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A B S T R A C T  A R T I C L E  I N F O  

IIoT “Industrial Internet of Things” refers to a subset of Internet of Things technology designed 

for industrial processes and industrial environments. IIoT aims to make manufacturing facilities, 

energy systems, transportation networks, and other industrial systems smarter, more efficient 

and connected. IIoT aims to reduce costs, increase productivity, and support more sustainable 

operations by making industrial processes more efficient. In this context, the use of IIoT is 

increasing in production, energy, healthcare, transportation, and other sectors. IoT has become 

one of the fastest-growing and expanding areas in the history of information technology. 

Billions of devices communicate with the Internet of Things with almost no human intervention. 

IIoT consists of sophisticated analysis and processing structures that handle data generated by 

internet-connected machines. IIoT devices vary from sensors to complex industrial robots. 

Security measures such as patch management, access control, network monitoring, 

authentication, service isolation, encryption, unauthorized entry detection, and application 

security are implemented for IIoT networks and devices. However, these methods inherently 

contain security vulnerabilities. As deep learning (DL) and machine learning (ML) models have 

significantly advanced in recent years, they have also begun to be employed in advanced 

security methods for IoT systems. The primary objective of this systematic survey is to address 

research questions by discussing the advantages and disadvantages of DL and ML algorithms 

used in IoT security. The purpose and details of the models, dataset characteristics, performance 

measures, and approaches they are compared to are covered. In the final section, the 

shortcomings of the reviewed manuscripts are identified, and open issues in the literature are 

discussed. 
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1. Introduction

The internet environment is changing at an incredible speed. 

The internet is not just about smartphones or laptops; it has 

gone beyond internet-connected devices. Physical devices 

communicate with each other or large systems through the 

Internet of Things (IoT). Users can complete their work in a 

short time with devices connected with IoT. As the future of 

IoT looks so promising, it will be an integral part of every 

device, from home appliances to security devices. 

While the number of IoT devices worldwide was 15.14 billion 

in 2023, it will reach 29.42 billion devices in 2030 and will 

increase 2.3 times [1] because it is cheaper and more 

accessible. Almost 75% of devices connected to the IoT 

network use short-range technologies such as Bluetooth, 

Zigbee, and Wi-Fi. These technologies will naturally be used 

by default as long as these networks exist. IoT revenues will 

exceed $1,5 trillion by 2030. China, North America, and 

Europe have 73% of IoT global revenue [2]. With the 

expansion of the IoT ecosystem, security concerns are also 

increasing. Considering the IoT architecture brings together 

multiple pieces of sensing and communication. Integrating 

devices is not only a complex task but also demonstrates that 

IoT networks and devices are a system that requires constant 

attention [3], [4]. 

IoT can be divided into three main groups. Consumer IoT can 

be considered end-user applications, smartphones, smart 

watches, wearable devices, and internet-connected home 

devices. Large infrastructures for enterprises are referred to as 
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Commercial IoT, while controllers, actuators, sensors, 

industrial assets, remote telemetry, monitoring, and 

management systems are classified as Industrial IoT. In this 

survey, Industrial IoT (IIoT) will be discussed [4]. The IIoT is 

a new, fully connected, efficient vertical model for intelligent 

systems and is vulnerable to cyber threats. Malicious actors 

can exploit some vulnerabilities and risks due to the 

misapplication of security standards [6].  

Automation and intelligent computing services such as 

industrial systems, critical infrastructure devices, embedded 

devices, and modern systems have come together with 

production engineering thanks to the internet. However, 

standardization with IIoT brings many new challenges, 

including legal and social aspects of security, and privacy. In 

particular, the increasing diversity of IoT network and IoT 

device presence requires highly scalable solutions for data 

communication, naming, information management, 

addressing and service delivery. Many IoT devices still have 

limited capabilities that require low-cost, low-power, fully 

networked architectures compatible with standard 

communication methods [7]. 

It is a well-known fact that IoT is an ecosystem where data is 

transmitted and requires some privileged features to manage 

large amounts of data. At this point, ML and DL models 

collect and analyze data with artificial intelligence (AI). The 

security of devices can be ensured by making predictions with 

DL and ML models from the data produced by IoT 

ecosystems. Using the AI concept in security ensures a regular 

data flow between IoT devices and proper management 

without human error. Thus, AI has become necessary in the 

growth of the IoT industry. 

The communication protocol used in wearable technologies 

and industrial applications Bluetooth low energy: BLE has 

been seen in many attacks where it is vulnerable to attacks. 

Since the packets transmitted with BLE consist of plain text 

content, it has been seen to contain security vulnerabilities in 

user authentication and reconnection of two paired devices 

[4], [5]. 

The increasing benefits of internet-connected devices have 

also brought challenges related to security issues. With the 

widespread use of IoT devices, security problems have also 

increased, and anomalies have occurred in IoT networks. 

Anomalies in the IoT network and systems are detected by 

intrusion detection systems. Work on IDS has been ongoing 

since Anderson's network security monitoring work [8]. Since 

Anderson's technical report, manuscripts have continued for 

different intrusion detection systems based on various 

methods [9]-[15]. There are different approaches for detecting 

anomalies in IoT networks with DL and ML models [16]-[19]. 

The ML and DL algorithms used to detect anomalies in IIoT 

security recognize malicious network traffic by comparing it 

to benign network traffic. In the papers, support vector 

machine [20], Bayes networks [21], decision trees [22], k-

nearest neighbors [23], random forest [24], and k-means [ 25], 

machine learning algorithms are preferred. As deep learning 

algorithms generally convolutional neural networks [26], 

recurrent neural networks [27], long short-term memory [28], 

gated recurrent unit [20], [29], autoencoder [30], generative 

adversarial network [31], restricted Boltzmann machines [32] 

and deep belief networks [33] are used. 

1.1. Related Surveys 

In this subsection, current manuscripts compiling recently 

published or highly cited ML and DL-based models for IIoT 

security are reviewed. Some of these survey manuscripts used 

the systematic literature survey method, and some consisted 

of summarizing the papers. A systematic literature survey is 

the distinction and examination of papers prepared to answer 

research questions according to predetermined selection and 

elimination criteria related to a selected topic. Table 1 

summarizes the characteristics of the reviewed surveys. 

IIoT security research activity is geographically dispersed, the 

most popular broadcast locations, and fog computing for IIoT 

security threats [34]. IIoT security requirements refer to the 

geographical distribution of scientific publications, popular 

publication areas, and distribution over the years. In addition, 

the future of fog computing in the industrial field is discussed 

and proposed four-layer IIoT security architecture [35].  

Firstly, security analysis includes MAC, ucode, IP, and EPC. 

Analysis of the network layer is also available in capillary 

networks (HomePlug, BLE, Bluetooth, RFID, NFC, IrDA, 

INSTEON, EnOcean, ANT+, WirelessHART, UWB, ZigBee, 

Thread, and ISA 110.11a, etc.). Secondly, their coverage and 

functionality ranges are mainnet in the background (3G, LR-

WAN, Ethernet, WiMax, WLAN) and backbone network 

(DASH7, LoRaWAN, NB-Fi, NB-IoT, SigFox, NWAVE, and 

RPMA). At the processing layer, security analysis resides in 

end-to-end data protection. Finally, application layers work on 

HTTP, MQTT, CoAP, SOAP, XMPP, REST, DDS, and 

AMQP protocols [36].  Protocol-based and data-based attacks 

show that traditional IoT attack prevention tools are no longer 

effective. Artificial intelligence methods, blockchain, and 

elliptic curve encryption seem to be new effective methods for 

securing IoT networks [37]. IoT security threats and 

countermeasures, common points, and differences between 

IoT and IIoT are defined. A literature review of different 

security approaches specific to IIoT [38]. Blockchain, AI 

algorithms, consensus mechanisms, storage and 

communication perspectives on smart supply chains, and 

Industry 4.0 are explained [39]. A comprehensive analysis of 

attacks against IIoT systems and solutions to these attacks, as 

suggested in the latest literature, is presented [40]. DL and ML 

methods and blockchain integration for the IoT perception, 

network, and application layers are discussed [41]. Reviews 

various DL techniques and their uses in different industries, 

including CNN, AE, and RNN. DL use cases for intelligent 

IoT technologies are summarized [42]. A systematic literature 

review specifically addressing DL and ML algorithms 

commonly used in IoT network security is proposed, but does 

not focus on IIoT [43]. A systematic survey of how deep 

learning approaches detect IoT network and system security 

and large-scale attacks is studied [44]. An anomaly-based 
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systematic survey with ML and DL together; however, the 

datasets are not exhaustive [45] and [46]. 40 manuscripts were 

summarized in databases such as Google Scholar, Academia, 

Science Direct, and IEEE with the keywords IoT, cyber 

security, cyber security frameworks, and cyber security 

approaches. No information is provided about ML and DL-

based algorithms and the databases used [115]. ML and DL-

based solutions for privacy threats in IoT systems were 

analyzed with dataset features without a systematic survey 

[116]. A detailed analysis of the IDS developed in the IoT 

environment was performed and a new smart IDS was 

proposed, which was tested on the NS3 simulator using fuzzy 

CNN by extracting features with information gain. This 

manuscript can be considered as a non-systematic detailed 

survey that includes experiments and analysis [117]. Many 

manuscripts have been summarized about ML or DL-based 

approaches to IoT security solutions [118]. Many manuscripts 

have been summarized about ML or DL-based approaches to 

IoT security solutions on between 2017 and 2022 [119]. 

One hundred five manuscripts were examined through 

different elimination and purification steps with the research 

questions' queries. The use of DL has been claimed to be a 

permanent and reasonable approach to IoT security. M. A. Al-

Garadi et al. explained DL and ML methods with dataset 

details, but it is not a systematic survey [41]. R. Ahmad & I. 

Alsmadi gave a systematic review of manuscripts conducted 

in the years 2019-2020 specialized in IoT security, which 

explains the ML and DL methods with dataset detail and is not 

an IIoT-specific review. Our manuscript differs from other 

manuscripts in that it consists of systematically conducted 

manuscripts with detailed datasets where IIoT-specific ML 

and DL approaches were experimented on between 2019 and 

2023 [43], [119]. 

 

Table 1. Deep Learning and Machine Learning Based Survey Papers for IIOT Security 

Survey Article Title Journal Name Year Systematic 

survey? 

ML and DL 

together? 

Anomaly 

based? 

Dataset 

detail? 

[34]  Towards a systematic survey of 

industrial IoT security 

requirements: research method and 

quantitative analysis 

ACM Digital Library 

Proceedings of the 

Workshop on Fog 

Computing and the IoT 

2019 ✓ X ✓ X 

[35] A Systematic Survey of Industrial 

Internet of Things Security: 

Requirements and Fog Computing 

Opportunities 

IEEE Communications 

Surveys & Tutorials 

2020  ✓ X X X 

[36] Recent Technologies, Security 

Countermeasure and Ongoing 

Challenges of Industrial Internet of 

Things (IIoT): A Survey 

MDPI Sensors 2021 X X X X 

[37] Security trends in Internet of 

Things: A survey 

SpringerLink SN 

Applied Sciences 

2021 X X X X 

[38] Challenges and Opportunities in 

Securing the Industrial Internet of 

Things 

IEEE Transactions on 

Industrial Informatics 

2021 X X X X 

[39] Deep reinforcement learning for 

blockchain in industrial IoT: A 

survey 

ScienceDirect /Elsevier 

Computer Networks 

2021 X ✓ X X 

[40] Cyber Threats to Industrial IoT: A 

Survey on Attacks and 

Countermeasures 

MDPI IoT 2021 X ✓ X X 

[41] A Survey of Machine and Deep 

Learning Methods for Internet of 

Things (IoT) Security 

IEEE Communications 

Surveys & Tutorials 

2020 X ✓ ✓ ✓ 

[42] Deep Learning in the Industrial 

Internet of Things: Potentials, 

Challenges, and Emerging 

Applications 

IEEE Internet of Things 

Journal 

2021 X X ✓ X 

[43] Machine learning approaches to 

IoT security: A systematic 

literature review 

ScienceDirect /Elsevier 

Internet of Things 

2021 ✓ ✓ ✓ ✓ 

[44] A systematic review on Deep 

Learning approaches for IoT 

security 

ScienceDirect/ Elsevier 

Computer Science 

Review 

2021 ✓ X ✓ ✓ 
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[45] A Brief Review on Internet of 

