
Hacettepe Journal of
Mathematics & Statistics

Hacet. J. Math. Stat.
Volume XX (x) (XXXX), 1 – 20

DOI : 10.15672/hujms.xx

Research Article

Iterations and unions of star selection properties
on topological spaces

Javier Casas-de la Rosa∗, William Chen-Mertens, Sergio A. Garcia-Balan

Department of Mathematics and Statistics, York University, 4700 Keele St. Toronto, ON M3J 1P3
Canada

Abstract
In this paper, we investigate what selection principles properties are possessed by small
(with respect to the bounding and dominating numbers) unions of spaces with certain
(star) selection principles. Furthermore, we give several results about iterations of these
properties and weaker properties than paracompactness. In addition, we study the be-
haviour of these iterated properties on Ψ-spaces. Finally, we show that, consistently, there
is a normal star-Menger space that is not strongly star-Menger; this example answers a
couple of questions posed in [J. Casas-de la Rosa, S. A. Garcia-Balan, P. J. Szeptycki,
Some star and strongly star selection principles, Topology Appl. 258, 572-587, 2019].
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1. Introduction
1.1. Notation and terminology

Let X be a set and let U be a collection of subsets of X. If A is a subset of X, then the
star of A with respect to U, denoted by St(A,U), is the set

∪
{U ∈ U : U ∩ A ̸= ∅}; for

A = {x} with x ∈ X, we write St(x,U) instead of St({x},U). We denote by [X]<ω the
collection of all finite subsets of X. Throughout this paper, all spaces are assumed to be
regular, unless a specific separation axiom is indicated. For notation and terminology, we
refer to [12].

We recall some classical star covering properties following the terminology of [11]. A
space X is said to be strongly starcompact (strongly star-Lindelöf), briefly SSC (SSL),
if for every open cover U of X there exists a finite (countable) subset F of X such that
St(F,U) = X. A space X is starcompact (star-Lindelöf), briefly SC (SL), if for every
open cover U of X there exists a finite (countable) subset V of U such that St(

∪
V,U) = X.

It is well-known that countable compactness and strongly starcompactness are equivalent
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for Hausdorff spaces (see [11]). We refer the reader to the survey of Matveev [20] for a
more detailed treatment of these star covering properties.

Recall that a space X is said to be metacompact (metaLindelöf ) if every open cover U

of X has a point-finite (point-countable) open refinement V. Further, a space X is said
to be paracompact (paraLindelöf ) if every open cover U of X has a locally-finite (locally-
countable) open refinement V. For more information about the relationships among these
covering properties (and others), we refer the reader to [6].

Recall that for f, g ∈ ωω, f ≤∗ g means that f(n) ≤ g(n) for all but finitely many n
(and f ≤ g means that f(n) ≤ g(n) for all n). A subset B of ωω is bounded if there is
g ∈ ωω such that f ≤∗ g for each f ∈ B. A subset D of ωω is dominating if for each
g ∈ ωω there is f ∈ D such that g ≤∗ f . The minimal cardinality of an unbounded subset
of ωω is denoted by b, and the minimal cardinality of a dominating subset of ωω is denoted
by d. The family of all meager subsets of R is denoted by M and the minimum of the
cardinalities of subfamilies U ⊂ M such that

∪
U = R is denoted by cov(M).

Recall that a family A of infinite subsets of ω is almost disjoint (a.d., for short) if the
intersection of any two distinct sets in A is finite. Let A be an a.d. family, we consider
Ψ(A) = A ∪ ω with the following topology: the points of ω are isolated and a basic
neighbourhood of a point a ∈ A is of the form {a} ∪ (a \ F ), where F is a finite subset of
ω. Then Ψ(A) is called a Ψ-space (see [14]).

1.2. Classical (star) selection principles
Likely, among classical selection principles, the most well-known are the Menger, Roth-

berger and Hurewicz properties. Let us recall those notions and its star versions. Given a
topological space X, we denote by O the collection of all open covers of X and by Γ the
collection of all γ-covers of X. Recall that an open cover U of X is a γ-cover if it is infinite
and each x ∈ X belongs to all but finitely many elements of U. A space X is Menger (M)
if for each sequence {Un : n ∈ ω} of open covers of X, there is a sequence {Vn : n ∈ ω}
such that for each n ∈ ω, Vn is a finite subset of Un and {

∪
Vn : n ∈ ω} is an open cover

of X (see [21]). A space X is Rothberger (R) if for each sequence {Un : n ∈ ω} of open
covers of X, there is a sequence {Un : n ∈ ω} such that for each n ∈ ω, Un ∈ Un and
{Un : n ∈ ω} is an open cover of X (see [23]). A space X is Hurewicz (H) if for each
sequence {Un : n ∈ ω} of open covers of X, there is a sequence {Vn : n ∈ ω} such that for
each n ∈ ω, Vn is a finite subset of Un and for each x ∈ X, x ∈

∪
Vn for all but finitely

many n (see [16]). The following star versions for the cases Menger and Rothberger were
introduced in [17] and the star versions for the Hurewicz case were defined in [2].

