N  a contradiction. So, we must have 0.=d  This completes the proof of our 

theorem. 

Theorem 3 Let N  be a 3-prime near-ring and d  a multiplicative derivation of N  such that 

),()(=)( xdydxyd  for all ,, Nyx   then 0.=d  

Proof. By our hypothesis, we have 

., allfor  ),()(=)()( Nyxxdydyxdyxd   (2.2) 

Replacing y  by xy  in (2.2), we get 

).()(=)()( xdxydxyxdxyxd   

In view of our hypothesis, we have 

).()(=)()()( xdxydxyxdxdyxd   

Using d  is multiplicative derivation of ,N  we arrive at 

).())()((=)()()( xdyxdyxdxyxdxdyxd   

By Lemma 4, we get 

)()()()(=)()()( xydxdxdyxdxyxdxdyxd   
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and so 

., allfor  ),()(=)( Nyxxydxdxyxd    (2.3) 

Taking yz  instead of y  in (2.3) and using (2.3), we obtain that 

., allfor  0,=)](,[)( NzxxdzNxd   

By the 3-primeness of ,N  we get 

.)(or    0=)( Zxdxd   

Now, 0=)(xd  implies that .)( Zxd   So, we have ZNd )(  for any cases. By Theorem 1, we obtain 

that N  is commutative ring or 0.=d  If N  is commutative ring, then 

),()(=)()(=)( ydxdxdydxyd  for all ., Nyx   Hence, we get 0=d  by Theorem 2. This completes 

the proof. 

Theorem 4 Let N  be a 3-prime near-ring and d  a nonzero multiplicative derivation of N  such that 

],),([=]),([ yxdyxd  for all ,, Nyx   then N  is commutative ring. 

Proof. Replacing xy  instead of y  in the hypothesis, we get 

].),([=]),[( xyxdyxxd  

Expanding this equation and using the hypothesis, we have 

]),([=],)[(]),([ xyxdyxxdyxxd   

]),([=],)[(]),([ xyxdyxxdyxdx   

).()(=],)[()()( xxydxyxdyxxdxxydyxxd   

On the other hand, replacing 0=y  in the hypothesis, we arrive at 0.=(0)d  Again replacing x  instead 

of y  in the hypothesis, we get 

  0=),( xxd  

and so 

. allfor  ),(=)( Nxxxdxxd   

Now, using this in the above equation, we find that 
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)()(=],)[()()( xxydxyxdyxxdxxydxyxd   

0=],)[( yxxd  

and so 

., allfor  ,)(=)( Nyxyxxdxyxd   

Replacing y  by yz  in this equation and using this, we have 

., allfor  (0),=],[)( NzxzxNxd   

This yields that 

.or0=)( Zxxd   

If 0,=)(xd  then .)( Zxd   On the otherwise, if Zx  then 0,=]),([ yxd  for all Ny  by the 

hypothesis. Hence we have .)( Zxd   Thus we arrive at ,)( Zxd   for both cases. That is ,)( ZNd   

and so, we obtain that N  is commutative ring by Theorem 1. 

Theorem 5 Let N  be a 3-prime near-ring and d  a nonzero multiplicative derivation of N  such that 

)],(),([=]),([ ydxdyxd  for all ,, Nyx   then N  is commutative ring. 

Proof. If ,)( Zxd   then there is nothing to prove. So we assume that ,)( Zxd    for any .Nx  In 

the view of the hypothesis, we get 

    ., allfor  ,)(),(=),( Nyxydxdyxd   

Writing yxd )(  instead of y  in this equation, we get 

   yxdxdyxddxd )(),(=))((),(  

].),()[(=)())(())(()( yxdxdxdyxddyxddxd   

Using d  is multiplicative derivation of N  and Lemma 4, we arrive at 

].),()[(=))()()()()(()()()()()( 22 yxdxdxydxdxdydxdyxdxdydxdxd   

By the hypothesis, we have 

)].(),()[(=))()()()()(()()()()()( 22 ydxdxdxydxdxdydxdyxdxdydxdxd   
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Expanding this term and using ,=)( abba   we arrive at 

)()()()()()(=)()()()()()()()()()( 22 xdydxdydxdxdxdydxdxydxdyxdxdydxdxd 

and so 

., allfor  ),()(=)()( 22 Nyxxydxdyxdxd   

Replacing yz  instead of y  in the last equation, we find that 

., allfor (0),=]),([)(2 NzxzxdNxd   

By the 3-primeness of ,N  we get for each Nx  

.)(or  0=)(2 Zxdxd   

Since ,)( Zxd   we must have 0,=)(2 xd  for all .Nx  Writing )(yd  instead of y  in the hypothesis 

and using 0,=)(2 yd  we arrive at 0.=)](),([ ydxd  Again using this in the hypothesis, we have 

0,=]),([ yxd  and so ,)( Zxd   a contradiction. Hence, we must have ,)( ZNd   and so, N  is 

commutative ring by Theorem1. This completes the proof. 

Theorem 6 Let N  be a 3-prime near-ring, d  a multiplicative derivation of .N  If   ,),( Zyxd   for 

all ,, Nyx   then N  is a commutative ring. 

Proof. Replacing y  by yxd )(  in the hypothesis yields that 

  ., allfor  ,),()( NyxZyxdxd   

By Lemma 1 (iii), we get 

  ., allfor 0,=),(or  )( NyxyxdZxd   

For any cases, we obtain that .)( ZNd   By Theorem 1, we obtain that N  is a commutative ring. 
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