Things, Industry 4.0 and 

Cybersecurity 

MDPI Electronics 2022 ✓ ✓ ✓ X 

[46] State-of-the-art survey of artificial 

intelligent techniques for IoT 

security 

ScienceDirect/ Elsevier 

Computer Networks 

2022 ✓ ✓ ✓ X 

[115] Cybersecurity Risk Analysis in the 

IoT: A Systematic Review 

MDPI Electronics 2023 ✓ X ✓ X 

[116] A Survey of Machine and Deep 

Learning Methods for Privacy 

Protection in the Internet of Things 

MDPI Sensors 2023 X ✓ X ✓ 

[117] A Comprehensive Survey on 

Machine Learning-Based Intrusion 

Detection Systems for Secure 

Communication in Internet of 

Things 

Hindawi Computational 

Intelligence and 

Neuroscience 

2023 X X ✓ ✓ 

[118] Internet of Things (IoT) Security 

Intelligence: A Comprehensive 

Overview, Machine Learning 

Solutions and Research Directions 

SpringerLink Mobile 

Networks and 

Applications 

2023 X ✓ X X 

[119] Intelligent approaches toward 

intrusion detection systems for 

Industrial Internet of Things: A 

systematic comprehensive review 

ScienceDirect/ Elsevier 

Journal of Network and 

Computer Applications 

2023 ✓ ✓ ✓ ✓ 

Our 

paper 

A Systematic Survey of Machine 

Learning and Deep Learning 

Models Used in Industrial Internet 

of Things Security 

- - ✓ ✓ ✓ ✓ 

1.2. Motivation, Scope and Contribution of Manuscript 

In this systematic literature survey, we focused on the schemes 

for anomaly-based attack detection in the IIoT network. This 

survey differs from the other survey manuscripts in Table 1 in 

that it is systematic, includes ML and DL models, is based on 

anomalies found in IIoT networks, includes details of the 

datasets used, and focuses on the framework of industrial 

internet of things. The general content and scope of this 

systematic review, which is prepared with the aim of 

providing detailed information to researchers working in the 

field of IIoT security, are as follows: 

• The proposed schemes in the selected approaches are 

examined, and the information on these schemes is 

briefly summarized. 

• Manuscripts that propose models developed to detect 

anomaly-based attacks in industrial IoT networks 

and reduce these attacks are systematically selected 

and eliminated according to specific criteria. 

• It is stated which ML and DL models are used in the 

approaches.     

• Manuscripts with performance metrics have been 

interpreted. 

• Details of the datasets presented in the training and 

testing phases of the proposed models are given. 

• The methods compared with the performance metrics 

reached by the setup of the models are shown. 

• In the final section, the deficiencies of the examined 

manuscripts are outlined. Evaluation of what 

situations these deficiencies may lead to is presented. 

The contributions of this survey are as follows: 

• Research strategies with seven different academic 

databases were scanned. 

• Article scans were made systematically. 

• Survey articles and literature were searched. 

• Frequently used abbreviations and metrics in the 

article and in the literature are explained in detail. 

• Manuscripts with machine learning and deep learning 

models have been researched. 

• The main idea, advantages, and disadvantages of the 

proposed models are explained. 

• The benign and malignant numbers and features of the 

dataset used in the models were extracted. 

• The usage purposes, tasks, and performance results of 

the models are given. 

• The models against which the proposed schemes are 

compared, and open research problems are discussed. 

1.3. Organization 

In this systematic survey, to make the technical information 

outlined in the manuscript more understandable, IoT 

architecture, IIoT concept, vulnerabilities in IIoT devices, 

some attacks against IIoT devices, and ML and DL models are 

briefly explained in Section 2. Section 3 explains the research 

questions and objectives, search strategy, search process, and 

filtering criteria. The approaches taken in the selected 

manuscripts are summarized in Section 4. Section 5 answers 
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the research questions that a systematic review should answer, 

summaries of the models, advantages, and disadvantages, and 

details of the datasets used. In Section 6, DL and ML models, 

datasets, and their properties are evaluated, an overview of the 

models is presented, and the deficiencies encountered in the 

manuscripts examined are emphasized. Finally, our 

manuscript briefly addresses general and open issues, offering 

a comprehensive overview of the broader challenges. Table 2 

shows the abbreviations and expansions frequently used in 

this survey. 

Table 2. Abbreviations and Expansions 

Abbreviation Expansion Abbreviation Expansion 

IDS  Intrusion Detection System MLP  Multilayer Perceptron 

DT Decision Tree AI  Artificial Intelligence 

NB Naive Bayes RNN  Recurrent Neural Network 

AE Autoencoder DAE Denoising Autoencoder 

RBM  Restricted Boltzmann Machines SAE  Stacked Autoencoder 

KNN K-Nearest Neighbors RF  Random Forest 

FDI  False Data Injection GAN Generative Adversarial Networks 

DoS  Denial of Service LSTM Long Short-Term Memory 

UDP User Datagram Protocol CART Classification and Regression Tree 

DBN Deep Belief Network LR Linear Regression 

BN Bayesian Network RT  Random Tree 

DDoS Distributed Denial of Service SDN Software Defined Networking 

SVM Support Vector Machine ICMP Internet Control Message Protocol 

NN  Neural Networks ANN  Artificial Neural Networks 

MitM Man-in-the-middle TCP  Transmission Control Protocol 

CNN  Convolutional Neural Networks ROC  Receiver Operating Characteristic Curve 

ACC Accuracy DR Detection Rate  

TN  True Negative AUC Area Under the ROC Curve 

PRE Precision TRT  Training Time 

TP  True Positive TET  Testing Time 

REC Recall F1 F1-Score 

FP False Positive LL Log Loss 

SPC  Specificity G-mean Geometric mean 

FN False Negative RI Rand Index 

TPR  True Positive Rate SR Speedup Ratio 

SNS Sensivity ER Encryption Time 

FPR  False Positive Rate IMF Intrinsic Mode Function 

FAR  False Alarm Rate GCM Gradient Compression Mechanism 

FNR  False Negative Rate CCQ Clustering Center Quality 

PoR Proof of Reliance KBL Kernel Based Learning 

PoW Proof of Work RTU Remote Terminal Unit 

FL Federated Learning PSO Particle Swarm Optimization 

SSO Swallow Swarm Optimization CFS Cloud Service System 

RS Random Subspace SHOCFS Secure High-Order Clustering with Fast Search 

CEEMDAN Complete Ensemble Empirical Mode 

Decomposition with Adaptive Noise 

IABC Improved Artificial Bee Colony 

SCADA  Supervisory Control and Data Acquisition SHODS3O-CFS Safe High-Order Optimum Density Selection in a Hybrid 

Cloud Environment 

AB Adaboost GXGBoost Genetic-Based Extreme Gradient Boosting 

VIF Variance Isolation Forest MQTT Message Queuing Telemetry Transport 
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2. Preliminaries 

In this section, basic definitions and background are given. At 

the same time, deep learning and machine learning models are 

briefly explained. 

2.1. IoT, IIoT and Attack Types 

With IoT, using other machines to talk to other machines on 

behalf of humans, the concepts of ubiquity apply. In the age 

of IoT, where people communicate with objects and objects 

communicate with each other, there are connectivity 

dimensions for everything and everyone, anytime, anywhere. 

Objects have identities and virtual personalities in the internet 

of the future [47]. IoT is a network where physical devices can 

communicate via the internet. IoT is to be connected to various 

devices that make use of different communication models 

from human to human, human to machine, or a machine to 

machine [48].  

In recent years, IoT has been used in automotive, energy, 

health, manufacturing, water, finance, etc. It has entered a 

wide range of industry sectors, including IIoT. With machine 

learning, the IIoT will advance the fourth industrial 

revolution. While IIoT facilitates data collection in an 

industrial environment, the collected data are used for training 

algorithms with the help of ML and especially DL. 

The industrial use of IoT technologies has emerged with the 

concept of Industry 4.0. IoT networks consist of structures that 

monitor, analyze and change data without human intervention. 

SCADA systems also consist of several smart devices that 

monitor and control machines in industries for years [49]. IIoT 

standardization has emerged as a technology developed on 

SCADA with scalability, resolution, and data analytics. Using 

AI methods, IIoT can create new security measures from data 

collected from the cloud. [50]. 

IIoT is considered to be a subset of IoT. IoT typically 

encompasses retail and lifestyle consumer devices. IoT 

usually consists of single device structures such as smart 

television, smart phone, wearable devices, home automation, 

and display systems. IIoT technologies, on the other hand, are 

potent systems formed by the combination of more and 

advanced IoT devices such as smart factories, smart city, 

smart grids, innovative vehicles, robotics. While the plans for 

IoT are between 2-5 years, 30-year frameworks are considered 

for IIoT systems. The IoT is sensitive to water, dust, and 

power fluctuations and is highly mobile. IIoT is also suitable 

for operation in extreme situations, and its mobility is low. 

While the IoT prioritizes critical operations, IIoT systems 

have to synchronize in milliseconds. Since IIoT is built on 

smart logistics, smart cities, and smart manufacturing 

processes, it has to rely on broader security measures than IoT. 

At the same time, security solutions that apply to the IoT also 

apply to the IIoT. The confidentiality, integrity, and 

availability (CIA) triad is an elementary information security 

and includes security requirements and objectives. Solutions 

for Industry 4.0 should be evaluated within this framework 

[35]. IoT consists of less scope, while IIoT consists of systems 

that receive data from sensors, analyze it, and transfer it to the 

cloud [38]. 

2.1.1. IoT and IIoT Layers 

IoT is a 3-layer structure: application, network, and 

perception layer [38]. The perception layer provides the 

outside world communication of IoT devices. It houses the 

actuators and sensors that generate data. At the perception 

layer, attacks such as physical attacks, impersonation, and 

DoS are carried out. Some manuscripts explain the perception 

layer as the physical layer and the network layer as the 

communication layer [44]. 

IoT devices are connected to the internet environment 

through the network layer. The network layer forms a bridge 

between the perception and application layers. IoT networks 

reach the internet with wired and wireless communication 

technologies at the network layer. At the network layer, 

attacks such as DoS, MitM, and routing attacks are carried out. 

On the other hand, the application layer consists of the 

perception and network layer communication data and IoT 

applications. Therefore, it can be difficult to ensure security 

due to the possibility of software changes creating different 

bugs. As a result, application layer attacks like malicious code 

injection, data leakage, and denial of service (DoS) are carried 

out. 

In the early stages of IoT-related research, three layers were 

introduced. It has three layers: perception, network and 

application layers. Three-layer architecture defines the main 

idea of the Internet of Things, but it is not sufficient for IoT 

research. New research describes more multilayered 

architectures. IoT has five layers, the middleware, and the 

business layers, as well as the IoT detection, network, 

perception and application layers [87]. Middleware is a 

system and software that uses data collected by the perception 

layer and runs primarily on servers serving the upper layers. 

These software and services are part of training a new 

computationally demanding machine learning model. 

Application and business layers provide software for the end 

user [86], [87]. Middleware and network layers are vulnerable 

to attacks such as MitM and DoS. In addition, attacks such as 

SQL injection, session hijacking, and buffer overflow occur at 

the business and application layers. Some manuscripts have 

named the layers differently. These are called perception, 

application, business, transport and preprocessing layers 

[114]. 

2.1.2. IIoT Attacks and Countermeasures 

Because IIoT is a natural evolution of IoT, there are similar 

security challenges and specific security concerns to protect 

critical industrial control systems. 

There are always security vulnerabilities for devices 

connected to the Internet. If security vulnerabilities are not 

detected and fixed, devices turn into zombie and robot 

devices. Without security solutions, IoT devices turn into a 
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botnet. Large-scale attacks such as TCP timeouts and keeping 

HTTP connections open on web servers slowly consume the 

server's resources and ultimately cause it to stop responding to 

legitimate requests. Other large-scale volume-based attacks 

include SNMP, DDoS, TCP SYN packet, UDP flood, ICMP 

flood, slowdown, ping of death, zero-day attacks, known web 

server exploits, scrambling attack, OpenBSD, and 

amplification attack [51], [52]. The first purpose is to block 

IoT traffic and make it inaccessible to regular users. 

There are two main attack techniques, anomaly, and 

signature-based. Signature-based attacks can be defined as 

exploitation or knowledge-based attacks, and anomaly-based 

attacks can be defined as behavior-based attacks [53]. 

Signature-based techniques rely on existing threats to identify 

attacks. Anomaly-based systems detect attacks based on 

traffic patterns [54]. Systems that detect signature-based 

attacks work well for attacks, but updating the signature 

database takes time. As datasets grow, it will become harder 

to compare input. This method cannot detect Zero-day attacks 

[55]. Anomaly detection systems block malicious traffic. 

Anomaly-based systems can detect unknown attack types and 

zero-day attacks. However, too many false positives are 

encountered with anomaly prevention systems [56]. 