Definition 1.1. A space X is:

(1) star-Menger (SM) if for each sequence {Un : n ∈ ω} of open covers of X, there is
a sequence {Vn : n ∈ ω} such that for each n ∈ ω, Vn is a finite subset of Un and
{St(

∪
Vn,Un) : n ∈ ω} is an open cover of X.

(2) strongly star-Menger (SSM) if for each sequence {Un : n ∈ ω} of open covers
of X, there exists a sequence {Fn : n ∈ ω} of finite subsets of X such that
{St(Fn,Un) : n ∈ ω} is an open cover of X.

(3) star-Rothberger (SR) if for each sequence {Un : n ∈ ω} of open covers of X, there
are Un ∈ Un, n ∈ ω, such that {St(Un,Un) : n ∈ ω} is an open cover of X.

(4) strongly star-Rothberger (SSR) if for each sequence {Un : n ∈ ω} of open covers
of X, there exists a sequence {xn : n ∈ ω} of elements of X such that {St(xn,Un) :
n ∈ ω} is an open cover of X.
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(5) star-Hurewicz (SH) if for each sequence {Un : n ∈ ω} of open covers of X, there
is a sequence {Vn : n ∈ ω} such that for each n ∈ ω, Vn is a finite subset of Un

and for each x ∈ X, x ∈ St(
∪
Vn,Un) for all but finitely many n.

(6) strongly star-Hurewicz (SSH) if for each sequence {Un : n ∈ ω} of open covers of
X, there exists a sequence {Fn : n ∈ ω} of finite subsets of X such that for each
x ∈ X, x ∈ St(Fn,Un) for all but finitely many n.

It is worth to mention that for paracompact Hausdorff spaces the three Menger-type
properties, SM , SSM and M are equivalent and the same situation holds for the three
Rothberger-type properties and the three Hurewicz-type properties (see [17] and [2]). Even
more, those equivalences still true for paraLindelöf spaces (see [8]).

Figure 1 shows the relationships among these properties (in the diagram C and L are
used to denote compactness and the Lindelöf property, respectively). We mention that
none of the arrows in the following diagram reverse. We refer the reader to [19] to see the
current state of knowledge about these relationships with others.

C H M R

L

SSC SSH SSM SSR

SSL

SC SH SM SR

SL

Figure 1. Star selection principles.

2. Small unions of some star spaces
In [30] Tall proved that if a space X is Lindelöf and it can be written as a union of less
than d compact spaces, then X is Menger. It turns out that we can replace “compact” by
“star-Hurewicz” in Tall’s result (see Proposition 2.3 below)†, or we can replace “d” and
“compact” by “b” and “star-Menger” (Proposition 2.7). Furthermore, a Lindelöf space
that can be written as a union of less than b star-Hurewicz spaces, is Hurewicz (Proposi-
tion 2.4). These results are contained in Theorem 2.2 below.

In addition, we investigate what happens if instead of starting with a Lindelöf space that
can be written as some small union, we consider a star-Lindelöf space or a strongly star-
Lindelöf space or an absolutely strongly star-Lindelöf space (see Definition 2.17 below).
Some other interesting relationships are obtained and described in Theorem 2.10 and
Theorem 2.19 below. Let us first introduce some notation that allows to present these
results in an organized manner‡.

†In [9], the authors also use the idea of unions of size less than d many Hurewicz-type spaces to obtain
some results about star-Scheepers spaces.
‡Preliminary versions of some results in this section are contained in the PhD Dissertation of the third
listed author (see [13]).
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Definition 2.1. Let X be any space, A and B denote some properties and κ is some
cardinal. (

A, (< κ, B)
)

stands for “X satisfies property A and it can be written as a union of less than κ spaces
each of them satisfying property B”.