Physical attacks such as RF interference or jamming, 

tampering, fake node injection, malicious code injection, 

permanent denial of service (PDoS), sleep denial attacks, and 

side channel attacks are made in the perception layer [57]-

[59]. Against these attacks, there are techniques such as PUF-

based Authentication, CUTE Mote, PAuthKey, support vector 

machine (SVM), masking technique, and NOS middleware 

[60]-[65]. At the network layer, there are RFID spoofing, 

traffic analysis attacks, routing information attacks, 

unauthorized access, sinkhole attack, selective routing, 

wormhole attack, MitM, Sybil attacks, DoS/DDoS attacks, 

replay attacks [57], [58], [66]. For attacks on the network 

layer, have privacy-protecting traffic obfuscation framework, 

SRAM-based PUF, hash chain authentication, cluster-based 

intrusion detection system, trust-aware protocol, secure 

MQTT: cross-device authentication, beacon encryption, 

EDoS Server: SDN-based IoT framework and machine 

learning models [67]-[77]. At the application layer, there are 

malware attacks such as viruses, worms, trojans, spyware, and 

adware [57], [66]. The most well-known of these are the Mirai 

botnet and Jeep hack attacks. Lightweight framework for 

attacks on the application layer; high-level synthesis (HLS), 

and malware image classification; there are prevention 

methods such as the lightweight neural network framework 

[78]-[81]. There are also data attacks such as unauthorized 

access, data inconsistency, and data breaches. Chaos-based 

schema against data attacks; blockchain architecture, 

blockchain-based ABE; privacy protection ABE, two-factor 

authentication; measures and methods such as DPP, ISDD, 

and machine learning [82]-[87]. As it can be seen, many 

prevention methods have been proposed for IoT attack types, 

and many of these proposed methods include machine 

learning methods. Table 3 presents IIoT attack types and 

suggested measures. 

Table 3. IIoT Attack Types and Recommended Measures 

Attack Type IIoT Layer/Attack 
Target 

Recommended Measures Papers 

Side channel attack, RF interference or jamming, fake 
node injection, tampering, permanent denial of service 

(PDoS), malicious code injection, sleep denial attack. 

Perception Layer PUF-based authentication, CUTE Mote, PAuthKey, 
machine learning methods, masking technique, NOS 

middleware. 

[60]-[65] 

    

RFID spoofing, traffic analysis attack, routing information 

attacks unauthorized access, Sinkhole-attack, selective 

routing, wormhole-attack, MitM, Sybil-attack, DoS/DDoS 

attacks, replay-attack. 

Network Layer Privacy-protecting traffic obfuscation framework, 

SRAM-based PUF, hash chain authentication, 

clustering-based intrusion detection system, trust-aware 

protocol secure MQTT; cross-device authentication, 
digital signature, and encryption (signcryption), EDoS 

Server; SDN-based IoT framework, machine learning 

methods.  
 

[67]-[77] 

 

Malware attacks like viruses, worms, trojans, spyware and 

adware, Mirai botnet, and jeep hack. 

Application and 

Business Layer 

Lightweight framework; high-level synthesis (HLS), 

lightweight NN, malware image classification.  

[78]-[81] 

 
 

Data inconsistency, unauthorized access, and data breach. Middleware layer 

and Data Attack 

The chaos-based scheme, blockchain architecture, 

blockchain-based ABE; privacy protection ABE, two-
factor authentication; DPP, ISDD, and machine learning 

methods. 

[82]-[87] 

2.2. Machine Learning and Deep Learning Methods 

ML is a branch of AI and computer science that imitates how 

humans learn, focusing on using data and algorithms and 

increasing their accuracy. For example, SVM, BN, DT, KNN, 

RF, and K-Means are machine learning, CNN, RNN, LSTM, 

GRU, GAN, RBM, DBN, and AE are deep learning 

algorithms [112]. In addition to these, there are ensemble 
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learning (EL) and transfer learning methods. At the same time, 

algorithms such as ABC, PSO, and SSO as machine learning 

methods based on biological intelligence are also used in IIoT 

attack detection and prevention. 

3. Research Method 

This section refers the method applied when selecting papers 

specific to ML and DL-based IIoT security and the numerical 

results found. At the same time, the research questions and 

objectives, query sentences and areas, criteria for selecting 

and screening from the remaining manuscripts, and the 

general flow of the research method are given in the tables. 

3.1. Research Questions and Purposes 

This systematic literature survey examines ML, and DL-based 

IDS approaches developed to prevent or detect attacks on IIoT 

devices and systems. To achieve this goal, the focus has been 

on which ML and DL models are used to distinguish between 

benign network traffic and malignant network traffic. In 

addition, the performance criteria used to evaluate the models 

and the preferred datasets for training and testing the models 

are reviewed. For this systematic review to reach its goal, the 

research questions (RQs) and the purposes of these questions 

are shown in Table 4. 

Table 4. Research Questions and Purposes 

Research 
Question 

Number 

Research Questions Purposes 

RQ1 In IIoT security, what performance metrics or measures are evaluated in 
ML and DL models? 

Evaluating the proposed machine learning and deep learning 
models in IIoT security with their performance metrics and 

defining the most used performance metrics. 

 
RQ2 In terms of IIoT security, What are the malign and benign data types 

found in the datasets used in the ML and DL models, and what are the 

features of the datasets? 

To reveal which datasets are preferred for training and testing of 

ML and DL models used in IIoT security and to learn the 

properties of these datasets. 
 

RQ3 Which ML and DL approaches are used in IIoT security, and what are 

the application fields of the models? 

To identify the tasks of the ML and DL models used in the 

proposed schemes to protect IIoT devices and systems from 
attacks and to measure the models' performances. 

 
3.2. Research Strategy 

In order to find articles that can be examined in this systematic 

literature survey, research is conducted in seven basic 

academic databases (Web of Science: WoS, Scopus, IEEE 

Xplore, ScienceDirect: Elsevier, Hindawi, Wiley Online 

Library, MDPI) accepted by the scientific community. 

These academic databases are preferred because they have 

search engines that can be searched in detail to obtain the 

manuscripts to be examined. However, it has been observed 

that the other academic databases, SpringerLink and Google 

Scholar websites, have limited ability to perform detailed 

filtering, querying, and advanced search in search engines. 

These databases do not allow searching by query clauses, they 

only offer advanced search. Therefore, SpringerLink and 

Google Scholar databases were not used in this manuscript as 

they were not systematically searched. 

The research questions shown in Table 4 were transformed 

into the necessary queries to conduct research in the seven 

databases described above, with Table 5. Table 5 indicates the 

query sentences used to search seven databases and in which 

areas they were made. 

Table 5. Query Sentences and Fields 

Database Query Sentence Query Area 

Web of 

Science (WoS) 

ALL=(("industrial internet of things security" or "iiot security" or "industrial iot security") 

and ("machine learning" or "deep learning")) 
 

All metadata 

Scopus  

 

TITLE-ABS-KEY ( ( "industrial internet of things security"  OR  "iiot security"  OR  

"industrial iot security" )  AND  ( "machine learning"  OR  "deep learning" ) ) 
 

Title, abstract and keywords 

IEEE Xplore  

 

("All Metadata": industrial internet of things security or industrial iot security) AND ("All 

Metadata": deep learning or machine learning) 

 

All metadata 

ScienceDirect 

(Elsevier)  

("industrial internet of things security” OR "IIot Security" OR "industrial iot security”) 

AND ("Deep Learning" OR " Machine Learning ") 
 

Title, abstract and keywords 

Hindawi ("industrial internet of things" OR "IIot Security" OR "industrial iot security") AND ("Deep 

Learning" OR "Machine Learning") 
 

All metadata 
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Wiley Online 

Library 

("industrial internet of things security" OR "IIot Security" OR "industrial iot security") 

AND ("Deep Learning" OR " Machine Learning") 
 

All metadata 

MDPI Keywords = ("industrial internet of things security" OR "IIot Security") AND ("Deep 

Learning" OR "Machine Learning") 

Title and keywords 

3.3. Search Process and Filtering Criteria 

The criteria determined for selection and elimination among 

the manuscripts obtained as a result of the query sentences in 

Table 5 are given in Table 6. 

This systematic review included manuscripts published in 

2019-2023 (SC2). The reason for choosing this date range is 

that the manuscripts published before 2019 have been 

performed today. Then, among the journal manuscripts 

written in English (SC1) in this date range, articles published 

in Q1 or Q2 level journals (SC3) and manuscripts using ML 

and DL models in IIoT security (SC4) are listed. However, 

publications in the conference, editorial notes, books, and 

preprint stages were eliminated. Replicated manuscripts 

(EC1), which are literature searches or reviews and are also 

found in other academic databases, are eliminated. In the 

continuation of the review, manuscripts that do not deal with 

anomaly detection (EC2) in IIoT network security do not 

disclose the datasets used (EC3) and do not cover ML and DL 

models for IIoT security (EC4) are discarded. 252 papers were 

obtained from seven different databases with the help of query 

clauses in Table 5 and selection criteria in Table 6. The 

remaining papers were analyzed using the elimination criteria 

in Table 6, resulting in the examination of 25 different papers 

for this survey. During the analysis, it was preferred that the 

article was new and had been cited more. At the same time, 

the content of the remaining articles after the elimination 

criteria was read and the remaining articles were selected 

accordingly. When all selection and elimination processes are 

carried out, 25 articles containing the answers to the research 

questions in Table 4 along with their analysis processes are 

examined in detail within the scope of this systematic survey 

research. Figure 1 shows the general flow of the research 

method developed to select the articles to be reviewed. 
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Figure 1. General Flow of the Research Method 

Table 6. Selection and Elimination Criteria 

Selection 
Criteria 

Number 

Selection Criteria (SC) Elimination 
Criteria 

Number 

Elimination Criteria (EC) 

SC1 Articles published in English in a journal. EC1 Whether the article is a survey or a literature search. 
 

SC2 Articles published in 2019-2023. EC2 The focus of work on IIoT network anomaly detection. 

 
SC3 Have an article-type manuscript published in a Q1 or Q2 

level journal. 

EC3 Articles lacks reference to the datasets employed in the 

research. 

 
SC4 Articles using ML and DL models in IIoT security. EC4 Articles do not include ML and DL models. 

4. Descriptions of Manuscripts in the Literature 

In this section, manuscripts on deep learning and machine 

learning used to ensure IIoT security in the literature are 

reviewed. 

Researchers used a modified PoW algorithm PoR, which is 

computationally more challenging, to identify malicious IIoT 

devices based on blockchain-powered deep learning and 

verify the transactions of malicious nodes. The model has 

been tested with the Bot-IoT dataset [90].  

The AE algorithm is used for false data injection (FDI) 

attack detection, and the DAE algorithm is used for noise 

removal of corrupted data. It also performed significantly 
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better than the SVM model. A distributed dataset of sensor 

readings was used for hydraulic system monitoring [91]. 

A new random hybrid deep network (HDRaNN) is tested 

on DS2OS and UNSW-NB15 datasets. HDRaNN has 

classified 16 types of cyber-attacks used for DS2OS and 

UNSW-NB15 with 98% and 99% higher accuracy, 

respectively. The model achieves its best performance for the 

optimum learning rate and a certain number of epochs. The 

results were evaluated with 10-fold cross-validation for the 

datasets. The HDRaNN model is run for 150 epochs. The 

simulation is run at five learning rates; 0,005 – 0,01 – 0,75 – 

1,00 and 1,50 [92]. 

The KDL CUP99 used in GRU and SVDD log anomaly 

detection model is preprocessed by PCA to remove 

unnecessary features and increase productivity in the high-

dimensional original dataset. Then, the advanced GRU-based 

algorithm with the SVDD algorithm for modeling the network 

log shows that it is better than traditional methods in detecting 

the anomaly according to the analysis of many experimental 

results on the dataset [93].  

Different security attacks like spying, wrong setup, DoS, 

malicious control, malicious operation, probing, and scanning 

are remarked. ML algorithms are applied to the DS2OS 

dataset against attacks. To predict attacks, a RaNN-based 

random neural network model is suggested. Various 

evaluation criteria such as F1 measurement, accuracy, recall, 

and precision were used for the RaNN model. RaNN approach 

achieved 99,2% accuracy, 99,20% F1 score, 99,13% recall, 

99,11% accuracy in 34,51 seconds. The detection accuracy is 

5,65% better than other algorithms compared [94]. 

A deep random neural (DRaNN) based model for IDS in 

IIoT was estimated on the UNSW-NB15 dataset. The DRaNN 

model has successfully classified nine different attack types 

with low FPR and high accuracy of 99,54%. The results are 

compared with other DL-based IDS models. In addition, the 

proposed model achieved a high intrusion detection rate with 

99,41% DR [95].  

IIoT attack models are updated and validated with the 

collaborative data generator DNN. The approach using 

SCADA data is compared with DNN and SVM (sigmoid) 

models. In terms of performance in the proposed noisy 

environment, it gave better results than other models 

available. Classification performances are also reported for 

the dataset with different levels of noise added, ranging from 

1% to 50% noise. It was classified with 95.42% accuracy 

without noise and 92.91% accuracy with semi-noise. It is 

classified as 17.85% Log Loss without noise (binary cross 

entropy) and 21.59% Log Loss with semi-noise [96]. 

An RS learning method and an RT combination were used 

to detect SCADA attacks using network traffic from the 

SCADA IIoT platform. All 15 different datasets in SCADA 

consist of thousands of different attacks. Datasets are 

randomly sampled at a rate of 1% to reduce the impact of a 

small sample size. With Binary Classification, 96,71% 

accuracy, 0,05% false positive rate (FPR), 0,22 ms total 

training time for 3738 samples, and 0,1 ms total test time for 

1602 samples were measured. The proposed model is 

compared with the RSKNN model [97].  

AMCNN-LSTM with gradient compression based on Top-

k selection is used to detect anomalies accurately, while the 

model is used to train the FL scheme in anomaly detection. 

AMCNN with LSTM model accuracy is 96.85% for the power 

demand dataset [98]. 

Feature selection is made by training the original dataset in 

the first stage. Then the previously trained data is tested. It is 

then combined with the original sample set with a subset of 

other instances of the same classifier. Finally, Kernel-Based 

Learning (KBL) has been proposed, which clusters the 

controversial samples according to their distance from the 

center. The proposed method on 3000 malign and 5000 benign 

datasets yielded 86.08% accuracy and 0.8655 (KBL) G-mean, 

80.69 accuracies, and 0.7843 (random) G-mean [99]. 

The features were normalized with the min-max technique 

in a single preprocessing step. PCA was used to reduce the 

size and extract the best features. Training, testing times, 

confusion matrix of the models, and computational 

complexity are given. The OCSVM model has been added to 

the proposed framework to detect unprecedented attacks. The 

OCSVM algorithm showed a detection accuracy of 86,14% in 

attacks that were not seen before in the natural gas pipeline 

dataset and 94,53% in attacks that were not seen before in the 

SWaT dataset. The total training time for the SWaT dataset is 

1200 seconds, and the model testing time is 0,03 ms for each 

sample, with a total of 2,98 seconds. The total training time 

for the Gas Pipeline dataset is 1115 seconds, and a model test 

time of 0,02 ms for each sample, with a total of 1,1 seconds 

[100].  

7 ML methods and 1 DL model were evaluated with the 

dataset TON_IoT containing telemetry data, operating system 

logs, and network traffic. The ML and DL frameworks used 

are LR, RF, LDA, CART, KNN, NB, SVM, and LSTM 

algorithms, and all models have been cross-validated by four 

times. The TON_IoT dataset consists of 7 different datasets: 

refrigerator sensor, GPS tracking, remote garage door, 

thermostat, smart light detection, weather, and Modbus 

datasets. These datasets feature nine types of cyber-attacks 

(Ransomware, scanning, backdoor, DoS, XSS, DDoS, 

password cracking attack, data injection and MitM). After the 

preprocessing and normalization steps, the datasets are trained 

with AI based model. LSTM model for refrigerator sensor 

100% accuracy, accuracy, all models for garage door 100% 

accuracy, kNN algorithm for GPS tracking 88% accuracy, 

CART algorithm for Modbus 98% accuracy, LSTM for smart 

motion detection 59% accuracy, kNN for thermostat and 

except for the CART algorithms, all other models achieved 

66% accuracy. For the weather dataset, the CART algorithm 

reached 87% accuracy. A new experiment result was made by 

combining the entire dataset, and the CART algorithm for 
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binary classification gave 88% accuracy, and again for the 

multi-classification model, the CART algorithm gave 77% 

accuracy [101].  

The paper proposes a new anomaly detection approach 

based on centralized data collection and forwarding design 

that can successfully cooperate in using adaptable 

CEEMDAN feature with a single, smart optimization for IIoT 

small data. The swarm intelligence algorithm is used with the 

IABC OCSVM classifier to detect different anomalies. The 

recommended IABC-OCSVM model has high performance. 

The dataset was collected from sensors in an oil field in China. 

These sensors contain engine speed, electrical parameters, and 

flow and pressure information. WIA-PA transmits data to 

Remote Terminal Unit: RTU and RTU transmit data to a 

higher monitoring center via ModBus and TCP. There are 

109672 IIoT data, 225 data strings, and 100 abnormal data 

strings. OCSVM is optimized using traditional ABC and PSO 

algorithms under five different attack powers. The training 

accuracy of the ABC-OCSVM model is 95,1%, and the test 

classification accuracy is 89%. The IABC-OCSVM model 

reaches average training accuracy of 94,5% and test accuracy 

of 89,8% [102]. 

IIoT cloud computing risks privacy disclosure by 

outsourcing users. There is the SHOCFS technique to solve 

this problem. With the SHOCFS method, the most suitable 

density peaks are determined, and the model's speed is tried to 

increase. Swallow swarm optimization (SSO) enables the 

selection of optimal density peaks of clustering models. A 

clustering algorithm is proposed to find optimal density points 

with the hybrid cloud SHODS3O-CFS model. In the 

SHODS3O-CFS model, the overlapping peaks of the cluster 

can be reduced. Clustering center quality (CCQ), Rand index 

(RI), speedup-ratio (SR), and encryption time performance 

metrics were used. It achieved a higher mean RI of 93.4%, 

compared to 29.68% and 17% of the proposed manuscript. 

The dataset is taken from the 5567 home energy consumption 

data warehouse participating in the UK Power Network 

meeting for the low carbon London project, and the dataset is 

available on the Kaggle website [103]. 

IoT-Flock developed as an open source, a benign and 

malignant health dataset is created for IoT devices. Six 

machine learning models were used to detect cyber-attacks 

and protect the health system from attacks. The RF algorithm 

showed the best performance with 99,7% accuracy, 99,79% 

sensitivity, 99,51% accuracy, and 99,65% F1 score [104].  

Feature selection with Fisher score and genetic-based 

extreme gradient boosting model was used to detect IoT 

attacks. GXGBoost achieved 99.96% accuracy on the N-

BaIoT dataset with 10-fold cross-validation. The dataset 

malicious Mirai and the Bashlite class are instantiated in the 

Benign class dimension [105]. 

Job Safety Analysis (JSA) was conducted to identify factors 

that cause worker accidents and injuries. With smart PPE, 

notifications from electronic devices are transmitted to 

operators, and ThingsBoard, an open-source IoT platform, 

provides communication between active sensors for data 

processing and IoT management. Device connectivity is 

provided via industry IoT protocols (HTTP, MQTT, CoAP), 

supporting cloud and on-premises deployments. CNN has 

been realized with the ThingsBoard platform. The cross-

validation CNN has an accuracy of 92,05% [106]. 

The dataset for IoT and IIoT applications called the open-

source Edge-IIoTset was proposed, and tests have been 

carried out on the dataset with ML and DL-based models 

[107]. 

EDIMA, an IoT botnet detection solution, is proposed. A 

new two-stage Machine Learning (ML) based detector 

developed for IoT bot detection uses supervised ML 

algorithms and an Autocorrelation function for bulk traffic 

classification. As a result, EDIMA has a high detection rate, 

low bot detection delays, and low RAM consumption in 

detecting IoT bots [108]. 

LSTM, CNN, and RNN deep learning methods based on a 

feature selection method based on LightGBM, and DDQN and 

DQN Deep Reinforcement Learning models were used [109]. 

IIoT threat detection was performed with the Cu-

LSTMGRU + Cu-BLSTM hybrid model, and high accuracy 

was achieved with a low false positive rate. The proposed 

model was compared with the Cu-DNNLSTM and Cu-

DNNGRU models [110]. 

Ensemble models RF-PCCIF and RF-IFPCC methods were 

used to improve IDS performances on Bot-IoT and NF-

UNSW-NB15-v2 dataset [120]. 

23 features were selected with a feature selection based on 

correlation; SVM and Decision Tree classification models and 

NSL-KDD dataset are used to analyze network intrusion and 

attack detection performance [121]. 

Synchronous optimization of parameters and architectures 

by genetic algorithms with convolutional neural networks 

blocks (SOPA-GA-CNN) on five intrusion detection datasets 

in IIoT, including secure water treatment (SWaT), water 

distribution (WADI), Gas Pipeline, BoT-IoT and Power 

System Attack Dataset for the intrusion detection has been 

implemented [122]. 

The residual neural network (P-ResNet) model was 

implemented by combining seven IoT sensors (e.g., 

fridge_sensor, GPS_tracker_sensor, motion_light_sensor, 

garage_door_sensor, modbus_sensor, thermostat_sensor, and 

weather_sensors) TON_IoT datasets [123]. 

The main idea and focus of the examined approaches and 

the advantages and disadvantages of the models proposed in 

these approaches are given in Table 7. 
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Table 7. An Overview of Suggested Approaches in Manuscripts 

Paper  Main Idea Advantages Disadvantages  

[90]  A new modified PoW algorithm PoR, which is 

computationally more difficult, to identify malicious 
IIoT devices based on blockchain-powered deep learning  

With the improved PoW algorithm, PoR, the 

operations of malignant nodes are made 
difficult. 

Not applied in a real environment. 

Untested in different deep learning 
and machine learning models. 

[91] A new method of false data injection (FDI) attack 

detection using automatic encoders (AE) is introduced. 

Also, corrupted data is cleaned using denoising AEs 
(DAEs). DAE is very efficient in recovering clean data  

Proposed framework can detect other types 

of attacks without any updates 

It is the first manuscript to recommend using 
DAEs to clean up corrupted (hacked) data. 

The denoising autoencoder needs to 

be trained for all attack types. When 

the Autoencoder is supervised 
learning, it does not need to be 

constantly trained. 

[92] A new hybrid and random deep learning model 
(HDRaNN) DS2OS and UNSW-NB15 have been tested 

with two different datasets.  

Various performance metrics 
HDRaNN is compared to key detection 

patterns. 

Not applied in a real environment. 
Untested in machine learning 

models 

[93] Gated Recurrent Unit and Support Vector Domain 

Definition log anomaly detection model has been 
proposed. The model has been tested on the 

KDLLCUP99 dataset.  

Compared with many deep learning models. Not applied in a real environment. 

No known performance measures 
were used. 

[94] Attacks are classified with ML models. The best model 
is RaNN based random NN model.  

Attacks are detected, and classified with high 
success rates such as 99,11% accuracy, 

99,13% precision and 99,20% F1 score. 

Not applied in a real environment. 
Untested in different machine 

learning models. 

[95] The DRaNN-based model was estimated on the UNSW-

NB15 dataset.  

The attacks were detected with 99,54% 

accuracy and 99,41% detection rate, with a 
high success rate of 0,76% false positives. 

Not applied in a real environment. 

Untested in different ML and DL 
models. 

[96] A downsampling encoder-based collaborative data 

generator trained using an adaptive algorithm is 
proposed.  

Real IIoT dataset. 

The data were classified by adding noisy 
data to the test dataset. 

Accuracy and loss rates are given 

only as performance criteria, and 
other known criteria are not used. 

[97] RS learning method and RT combination were used to 

detect SCADA attacks using network traffic from the 

SCADA IIoT platform.  

Creating a detection engine based on 

industrial protocols and a high DR of 

96,71% 

If a feature exists, the best feature is 

limited to random selection. 

Excessive execution time 

[98] A deep learning-based federated learning tool to detect 

communication-efficient, new anomalies to detect time 

series data in IIoT  

It uses convolutional neural network units 

based on the attention mechanism, thus 

avoiding memory loss and gradient 
distribution problems. 

The federated learning model is 

vulnerable for loss of malign 

anomaly attacks 

[99] ML-based KBL selection method is proposed for defense 

against hostile attacks in an IIoT environment.  

Extracted from the malware dataset as static 

features with the Androguard tool. 

Untested in different deep learning 

models. 
Feature selection method is used, 

which is not used very much in the 

literature. 

[100] A new two-stage community deep learning model and 
attack correlation scheme is proposed for unstable 

industrial control system data using the OCSVM model 

to detect unprecedented attacks.  

Resistant to unstable datasets where the 
numbers of malignant and benign datasets 

are not close to each other. 