For instance, if L, C and M denote Lindelöf, compact and Menger, respectively, then Tall’s
result can be written as “

(
L, (< d, C)

)
→ M”. More in general, we have:

Theorem 2.2. For any space X the following holds:(
L, (< d, SH)

)

(
L, (< b, SH)

)
H M

(
L, (< b, SM)

)

The proof is divided as Propositions 2.3, 2.4 and 2.7.

Proposition 2.3. If X is a Lindelöf space and X is the union of less than d star-Hurewicz
spaces, then X is Menger.

Proof. Let κ be a cardinal smaller than d and put X =
∪

α<κ Yα with each Yα being a
star-Hurewicz space. Let {Un : n ∈ ω} be a sequence of open covers of X. Since X is
Lindelöf, we can assume that for each n ∈ ω, Un is countable and put Un = {U i

n : i ∈ ω}.
Since each Yα is star-Hurewicz, for each α < κ, there exists a finite subset Vα

n of Un such
that {St(

∪
Vα

n,Un) : n ∈ ω} is a collection of open sets in X that covers Yα and satisfies
that for each x ∈ Yα, x ∈ St(

∪
Vα

n,Un) for all but finitely many n. Define, for each α < κ,
a function fα as follows: for each n ∈ ω, let fα(n) = min{i ∈ ω : Vα

n ⊆ {U j
n : j ≤ i}}.

Since the collection {fα : α < κ} has size less than d, there exists g ∈ ωω such that for
every α < κ, g ≰∗ fα. For each n ∈ ω, let Wn = {U i

n : i ≤ g(n)}.
Claim: {St(

∪
Wn,Un) : n ∈ ω} is an open cover of X.

Let x ∈ X. Then, there exists α < κ such that x ∈ Yα. Hence, there is n0 ∈ ω so that for
every n ≥ n0, x ∈ St(

∪
Vα

n,Un). Since g ≰∗ fα, we can take n > n0 such that g(n) > fα(n).
Then x ∈ St(

∪
Vα

n,Un) ⊆ St(
∪

j≤fα(n) U j
n,Un) ⊆ St(

∪
j≤g(n) U j

n,Un) = St(
∪
Wn,Un).

Therefore, the collection {St(
∪
Wn,Un) : n ∈ ω} is an open cover of X. Thus, X is

star-Menger. Finally, since X is Lindelöf, X is a paracompact space and this allow us to
conclude that X is Menger. □

Proposition 2.4. If X is a Lindelöf space and X is the union of less than b star-Hurewicz
spaces, then X is Hurewicz.

Proof. By mimicking the first part of the proof of Theorem 2.3, since the collection of
{fα : α < κ} has size less than b, we can define a function g ∈ ωω such that for every
α < κ, fα ≤∗ g. For each n ∈ ω, let Wn = {U i

n : i ≤ g(n)}. It is not hard to show that
{St(

∪
Wn,Un) : n ∈ ω} is a γ-cover of X. □

In this article, by large cover we mean the following:

Definition 2.5. A cover U = {Uα : α < κ} of a space X is called large if for every α < κ,
{Uβ : α ≤ β < κ} is a cover of X. We denote the class of large covers of X by L(X).
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Observe that when we consider countable covers, the previous definition and the one
given in [25] coincide.

For the following lemma we recall some classical notation of (star) selection principles
introduced by M. Scheepers (Kočinac) in [25] ([17]). Let A and B be collections of families
of sets.

Sfin(A,B): For each sequence {An : n ∈ ω} of elements of A there is a sequence
{Bn : n ∈ ω} such that for each n ∈ ω, Bn ∈ [An]<ω and

∪
{Bn : n ∈ ω} is an element of

B.

Ufin(A,B): For each sequence {An : n ∈ ω} of elements of A there is a sequence
{Bn : n ∈ ω} such that for each n ∈ ω, Bn ∈ [An]<ω and {

∪
Bn : n ∈ ω} is an element of

B.

S∗
fin(A,B): For each sequence {An : n ∈ ω} of elements of A there exists a sequence

{Bn : n ∈ ω} such that for each n ∈ ω, Bn ∈ [An]<ω and {St(
∪

Bn, An) : n ∈ ω} is an
element of B.

The following Lemma will be useful to clarify some steps in the proofs of Propositions
2.7 and Lemma 2.9.

Lemma 2.6 (Folklore). For any space X:
(1) Sfin(O,O) ↔ Ufin(O,L).
(2) S∗

fin(O,O) ↔ S∗
fin(O,L).