Capable of detecting never-before-seen 
attacks 

Complex architecture 

[101] A new dataset (TON_IoT) is proposed, which includes 

Telemetry data of IoT and IIoT services, traffic of IoT 
network, and operating systems logs. It is designed based 

on integrating IoT/IIoT systems with three layers of Fog, 

Edge, and Cloud. 

Variety of benign and malign events for 

different IoT or IIoT devices. 
Contains heterogeneous data sources. 

Advanced parameter optimization is 

required to optimize hyper 
parameters and obtain better results. 

[102] CEEMDAN feature and swarm intelligence algorithm 
ABC-based IABC-OCSVM model. 

The real-world dataset in China oil IIoT 
system. 

Attacks under five different attack power 

have been detected. 
 

The dataset is not public and not 
detailed. 

No evaluation was made with 

different performance criteria. 
No comparison with deep learning 

models. 

[103] With IIoT cloud computing, the SHODS3O-CFS 

algorithm, which is a new SHOCFS technique, is 

recommended for users outsourcing privacy disclosure 
risk.  

A safe optimized clustering method is 

proposed to obtain optimal density peaks. 

No evaluation has been made with 

other ML and DL algorithms. 

Not tested in a real environment. 

[104] Developing a benign and malignant IoT use case with 

IoT-Flock, which creates open source IoT data, and 
traffic generation and evaluation of IoT health dataset 

with ML techniques. 

An open source software has been created 

for IoT healthcare environments that capture 
data in the context-aware MQTT and COAP 

categories. 

Deep learning models are not used. 
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[105] IoT botnet network attacks are detected by feature 

selection with Fisher score and GXGBoost algorithm and 
identify the most relevant features. 

A high detection rate (average accuracy 

results in 99,96%) 

Hard to verify that parameters reach 

the global optimum, 
Sensitivity and randomness of the 

genetic algorithm used for the initial 

population 

[106] A smart helmet 5.0 CNN model that monitors 
environmental conditions and performs real-time risk 

assessment  

The model was evaluated with ML and DL 
algorithms. 

Except for the accuracy 
performance metric, no other 

performance metric is used. 

[107] The dataset for IoT and IIoT applications called the 
open-source Edge-IIoTset has been proposed, and tests 

have been carried out on the dataset with ML and DL-

based models. 

Data was collected from more than 10 IoT 
devices, and 61 new features were extracted 

from 1176 features. Performance was 

evaluated with ML and DL algorithms. 

Realistic but not real environment 

[108] EDIMA, an IoT botnet detection solution, is proposed. A 
new two-stage Machine Learning (ML) based detector 

developed for IoT bot detection uses supervised ML 

algorithms and an Autocorrelation function for bulk 

traffic classification.  

A high detection rate, Low bot detection 
delays, and low RAM consumption in 

detecting IoT bots. 

Difficulty of retraining the model, 
Deep learning models are not used. 

Not tested in a real environment. 

[109] For IIoT, LSTM, CNN, and RNN, deep learning methods 

based on a feature selection method based on LightGBM, 
DDQN, and DQN Deep Reinforcement Learning models 

were used.  

Both deep learning methods and deep 

reinforcement learning models were used. 
 

Machine learning models are not 

used. 
Not tested in a real environment. 

[110] For the IIoT environment, a hybrid DL, SDN-enabled 
approach is proposed to detect threats and intrusions. 

The model is programmable and expandable 
on iiot data devices. 

Open flow switches are used in SDN 

Not tested in a real environment, 
Machine learning models are not 

used. 

[120] Ensemble models RF-PCCIF and RF-IFPCC methods  Pearson Correlation Coefficient (PCC) 

Isolation Forest (IF) to reduce computational 
cost and prediction time 

Not used deep learning models, 

Not tested in a real environment. 

[121] Correlation based features selection SVM and DT 

methods 

Correlation features selection Not tested in a real environment, 

Deep learning models are not used. 

[122] Synchronous optimization of parameters and 

architectures by genetic algorithms with convolutional 

neural networks blocks (SOPA-GA-CNN)  

On five intrusion detection datasets in iiot, 

including secure water treatment (swat), 

water distribution (WADI), Gas Pipeline, bot-

iot and Power System Attack Dataset for the 
intrusion detection 

Not tested in a real environment, 

Machine learning models are not 

used. 

[123] Residual neural network (P-ResNet) model with seven 

IoT sensors dataset 

Combining seven iot sensors Not tested in a real environment. 

 

5. Results 

In the results section, the determining research questions are 

answered. 

5.1. RQ1: In IIoT security, what performance metrics or 

measures are evaluated in ML and DL models? 

The performance of the ML and DL models used in the 

proposed schemes was evaluated by means of various criteria. 

These criteria are given in Table 8. Table 8 summarizes the 

definitions of performance criteria, their mathematical 

equations, if any, and in which manuscripts they are used. 

According to Table 8, it is seen that the criteria of F-1 score, 

precision, accuracy, recall, FPR, DR and FAR and are widely 

preferred for the evaluation of the models. Since these criteria 

were used, TP, FP, TN and FN values were measured in each 

manuscript. The total time taken for training (TRT) and testing 

(TET) models is also frequently used in manuscripts. Other 

criteria are used in the evaluation of the models in accordance 

with the purpose of the proposed models. 

Table 8. Performance Metrics Used in the Evaluation of Machine Learning and Deep Learning Algorithms 

Performance 

Metrics 

Performance Description Mathematical Equation Articles Used 

TP  A correctly predicted situation is correct - All  

TN  An incorrectly predicted situation is correct - All  

FP  False of a positively predicted situation - All 

FN  False of a negatively predicted situation - All  

ACC  Percentage of correctly classified sample data out of 

all classified sample data. 

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
𝑥100 

[90], [91], [92], [94], 

[95], [96], [97], [98], 

[99], [100], [101], 
[102], [104], [105], 

[106], [107], [108], 

[109], [110], [120], 
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[121], [122] , [123] 

PRE  Percentage of how accurately we guessed from all 

classes 

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
𝑥100 

[90], [92], [94], [99], 

[100], [101], [104], 

[105]], [107], [108], 
[109], [110], [120] , 

[122], [123] 

REC  Percentage of how accurately we guessed from all 
positive classes 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
𝑥100 

[90], [92], [94], [99], 
[100], [101], [104], 

[105]], [107], [108], 

[109], [110], [120], 
[123] 

SPC (TNR) Ratio of true negative samples. 𝑇𝑁

𝑇𝑁 + 𝐹𝑃
𝑥100 

[99], [110] 

F1  Harmonic mean of precision and recall measures. 

Low recall or high precision (or vice versa) 

2𝑥𝑃𝑅𝐸𝑥𝑅𝐸𝐶

𝑃𝑅𝐸 + 𝑅𝐸𝐶
𝑥100 

[92], [94], [99], 

[100], [101], [104], 
[105]], [107], [108], 

[109], [120] , [122], 

[123] 

SNS (TPR)  Rate of positive samples correctly classified as 
positive. 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
𝑥100 

[99], [110] 

FPR/FAR  Rate of negative samples falsely classified as 

positive. 

𝐹𝑃

𝐹𝑃 + 𝑇𝑁
𝑥100 

[91], [93], [95], [97], 

[110] 

G-Mean Geometric mean of Specificity and Sensitivity √𝑆𝑃𝐶𝑥𝑆𝑁𝑆 [99] 

MCC Matthews correlation coefficient 𝑇𝑃. 𝑇𝑁 − 𝐹𝑃. 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

[110] 

FNR  Rate of positive samples falsely classified as 

negative. 

𝐹𝑁

𝑇𝑃 + 𝐹𝑁
𝑥100 

[110] 

FDR False Discovery Rate 𝐹𝑃

𝑇𝑃 + 𝐹𝑃
𝑥100 

[110] 

ROC  The curve obtained by plotting FPR versus TPR, as 

the threshold data values vary over a range. 

- [91], [92], [104], 

[110], [120], [123] 

MSE Mean square error - [91], [92], [104] 

AUC ROC area under the curve. - [91], [110], [120], 
[123] 

RMSE Root mean square error 

[
1

𝑛
∑(|𝑦𝑖 − 𝑦𝑝|)

2
𝑚

𝑖=1

]

1
2

 

[98] 

RI  The measure of the exact clustering results versus 
the actual clustering results of the clustering 

algorithm. 

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
𝑥100 

[102] 

DR  Rate of correctly detected positive samples among 
total positive samples. 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
𝑥100 

[91], [93], [95], 
[108] 

ER  The rate of how often the model misclassifies. 𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
𝑥100 

[103] 

TRT Total time spent training the model. - [93], [98], [99], 

[102], [103], [120], 
[121], [123] 

TET  Total time spent testing the model. - [96], [99], [102], 

[103], [107], [110], 
[120], [122], [123] 

ATR Average time spent training the model. - [105] 

ATE Average time spent testing the model. - [105] 

ET  The encryption time of the model. - [105] 

Log Loss: LL The log loss is found by subtracting the performance 

results of the model from the expected results. 
Lower log loss is better performance. 

−∑𝑦𝑜, 𝑐

𝑀

𝑐=1

𝑙𝑜𝑔(𝑝𝑜, 𝑐) 
[94] 

CCQ Distance between clustering centers produced 

√∑‖𝑣𝑖𝑑𝑒𝑎𝑙
𝑖 − 𝑣𝑖 ‖

2
𝐶

𝑖=1

 

[103] 

SR Speedup ratio - [103] 
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5.2. RQ2: In Terms of IIoT Security, what are the Malign and 

Benign Data Types Found in the Datasets Used in the ML 

and DL Models, and the Features of What are the Datasets? 

There are various types and numbers of datasets used for the 

manuscripts reviewed. With ML and DL algorithms, models 

are trained and tested on data sets. The datasets used in the 

models are selected by the purpose of the proposed schemes 

to ensure IIoT security. If the developed approaches are used 

to detect which attack types, datasets containing examples of 

those attack types are recommended for train and testing the 

models. Table 9 shows the datasets used to train and test the 

models or the datasets created by the authors for use in papers. 

The datasets encompass various types of malignant and 

benign samples, and pertinent information about the statistical 

properties of these samples, as well as the manuscripts in 

which they were utilized. The number of features, classes, and 

dimensions of the dataset is also given. However, detailed 

information about the datasets used in the manuscripts are not 

given in the articles in which they are used [91], [103], [104]. 

For this reason, the details of these datasets are not available 

in Table 9. Data types and attack types are not given for 

malign and benign [96]-[98], [102], [106]. 

The Bot-IoT [113] dataset contains 14 features. These are the 

numeric expression of feature status, the minimum duration of 

total records, the standard deviation of total records, number 

of inbound connections per destination IP, the average 

duration of total records, highest period of total records, total 

bytes per destination IP, the sequence number of the Argus 

agent, per unit time packets from source to destination, 

packets from destination to source, packets from source to 

destination, packets from destination to source per unit of 

time, total bytes per source IP, incoming connections per 

source IP [90]. The DS2OS dataset has eight classes and 13 

features [92], [94], and the UNSW-NB15 dataset] has ten 

classes and 49 features [92], [95. The KDD CUP99 (NSL-

KDD) dataset includes DOS, R2L, U2R, and Probe attack 

types with 42 features [93]. Datasets containing 15 different 

datasets in the SCADA network were sampled at a rate of 1%. 

Detailed information about the features was not given [96], 

[97]. There are time series datasets consisting of four real-

world data (Engine, Power Demand, ECG, Space Shuttle) 

combined from various sensors. These datasets have normal 

subsequences and abnormal subsequences. No detailed 

information was given about the features [98]. In the 

manuscript found [99], the Android Malware dataset 

recommended and the number and types of features used were 

not given [111]. There are 17 features in the Pipeline dataset, 

51 features, and 31 scenarios in the Swat dataset [110]. There 

are 52 features within the attack types (ransomware, scanning, 

backdoor, DoS, XSS, DDoS, password cracking attack, data 

injection, and MitM) [101]. The articles do not have dataset 

details and feature information [102]-[104]. The N-BaIoT 

dataset has 115 features derived from malignant and benign 

data [105], [110]. The number of features is not specified in 

the dataset created for Smart Kask 5.0 [106]. Edge-IIoTset 

dataset is generated from various IoT devices and proposes 61 

new features [107]. IoT-NSS-BPR uses IoT-23 dataset, and 

UNSW IoT dataset. Dataset types are malware samples, 

malware traffic pcap files, and aggregate IoT traffic pcap files 

[108]. Real dataset of the natural gas pipeline transportation 

network publicly released by the U.S. Department of Energy’s 

Oak Ridge National Laboratory [109]. 

Table 9. Datasets Used in Models and Properties 

Dataset  Type and Number of Malign Data Type and Number 

of Benign Data 

Total Data Numbers Number of 

Features/ Classes/ 

Dimensions 

Articles 

Using 

Bot-IoT: is a dataset 
containing detailed network 

information of benign and 

malignant data traffic and 
various network attacks. 

- UDP DoS and DDoS: 
39624597 

- Service scanning: 

1463364 
- HTTP DoS and DDoS: 

49477 

- TCP DoS and DDoS: 
31863600 

- OS fingerprint: 

358275 
- Keylogging: 1469 

- Data theft: 118 

- UDP: 7225 
- ICMP: 9 

- TCP: 1750 

- RARP: 1 
- ARP: 468 

- IGMP: 2 

- IPV6-ICMP: 88 
 

- Malign: 73360900 
- Benign: 9543 

- Total: 73370443 

14 features [91], 
[120], 

[122] 

DS2OS: It includes 13 
features and 7 malign and 1 

benign data 

-Spying: 532 
-DoS: 5780 

-Malicious Control: 889 

-Wrong setup: 122 
-Scan: 1547 

-Malicious Operation: 805 

-Data type probing: 342 
 

Normal: 347935 -Malign total: 10017 
-Benign total: 347935 

-Total: 357952 

13 features and 8 
classes 

[92], 
[94] 

UNSW-NB15: 9 malign, 1 -Fuzzers: 24246 Normal: 93000  -Malign total:164673 49 features and 10 [92], 
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benign data produced by the 

Australian Cyber Security 
Center's Cyber Range 

Laboratory 

-Backdoor: 2329 

-Analysis: 2677 
-Reconnaissance: 13987 

-Exploits: 44525 

-Generic: 58871 
-DoS: 16353 

-Shellcode: 1511 

-Worms: 174 

-Benign total: 93000 

-Total: 257673 

classes [95], 

[120] 

KDD CUP 99  
NSL-KDD 

-DOS:2000 
-R2L:1000 

-U2R:500 

-PROBE:1500 

Normal: 2000 -Malign total: 4000 
-Benign total: 2000 

-Total: 6000 

42 features [93], 
[121] 

SCADA 28 attack scenarios 9 normal event 

scenarios 

28 total scenarios - [96], 

[97] 

Power Demand Abnormal substring: 6 Normal substring: 

45 

Normal substring: 45 

Abnormal substring: 6 

Total substring: 51 

Original sequence:1 

1 Dimension [98] 

Space Shuttle Abnormal substring: 8 Normal substring: 
20 

Normal substring: 20 
Abnormal substring: 8 

Total substring: 28 

Original sequence:3 

1 Dimension [98] 

ECG Abnormal substring: 1 Normal substring: 

215 

Normal substring: 215 

Abnormal substring: 1 

Total substring: 216 
Original sequence:1 

1 Dimension [98] 

Engine Abnormal substring: 152 Normal substring: 

240 

Normal substring: 240 

Abnormal substring: 152 

Total substring: 392 
Original sequence:30 

12 Dimension [98] 

Android Malware dataset 

suggested by the authors 
[111] 

3000 malwares 5000 benign Total 8000  - [99] 

Pipeline 60048 (21,86%) attack examples 

- Malicious state command injection 

(MSCI) 
-Naive malignant response injection 

(NMRI) 

-Reconnaissance (Recon) 
-Complex malignant response 

injection (CMRI) 
-DoS 

-Malign function code injection 

(MFCI) 
- Malignant parameter command 

injection (MPCI) 

214580 (78,14%) 

normal samples 

274628 total samples 17 features [100] , 

[122] 

Swat (safe water treatment) 12,1% attacks 87,9% normal   Total: 449920 samples 51 features 31 

scenario 

[100] , 

[122] 

TON_IoT Total: 162932 

- XSS 

- scanning 
- data injection 

- DoS, 

- MitM 
- DDoS, 

- ransomware 

- backdoor 
- password cracking attack 

 

Benign 35000 for 

all datasets 

Total benign: 
245000 

Malicious:162932 

Benign: 245000 

Total: 407932 

- Refrigerator 

sensor:7 

- GPS tracking:7 
- Garage door:7 

- Thermostat:7 

- Intelligent light 
detection:7 

- Weather:8 

- Modbus:9 
Total Features: 52 

[101], 

[123] 

Oil field dataset in China 
[102] 

100 abnormal data strings 200 normal data 
strings 

300 data strings - [102] 

N-BaIoT Mirai: 3668402 

Bashlite: 1032056 

Benign: 555932 Malignant: 4700458 

Benign: 555932 

Total: 5256390 

115 features [105], 

[110] 

Dataset created by the 

authors [106] for Smart 

Helmet 5.0 

- - 11755 samples in total 12 scenarios [106] 

Edge-IoTset Backdoor: 24862 
DDoS_HTIP: 229022 

Normal: 
11223940 

Normal: 11223940 
Attack: 9728708 

New 61 features 
with high 

[107] 
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DDoS_ICMP: 2914354 

DDoS_TCP: 2020120 
DDoS_UDP: 3201626 

Fingerprinting: 1001 

MITM: 1229 
Password: 1053385 

Port_Scanning: 22564 

Ransomware: 10925 
SQL_injectioion: 51203 

Uploading: 37634 

Vulnerability_scanner: 145869  
XSS: 15915 

Total: 20952648 correlations from 

1176 found 
features 

IoT-NSS-BPR, IoT-23 

dataset, UNSW IoT dataset 

IoT-NSS-BPR: 23 live IoT malware 

samples, 
UNSW IoT dataset :28 different 

uninfected IoT devices collected at a 

gateway. 

- - Best 8 features [108] 

U.S. Department of Energy’s 
Oak Ridge National 

Laboratory natural gas 

pipeline transportation 
network 

NMRI 2763 
CMRI 15466 

MSCI 78 

MPCI 7637 
MFCI 573 

DoS 1837 

Recon 6805 

Normal: 161156 Normal: 161156 
Attack: 32396 

Total: 193552 

26 features and 
one label 

[109] 
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5.3. RQ3: which ML and Dl Approaches are Used in IIoT 

Security, and What are the Application Fields of the 

Models? 

Table 10 summarizes the usage areas of the models, the 

datasets they are trained and tested with, the performances 

they show as a result of the experiments, and the information 

about which models they are compared with. 

When Table 10 is examined, a feedforward multilayer 

multiclass neural network with Microsoft Azure Machine 

Learning Studio is used with the Bot-IoT dataset with various 

hyperparameters. An advanced intrusion detection method 

using a deep learning model together with blockchain is 

proposed for malignant IIoT devices. High-performance 

results have been achieved with this model [90].  

It is aimed to detect false data injection attacks with an 

automatic encoder algorithm that is easy to train and learns 

hidden complex relationships. When SVM and AE were 

compared, AE gave more successful results. A DAE was used 

to get rid of the effects of the attack on the data [91]. 

HDRaNN, proposed for cyber-attack detection in IIoT uses 

implementations of HDRaNN and MLP. The HDRaNN 

includes input, hidden, and output layers. Performance 

measurements were made on two separate datasets such as 

UNSW-NB15 and DS2OS. With the HDRaNN model, attacks 

are classified with an accuracy of 98% and over 99% for the 

UNSW-NB15 and DS2OS datasets. HDRaNN model has 

been compared with RNN, DBN, DAE, and RBM deep 

learning models [90]. 

A log anomaly and malignancy detection model based on 

GRU and Support Vector Domain Definition algorithms 

framework is proposed. Numerous experiments and analyses 

of experimental results on the KDL CUP99 dataset have 

shown that the advanced GRU-based algorithm is better than 

traditional deep learning models in detecting an anomaly. The 

highest DR was measured at 99,6%, and the smallest FAR at 

0,01%. Five types of anomalies (DoS, R2L, U2R, PROBE, 

and mixed) were detected with five algorithms (GRU-SVDD, 

BGRU-MLP, LSTM, LSTM-RNN, PCA-SVM) [93].  

RaNN deep learning model evaluated accuracy, precision, 

precision, and F1 score performance metrics on the DS2OS 

dataset. The RaNN model is compared with SVM, DT, and 

ANN models. RaNN model accuracy is compared with the 

accuracy of previous intrusion detection models [94]. 

Intrusion detection was performed on a model UNSW-

NB15 dataset based on a DRaNN model for intrusion 

detection in IIoT. Feature transformation and normalization 

were performed in the preprocessing step. With the DRaNN 

model intrusion detection system, the data is classified as 

normal or attack [95].  

The down sampler-based data generator for SCADA 

attacks detection is alternatively updated and validated using 

a deepNN splitter during training. A GAN was developed to 

generate conflicting attack data, and this generated data was 

classified [96].  

A reliable ensemble learning model with a combination of 

the SCADA network RS learning method and RT has been 

tested on 15 different datasets. The model, whose 

classification accuracy and model complexity was balanced, 

performed well compared to other cutting-edge approaches 

[97]. 

Firstly, the FL model is developed to collaboratively train 

anomaly detection on decentralized edge devices. Secondly, 

the attention mechanism CNN-LSTM model is proposed for 

the correct detection of anomalies. The AMCNN-LSTM 

scheme uses CNN units based on the attention mechanism to 

capture important detailed features, thus avoiding memory 

loss and gradient distribution problems. Thirdly, in order to 

increase communication efficiency, anomaly detection has 

been made in the industrial area with the model that 

compresses the gradients based on Top-k feature selection 

[98]. 

It has been tested with feature selection methods such as 

random, L1, Euclidean, and KBL. High performance was 

obtained with the KBL selection method SVM algorithm [99].  

OCSVM was used to detect previously unseen attacks, 

creating a boundary around normal samples and reporting 

others as never-seen attacks. The proposed model is a complex 

deep neural network consisting of partially or fully connected 

layers that detect IoT attacks [100]. 

4-fold cross-validation of LR, RF, LDA, CART, KNN, NB, 

and SVM models were evaluated on the newly proposed 

TON_IoT dataset. 80% of the data and 20% of the data are 

allocated to the test dataset to train/validate ML methods. 

Classification results are given for the TON_IoT dataset 

refrigerator sensor, GPS tracking, garage door, thermostat, 

smart light detection, weather, and Modbus datasets with 

different models. As a result of the estimation made by 

combining the whole dataset, the CART algorithm for binary 

classification reached the most successful result with 88% 

accuracy, and again for the multi-classification model, the 

CART algorithm achieved the most successful result with 

77% accuracy. Training and testing times for binary 

classification are high for LSTM, SVM, and KNN models and 

low for LR, LDA, RF, CART, and NB models. Training and 

testing times for multiclassification are high for LSTM, SVM, 

LR, and KNN models and low for LDA, RF, CART, and NB 

models [101].  

A new IABC-OCSVM anomaly attacks classification 

scheme is proposed for the IIoT small dataset that can 

skillfully cooperate in CEEMDAN model feature use 

compatible with the smart optimizer OCSVM classifier. With 

CEEMDAN decomposition, energy entropies are measured 

with IMF components. Multi-scale analysis of the IIoT dataset 

is performed. The IABC-OCSVM model created with 

Gaussian mutation was found to have 94.5% training 
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accuracy, 89.8% test accuracy, and 0.0081 seconds test time 

[102]. 

SHODS3O-CFS clustering algorithm and the most 

appropriate density selection in the hybrid cloud are 

suggested. The SHODS3O-CFS algorithm gave clustering 

center accuracy (RI) of 87.7% for 50 data objects, while 

PPHOCFS achieved lower RI results of 62.7% and SHOCFS 

76.6%. The SHODS3O-CFS algorithm achieved 95,2% RI for 

250 data objects. The PPHOCFS and SHOCFS methods, on 

the other hand, yielded lower clustering accuracy of 66% and 

81,2% RI, respectively [103].  

Benign and malignant data in pcap format with IoT-Flock 

software were converted into CSV format with the python 

program. The categorical properties of the dataset, such as the 

protocol type (MQTT and COAP), have been replaced with 

numeric values using the Label Encoder to facilitate further 

processing. Missing data is filled with 0. The most important 

ten features consist of TCP and MQTT data by feature 

selection with the LR algorithm. The dataset was tested with 

NB, KNN, RF, AB, LR, and DT algorithms. Confusion 

matrix, ROC-AUC, F1 score, precision, accuracy, recall, and 

values of each algorithm are given. The RF model showed the 

best performance with 99,70% accuracy, 99,79% recall, 

99,51% accuracy and 99,65% F1 score [104]. 