Proof. Let X be any space. Observe that Ufin(O,L) → Sfin(O,O) and S∗
fin(O,L) →

S∗
fin(O,O) are immediate. Now, assume Sfin(O,O) (S∗

fin(O,O) respectively) holds. Let
{Un : n ∈ ω} be any sequence of open covers of X and let m ∈ ω. Since the collection
{Un : m ≤ n < ω} is a sequence of open covers of X, then for each n ≥ m there exists
a finite subset Vm

n of Un such that
∪

{Vm
n : m ≤ n < ω} ({St(

∪
Vm

n ,Un) : m ≤ n < ω},
resp.) is an open cover of X. So, for each n ∈ ω we define Wn =

∪
m≤n Vm

n . Hence, for
each m ∈ ω the collection

∪
{Wn : m ≤ n < ω} ({St(

∪
Wn,Un) : m ≤ n < ω}, resp.) is

an open cover of X. Furthermore, for each m ∈ ω the collection {
∪
Wn : m ≤ n < ω}

is an open cover of X. Thus, for each n, Wn is a finite subset of Un and the collection
{
∪
Wn : n < ω} ({St(

∪
Wn,Un) : n < ω}, resp.) is a large cover of X. Hence, Ufin(O,L)

(S∗
fin(O,L), resp.) holds. □

Proposition 2.7. If X is a Lindelöf space and X is the union of less than b star-Menger
spaces, then X is Menger.

Proof. Let κ be a cardinal smaller than b and put X =
∪

α<κ Yα with each Yα being
a star-Menger space. Let {Un : n ∈ ω} be a sequence of open covers of X. Since X is
Lindelöf, we can assume that for each n ∈ ω, Un is countable and put Un = {U i

n : i ∈ ω}.
Since for each α < κ, Yα is star-Menger, by Lemma 2.6, for each α < κ there is Vα

n finite
subset of Un such that for every m ∈ ω, {St(

∪
Vα

n,Un) : m ≤ n < ω} is an open cover of
Yα.

We define the family of functions fα in the same fashion as we did in the proof of
Theorem 2.3. Since it has size less than b there exists g ∈ ωω such that for every α < κ,
fα ≤∗ g. For each n ∈ ω, let Wn = {U i

n : i ≤ g(n)}. With similar ideas, it can be shown
that {St(

∪
Wn,Un) : n ∈ ω} is an open cover of X. □

Following [5] (see also [22]), we recall some modifications of the Menger and Hurewicz
properties, called E∗

ω and E∗∗
ω properties, respectively. We say that a space X has the
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property E∗
ω (E∗∗

ω ), if for every sequence {Un : n ∈ ω} of countable open covers of X, there
exists a sequence {Vn : n ∈ ω} such that for each n ∈ ω, Vn is a finite subset of Un and
{
∪
Vn : n ∈ ω} is an open cover (γ-cover) of X. If we recall the definition of countably

compact space (every countable cover has a finite subcover), properties E∗
ω and E∗∗

ω could
be called countably Menger and countably Hurewicz, respectively. As pointed out in [22],
in the class of Lindelöf spaces, the properties Menger and E∗

ω are the same. However, this
fact is not true in general. The space ω1 (with the order topology) has the property E∗

ω

and it is not a Menger space.

Lemma 2.8. If X can be written as a union of less than d many Hurewicz spaces, then
X is E∗

ω.

Proof. Assume X =
∪

α<κ Hα so that κ < d and each Hα is Hurewicz. Let {Un : n ∈ ω}
be a sequence of countable open covers of X. For each n ∈ ω let Un = {U i

n : i ∈ ω}. For
each α < κ and n ∈ ω, there exists Fα

n ∈ [Un]<ω so that {
∪
Fα

n : n ∈ ω} is a γ-cover of
Hα. For each α < κ and n ∈ ω, let fα(n) = min{m ∈ ω : Fα

n ⊆ {U i
n : i ≤ m}}. Given

that {fα : α < κ} has size less than d, there exists g ∈ ωω so that for each α < κ, g ̸≤∗ fα.
For each n ∈ ω, let Gn = {U i

n : i ≤ g(n)}. Let us check that {
∪

Gn : n ∈ ω} is an open
cover of X. Let x ∈ X, then there is α < κ so that x ∈ Hα. Thus, there is n0 ∈ ω so that
for each n ≥ n0, x ∈

∪
Fα

n . Pick m ≥ n0 with fα(m) < g(m). Hence, x ∈
∪
Fα

m ⊆
∪

Gm.
Therefore, X is E∗

ω. □

Analogous to Lemma 2.8, the following also holds:

Lemma 2.9. (1) If X can be written as a union of less than b many Menger spaces,
then X is E∗

ω.
(2) If X can be written as a union of less than b many Hurewicz spaces, then X is

E∗∗
ω .