Improved GXGBoost algorithm to well classify IIoT 

network attacks. Several trials have been conducted on the 

public N-BaIoT dataset of IIoT devices. GXGBoost achieved 

99.96% accuracy on the N-BaIoT dataset using only three 

features out of 115 features [105].  

An intelligent helmet prototype is presented that monitors 

environmental conditions and works in near real-time risk 

assessment. The dataset consisting of 11755 examples and 12 

different attack-type scenarios is evaluated by ML and DL. 

The cross-validation CNN model for business risk analysis 

yielded 92,05% accuracy. The CNN approach is evaluated by 

comparing it with NB, SVM, and NN [106]. 

Normal centralized DT, RF, KNN, SVM, DNN model PRE, 

REC, and F1 have 100% and federated 2-class IID and Non-

IID ACC:100% performance. Edge-IIoTset, produced by ten 

different IoT devices, was evaluated together with two 

different ML-based IDS with the centralized and federated 

mode in 7 different layers [107]. 

The EDIMA model has been proposed. EDIMA consists of 

a traffic parser, feature extractor, ML-based bot detector, 

policy engine, ML model constructor, and a malware PCAP 

database. RF algorithms ACC, PRE, REC, and F1 have 100% 

performance [108]. 

LightGBM feature selection method, PPO2 interface, and 

CNN, RNN, LSTM, DDQN, and DQN model were used. 

Deep Reinforcement Learning model DDQN has a 97,74 F1-

score [109]. 

The hybrid model (Cu-LSTGRU + Cu-BLSTM), Cu-DNN-

LSTM, and Cu-DNN-GRU were evaluated, and (Cu-

LSTMGRU + Cu-BLSTM) gave the highest performance 

result with an F1-score rate of 99.47%. Model GRU-RNN has 

been compared with Autoencoder (EDSA) and Multi-CNN 

[110]. 

RF-PCCIF and RF-IFPCC have 99.98% and 99.99% Acc 

and prediction time of 6.18 sec and 6.25 sec, respectively, on 

Bot-IoT. The two models also achieve 99.30% and 99.18% 

accuracy and prediction time scores of 6.71 sec and 6.87 sec 

on NF-UNSW-NB15-v2, respectively [120]. 

Quadratic SVM has 99.7% accuracy, prediction speed is 

1100 s and training time is 465.28 s. Fine Tree has 99.4% 

accuracy, prediction speed is 570.000 sec and training time is 

11.029 seconds [121]. 

(SOPA-GA-CNN) has 98.1 F1 Score with gas pipeline 

dataset [122]. 

P-ResNet has a performance of 87% accuracy, 88% 

precision, 86% recall, 86% F1 Score, 83% ROC AUC, TRT: 

24401.586s, TET: 3.014s [123].

Table 10. An Overview of the Models 

Papers  Models/Methods Used and Their Tasks Datasets and Uses Performance Compared Models 
or Approaches 

[90] A feedforward multilayer multiclass 

neural network with various 
hyperparameters is used with Microsoft 

Azure Machine Learning Studio to 

simulate the deep learning model. 

Bot-IoT: the dataset is split 

6:4 into training and test 
data. 

- Overall ACC: 95,9% 

- Average ACC: 98,36% 
- Micro average PRE: 95,9% 

- Micro-average REC: 95,9% 

- Macro averaged REC: 58,18% 

- 

[91] The Auto-encoder algorithm is used to 
reveal false data injection attacks. 

Clean corrupted data (AE) performed 

better with the support vector machine 
(SVM) algorithm in terms of ROC. 

Pump, coolant, valve, and accumulator 

values are measured. 

The dataset includes a total 
of 15 sensor data. 

(volumetric flow, pressure, 

engine, temperature, cooling, 
vibration, and power). 

MSE training loss: 3.99e-7 
MSE validation loss: 4.37e-7 

AE ACC: 97,65% 

SVM ACC: 85,1% 
AE DR: 100% 

SVM DR: 88,55% 

AE FAR: 6,42% 
SVM FAR: 16,3% 

DAE MSE: 0,0064 

AE MSE: 0,1 
AE TRT:1 min 

SVM TRT:15 min 

-SVM RBF Kernel 
-SVM Linear 

Kernel 

-SVM Gaussian 
Kernel 
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[92] HDRaNN model has been used for 

cyber-attack detection in IIoT. 

DS2OS is used for training 

and testing. Attack 
distributions are given in 

detail. A confusion matrix 

was created. 

ACC: %98,56 

PRE: %98,25 
REC: %98,36 

F1: %98,3 

LL: %36,24 
AUC-ROC: %91,28 

RNN, DBN, DAE, 

RBM 

UNSW-NB15 is used for 

training and testing. Attack 
distributions are given in 

detail. A confusion matrix 

was created. 

ACC: 99,19% 

PRE: 99,07% 
REC: 98,98% 

F1: 99,02% 

LL: 12,23% 
AUC-ROC: 98,82% 

[93] A log anomaly detection model based 

on GRU and Support Vector Domain 

Definition algorithms framework 

10% of the KDL CUP 99 

dataset is trained. 

DR: 99,6% 

FAR: 0,01% 

BGRU-MLP, 

LSTM, PCA-SVM 

and LSTM-RNN 

[94] Detecting attacks in DS2OS dataset 

with a new lightweight random neural 

network model 

Intrusion detection was 

performed by dividing the 

DS2OS dataset 8:2 train and 
test data 

ACC: 99,2% 

PRE: 99,08% 

REC: 99,16% 
F1: 99,04% 

TET: 34,51 ms 

SVM, DT, ANN 

[95] Intrusion detection was performed on 

the UNSW-NB15 dataset with DRaNN 
based model. 

UNSW-NB15 is used for 

75% training and 25% 
testing. Attack distributions 

are given in detail. 

ACC: 99,54% 

DR: 99,41% 
FPR: 0,76% 

BLSTM RNN, 

Adaboost, CNN 
and WDLSTM, 

DL, FFDNN, DNN, 

DBN 

[96] The down sampler-based data generator 

for SCADA attack detection is 

alternatively updated and validated 
using a deepNN splitter during training. 

Developing and classifying a GAN to 

generate conflicting attack data 

SCADA: 36000 samples, 

half of which benign traffic 

and half of malign attack 
traffic 

Noiseless ACC: 95,42% 

Semi-noisy ACC: 92,91% 

GAN ACC: 95,55% 
GAN LL: 47,55% 

TRT: 2,58h 

DNN, SVM 

[97] An improved ensemble learning model 

is proposed to detect SCADA 

cyberattacks based on the combination 
of RS learning method and RT. 

SCADA 15 datasets and 

thousands different attacks. 

Datasets are randomly 
sampled at a rate of 1%. 

Binary Classification ACC: 96,71% 

FPR: 0,05% 

TRT: 0,22 
TET: 0,1 

RSKNN 

[98] AMCNN-LSTM model based on the 

attention mechanism is proposed. 

Engine, Space Shuttle, ECG, 

Power Demand 

For Power Demand, AMCNN-LSTM 

ACC: 96,85% 

RMSE: <5% 
AMCNN-LSTM time with GCM: 25min 

AMCNN-LSTM time without GCM: 

90min 

SVM, SAE, GRU, 

CNN with LSTM 

and LSTM 

[99] In the malware literature, the KBL 

selection method has a 6% performance 

improvement over random selection. 

Android Malware dataset ACC: 86,08% 

G-Mean: 86,55% 

AUC: 95,8% 
SVM ACC: 98,5% 

DNN, SVM, RF, 

Bayes 

[100] The proposed IDS consist of two 

unsupervised SAEs, feature extraction 

using PCA and a Decision Tree 
classification and using OCSVM to 

detect previously unseen attacks 

Pipeline dataset created by 

Mississippi State University 

ACC: 96,2% 

PRE: 96,17% 

REC: 96,2% 
F1: 96,18% 

TRT: 1200s 

TET: 2,98s 

DT, SVM, K-

Means, NB, 

AIKNN, LSTM 

Swat (safe water treatment) 

dataset created by Singapore 

Technological University 

PRE: 99,99% 

REC: 99,99% 

F1: 99,98% 
TRT: 1115s 

TET: 1,1s 

DT, LADS-ADS, 

DNN, ID CNN, 

MADGAN, Tabor, 
LSTM, ST-ED 

[101] A new dataset (TON_IoT) is proposed 
for the next generation IoT and IIoT 

dataset for data-driven IDS. On the 

TON_IoT dataset, LR, RF, LDA, 
CART, KNN, NB, and SVM models 

were evaluated with 4-fold cross-

validation. All algorithms classification 
results are given on seven different 

datasets, TON_IoT dataset, refrigerator 

sensor, GPS tracking, garage door, 
thermostat, smart light detection, 

weather, and Modbus datasets. In 

addition, for the combined_TON_IoT 
dataset, which is the combination of all 

Refrigerator sensor For LSTM; 
ACC, PRE, REC and F1: 100% 

TRT:190,493 

TET:3,705 

LR, RF, LDA, 
CART, KNN, NB, 

SVM, LSTM 

GPS tracking For KNN; 
ACC: 88% 

PRE: 89% 

REC: 88% 
F1: 88% 

TRT: 0,08 

TET: 1,508 

Garage door For all algorithms 

ACC, PRE, REC and F1: 100% 

NB TRT: 0,01sec 
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data sets, all algorithms are evaluated 

with binary and multi-classification 
models, and attack types are classified. 

TET: 0,02sec 

Thermostat For NB; 
ACC: 66% 

PRE: 44% 

REC: 66% 
F1: 53% 

TRT: 0,009 

TET: 0,002 

Intelligent light detection For LSTM; 
ACC: 59% 

PRE: 35% 

REC: 59% 
F1: 44% 

TRT: 63,132 

TET: 3,73 

Weather For CART; 

ACC: 87% 

PRE: 88% 
REC: 87% 

F1: 87% 

TRT: 0,258 
TET: 0,03 

Modbus For CART; 

ACC: 98% 

PRE: 99% 
REC: 98% 

F1: 99% 
TRT: 0,367 

TET: 0,01 

[102] An improved ABC algorithm IABC-

OCSVM, based on an arrow-variable 

Gaussian mutation with CEEMDAN 

decomposition compatible with the 

intelligent optimizer OCSVM classifier 

Pressure, engine speed, flow 

and some electrical 

parameters 

Training ACC: 94,5% 

Test ACC: 89,8% 

TET: 0,0081s 

EEMD and 

CEEMDAN  

ABC-OCSVM, 

PSO-OCSVM 

[103] SHOCFS was used for speed 

improvement and detection of optimum 

density peaks, SSO was used to select 
optimum density points of the 

clustering model, and the SHODS3O-

CFS method was suggested in a hybrid 
cloud. The SHODS3O-CFS model 

reduces overlapping peaks in the 

cluster and increases security in the 
hybrid cloud. 

Incorporating daily weather 

changes into energy use, 

clustering center quality 
collected from data in 

England, Wales and Scotland 

is evaluated on clustering 
center quality, encryption 

time, accuracy, speed-up rate 

performance measures. 

RI: 95,2% 

ER: 778,80ms 

SR: 36,86 
CCQ: 0,401 

PPHOCFS and 

SHOCFS 

[104] Data in MQTT and COAX categories 

from environment monitoring sensors 

and patient monitoring sensors were 

created with IoT-Flock software. The 

created dataset was evaluated with NB, 

KNN, RF, AB, LR, and DT algorithms. 
The model that gave the best results 

was the RF algorithm. 

From environmental 

monitoring sensors (air-

humidity, air-temperature, 

co, fire, smoke, barometer, 

solar radiation sensors) and 

patient monitoring sensors 
(remote electrocardiogram 

(ECG) monitoring, galvanic 
skin response (GSR) sensor), 

infusion pump pulse 

oximetry (SPO2), 
nose/mouth air flow sensor, 

blood pressure monitor 

sensor, glucose meter, 
electromyography (EMG) 

sensor, body temperature 

sensor 

ACC: %99,51% 

PRE: 99,7% 

REC: 99,79% 

F1: 99,65% 

AUC: 100% 

NB, KNN, RF, AB, 

LR  

[105] GXGBoost performed several 
experiments on the public N-BaIoT 

dataset for efficient classification 

The N-BaIoT dataset consists 
of the malignant Mirai, 

Bashlite and Benign datasets. 

ACC: 99,96% 
PRE: 99,95% 

REC: 99,95% 

F1: 99,95% 
ATR: 545,040 sec 

ATE: 4,208 sec 

DNN, DT, KNN, 
DAE, SVM, VIF 

[106] CNN model ThingsBoard tool. 
ThingsBoard. CNN algorithm works 

independently with an alarm system in 

It consists of a dataset of 
11,755 examples and 12 

different scenarios. 

ACC: 92,05% 
 

NN, NB, SVM 
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simulation. 

[107] DT, RF, SVM, KNN, DNN centralized 

model and 2-class (binary 

classification), 6-class (multi-
classification), and 15-class (multi-

classification) federated DL approach. 

Edge-IIoTset, produced by 

10 different IoT devices, was 

evaluated together with 2 
different ML-based IDS with 

centralized and federated 

mode in 7 different layers. 

Normal centralized DT, RF, KNN, SVM, 

DNN model PRE, REC, F1: 100% 

federated 2-class IID and Non-IID 
ACC:100%, etc. [107] 

DT, RF, SVM, 

KNN, DNN and 

Federated DL 
models 

[108] Supervised ML algorithms (NB, SVM, 

RF model) and Autocorrelation 

Function  

Top 8 features selected to 

train ML classifiers 

RF ACC, PRE, REC, F1:100%  NB, SVM, RF 

[109] GBM's feature selection algorithm, and 
PPO2 interface of the Stable baseline to 

implement model training has been 

used. DRL-IDS intrusion detection 
agent is tested on the training and 

validation sets. 

26 features are removed and 
only 3 features are used 

without reducing 

performance. 

For DDQN ACC: 99,05% 
PRE: 98,42% 

REC: 97,08% 

F1: 97,74% 
 

CNN, RNN, 
LSTM, DDQN, 

DQN 

[110] Hybrid model (Cu-LSTMGRU + Cu-
BLSTM) 10-fold cross-validation 

multiclass, GPU-Enabled, Compared 

with hybrid algorithms, Cuda-
DNNLSTM and Cuda-DNNGRU 

N-BaIoT hosts malware, 
namely Bashlite and Mirai. It 

consists of 8 attacks and 115 

features. 49500 normal IIoT 
data. 

Cu-LSTMGRU + Cu-BLSTM ACC: 
99,45% 

PRE: 99,34% 

REC: 98,49% 
F1: 99,47% 

FNR, FDR: 0.002 

FOR: 0,004 
FPR: 0,003 

TPR: 99,33% 

TNR: 99,13% 
MCC: 99,13% 

TET: 9,79ms 

Cu-DNN–LSTM 
and Cu-DNN–

GRU, 

GRU-RNN, 
Autoencoder 

(EDSA) 

Multi-CNN
  

[120] RF-PCCIF and RF-IFPCC Ensemble 
model 

Bot-IoT with 15 selected 
features and with NF-

UNSW-NB15-v2 with 24 

features 

Bot-IoT ACC: 
RF-PCCIF: 99,98% 

RF-IFPCC: 99,99% 

UNSW-NB15-v2 ACC: 
RF-PCCIF: 99,3% 

RF-IFPCC: 99,18% 

TRT: 145.24s  

Information gain 
and gain ratio, Chi-

square, CNN, ET 

[121] Linear SVM, Quadratic SVM, Fine 
Tree, Medium Tree 

NSL-KDD Linear SVM ACC: 99.3% 
Quadratic SVM ACC: 99.7% 

Fine Tree ACC: 99.4% , TRT: 11.029s 

Medium Tree ACC: 95.9% 

Linear SVM, 
Quadratic SVM, 

Fine Tree, Medium 

Tree 

[122] synchronous optimisation of 

parameters and architectures by genetic 

algorithms with convolutional neural 
networks blocks (SOPA-GA-CNN) 

Secure water treatment 

(SWaT), water distribution 

(WADI), Gas Pipeline, BoT-
IoT and Power System 

Attack Dataset 

Gas pipeline: 

ACC: 99,04% 

PRE: 98,14% 
REC: 98,07% 

F1: 98,1% 

SVM, RNN, 

LSTM, NB, 

BiLSTM, CNN, 
VCDL, Deep-IFS 

[123] Residual neural network (P-ResNet) Seven IoT sensors (e.g., 
fridge_sensor, 

GPS_tracker_sensor, 

motion_light_sensor, 
garage_door_sensor, 

modbus_sensor, 

thermostat_sensor, and 
weather_sensors) 

P-ResNet  
ACC: 87% 

PRE: 88% 

REC: 86% 
F1: 86% 

ROC AUC: 83% 

TRT: 24401.586s 
TET: 3.014s 

LSTM, NN, CNN, 
RNN, FCN, LeNet, 

IncepNet, 

MCDCNN 
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6. Conclusion, Discussions and Open Research 

Problems 

In this manuscript, a systematic literature survey used in 

Industrial Internet of Things security was done, and studies on 

ML and DL models used to detect anomaly-based attacks in 

IIoT networks were examined. The examined approaches are 

obtained from the Web of Science, Scopus, IEEE Xplore, 

ScienceDirect, Hindawi, Wiley Online Library, and MDPI 

academic databases using the query sentences in Table 5. 

Among the papers revealed as a result of the queries, 25 of them 

were selected and summarized according to the selection and 

elimination criteria given in Table 6, with the publication years 

between 2019 and 2023.  A systematic literature survey used in 

Industrial Internet of Things security was done, and 

manuscripts on ML and DL models used to detect anomaly-

based attacks in IIoT networks were examined. The examined 

approaches are obtained from the Web of Science, Scopus, 

IEEE Xplore, ScienceDirect, Hindawi, Wiley Online Library, 

and MDPI academic databases using the query sentences in 

Table 5. Among the papers revealed as a result of the queries, 

25 of them were selected and summarized according to the 

selection and elimination criteria given in Table 6, with the 

publication years between 2019 and 2023. 

When the reviewed manuscripts are evaluated, it is concluded 

that many manuscripts have different deficiencies. These 

deficiencies are summarized as follows: 

• There are extra security measures in the blockchain to 

make it harder for malicious nodes to verify transactions 

and connect to other devices, but it has not been 

compared to other DL and ML algorithms [90]. 

• Except for a few manuscripts, their datasets have not 

been publicly shared [99], [103], [105]. Therefore, the 

performance results of the proposed approaches are 

controversial. Additionally, if the datasets are shared 

publicly, other researchers will be able to evaluate the 

usability of these datasets and improve the datasets. 

• Some datasets do not include detailed counts of 

malignant and benign data types [91], [96]-[98], [103], 

[104]. The lack of these details prevents obtaining 

sufficient information about the datasets.  

• Most of the models proposed in the manuscripts have 

not been tested in a real-life. Therefore, the performance 

values of these approaches in an environment where 

they are actually used cannot be estimated. Manuscripts 

should be tested in a real environment, and their 

performance should be measured. 

• The vulnerabilities of the proposed approaches against 

various types of attacks were not addressed in the 

reviewed manuscripts. Apart from a manuscript [100], 

other systems proposed to be secure against certain types 

of attacks can be used as schemes, frameworks, models, 

or parts. The status of security levels against different or 

unknown attack types is unknown. That is, the usability 

of the proposed models in the real-world environment is 

questioned.  

• A manuscript has not been tested in other machine 

learning and deep learning models, except for 

biologically inspired intelligence-based methods, and 

has been evaluated with performance measures that are 

not often used. The results obtained in different models 

with known performance metrics will become important 

for the evaluation of the manuscript [103].  

• Some studies did not provide any conclusions regarding 

training or testing times, such as the ML and DL models 

used in other reviewed manuscripts. An analysis of the 

resource consumption of IIoT devices with insufficient 

resources cannot be made. Therefore, the efficiency of 

approaches that include models without resource 

consumption and training-test time analysis in a real 

IIoT environment is unknown [90]-[93], [95], [99]. 

The source codes of the ML and DL models used in the 

manuscripts examined were not shared in a public 

environment, except for the manuscript [103]. Therefore, 

these models are not known to be established, as shown in 

manuscripts. In addition, by sharing the source codes of the 

approaches, other researchers examining the codes will 

contribute more to the literature in their future manuscripts. 

In this survey, firstly, short and concise explanations about 

the approaches proposed in the selected articles are given. Then, 

the main ideas, advantages and disadvantages found in these 

manuscripts are summarized in Table 7. Second, the criteria 

used to evaluate the performance of the ML and DL models 

used in the approaches are shown in Table 8. Third, various 

information about the datasets used in the testing and training 

processes of the models are presented in Table 9. Fourth, the 

ML and DL approach used in the proposed approaches to IIoT 

security are given in Table 10. Table 10 summarizes the usage 

areas of the models, the datasets they use, the training-test result 

performances, and the information about which models they are 

compared with. In the evaluation part, the shortcomings of the 

manuscripts examined are given. In the conclusion part, the 

manuscript is summarized, and open research problems are 

briefly explained.  

IIoT leverages a variety of existing and emerging 

technologies such as communication networks, sensing 

technologies, and high-performance processing platforms to 

build its entire ecosystem. As a result, IIoT security and privacy 

concerns don't just focus on monolithic technology issues. 

There is an integrated heterogeneous environment from the 

physical security of connected devices to the communication 

security of networks, from data security to IIoT application 

security. It covers a wide variety of IIoT ecosystems, consisting 

of various security protocols, defense schemes, and many 

standards of IIoT structure. Most models have traditional 

methods of protecting and defending data communications. It is 

debatable whether these traditional mechanisms deployed are 
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still sufficient to protect the latest IIoT technologies; this section 

also discusses the overt security and privacy issues of IIoT. 

• Classes with fewer datasets will give less successful 

results in the real environment or a new dataset, as they 

will cause data to be overfitting [98], [102]. The 

imbalance of datasets, that is, very different numbers of 

benign and malignant datasets will also create 

complexity and invalidate learning for different data and 

real environments [90], [92]-[95], [100]. 

• Except for some manuscripts, other datasets are old and 

outdated [93], [107]. Therefore, it is difficult to find a 

suitable benchmark dataset to apply ML and DL models 

in IIoT security. However, most of the datasets used are 

not publicly available or the datasets are too small, 

especially for deep learning models [102]. 

• While machine learning models are successful in some 

datasets, deep learning models give more successful 

results in others [101]. Some approaches do not make 

comparisons between ML and DL models. In addition, 

some articles do not apply preprocessing and feature 

selection steps for datasets [91]. Therefore, too many 

features are obtained. Feature selection and feature 

extraction are very important in terms of performance 

and complexity, especially for ML models. The 

performance of ML models can be increased by 

selecting the feature. 

• Several authors working on the same dataset did not 

compare the results of the manuscripts [90], [99], [91]. 

Some articles do not include dataset details and feature 

information [96]-[99], [102]-[104], [106]. 

• Anomaly detection, which is mainly used, may not be 

applied in the same way in all areas. For example, while 

temperature change is very important in the field of 

industrial medicine, it may not be that important for a 

smart factory. Therefore, anomaly detection should not 

be applied to all areas in the same way [98], [100], [102], 

[106]. 

• Normal data may be close to the cluster containing the 

anomaly data, and anomaly data may be close to the 

cluster containing the normal data [46]. In such cases, 

anomaly detection becomes very difficult. Normal data 

may change according to time and space and appear as 

an anomaly. In these cases, it may be necessary to 

change the hyperparameters used in the ML and DL 

models. 

• The DL and ML models used in IIoT security focus only 

on the accuracy performance metric in some articles 

[96], [102], [106]. Instead, manuscripts including 

precision, recall, and F1 score performance criteria 

should be conducted to better understand the 

manuscripts. In some cases, performance criteria such as 

log loss, speedup ratio, g-mean, rand-index, and 

specificity are used, which are not used much in the 

literature [92], [102]. 

• For an accurate assessment of the energy consumption 

and computational complexity of the proposed 

approaches, on which platforms the datasets are created 

and tested, training, testing, real-time response, and 

execution times are not explicitly given [90], [92], [93], 

[95], [99], [103], [104], [106]. 

• Zero-day attacks are a type of security vulnerability that 

is exploited the day a vulnerability is discovered or 

before an update is available by the developer. 

Dynamically changing zero-day attacks can cause 

unknown malicious behavior to be detected [46]. 

• False positives will cause economic worsening that will 

affect the relevant services and production areas. 

Whenever a false positive is found, especially medical, 

industrial units will have to stop production. False 

negatives are even more problematic. It is the 

appearance of a condition as negative as a result of a test 

when it actually is. As a result of misinterpretation of 

data due to unforeseen conditions, not only economic 

but also human losses will occur [98], [100], [102], 

[104], [106]. Such cases are still important problems to 

be solved. 

As a result, in this systematic survey, detailed information 

about open research problems in the literature and models 

consisting of deep learning and machine learning algorithms 

to find anomalies in IIoT networks and reduce these anomalies 

are given. 
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