Proof. (1) Assume X =
∪

α<κ Mα so that κ < b and each Mα is Menger. Let {Un : n ∈ ω}
be a sequence of countable open covers of X. For each n ∈ ω let Un = {U i

n : i ∈ ω}. By
Lemma 2.6, for each α < κ and n ∈ ω, there exists Fα

n ∈ [Un]<ω so that {
∪
Fα

n : n ∈ ω}
is a large cover of Mα. For each α < κ and n ∈ ω, let fα(n) = min{m ∈ ω : Fα

n ⊆ {U i
n :

i ≤ m}}. Given that {fα : α < κ} has size less than b, there exists g ∈ ωω so that for
each α < κ, fα ≤∗ g. For each n ∈ ω, let Gn = {U i

n : i ≤ g(n)}. Let us check that
{
∪

Gn : n ∈ ω} is an open cover of X. Let x ∈ X, then there is α < κ so that x ∈ Mα.
Thus, there is n0 ∈ ω so that for each n ≥ n0, fα(n) ≤ g(n). Since {

∪
Fα

n : n ∈ ω} is a
large cover of Mα, there is n ≥ n0 such that x ∈

∪
Fα

n ⊆
∪

i≤fα(n) U i
n ⊆

∪
i≤g(n) U i

n =
∪

Gn.
Therefore, X is E∗

ω.
(2) Assume X =

∪
α<κ Hα so that κ < b and each Hα is Hurewicz. Let {Un : n ∈ ω}

be a sequence of countable open covers of X. For each n ∈ ω let Un = {U i
n : i ∈ ω}. For

each α < κ and n ∈ ω, there exists Fα
n ∈ [Un]<ω so that {

∪
Fα

n : n ∈ ω} is γ-cover of Hα.
For each α < κ and n ∈ ω, let fα(n) = min{m ∈ ω : Fα

n ⊆ {U i
n : i ≤ m}}. Given that

{fα : α < κ} has size less than b, there exists g ∈ ωω so that for each α < κ, fα ≤∗ g.
For each n ∈ ω, let Gn = {U i

n : i ≤ g(n)}. Let us check that {
∪

Gn : n ∈ ω} is a γ-cover
of X. Let x ∈ X, then there is α < κ so that x ∈ Hα. Thus, there is n0 ∈ ω so that for
each n ≥ n0, fα(n) ≤ g(n). Since {

∪
Fα

n : n ∈ ω} is a γ-cover of Hα, we can fix n1 ≥ n0
such that for each n ≥ n1, x ∈

∪
Fα

n ⊆
∪

i≤fα(n) U i
n ⊆

∪
i≤g(n) U i

n =
∪

Gn. Therefore, X is
E∗∗

ω . □
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Theorem 2.10. For any space X the following holds:
(
SSL, (< d, H)

)

(
SSL, (< b, H)

)
SSH SSM

(
SSL, (< b, M)

)

(
SL, (< d, H)

)

(
SL, (< b, H)

)
SH SM

(
SL, (< b, M)

)

The proof is divided as Propositions 2.11, 2.12, 2.13, 2.14, 2.15 and 2.16.

Proposition 2.11. If X is a strongly star-Lindelöf space and X is the union of less than
d Hurewicz spaces, then X is strongly star-Menger.

Proof. Let κ be any cardinal smaller than d and put X =
∪

α<κ Hα with each Hα being a
Hurewicz space. Let {Un : n ∈ ω} be a sequence of open covers of X. Since X is strongly
star-Lindelöf, for each n ∈ ω there exists a countable set Cn ⊆ X such that St(Cn,Un) =
X. For each n ∈ ω, put Cn = {xi

n : i ∈ ω}. Note that St(Cn,Un) =
∪

i∈ω St(xi
n,Un) for

each n ∈ ω. So, for each n ∈ ω, the collection Wn = {St(xi
n,Un) : i ∈ ω} is a countable

open cover of X. By Lemma 2.8, X is E∗
ω and then we can get finite subcollections Fn of

Wn so that {
∪
Fn : n ∈ ω} is a cover of X. Equivalently, we get finite subsets Fn of X

such that the collection {St(Fn,Un) : n ∈ ω} is an open cover of X. Thus, X is strongly
star-Menger. □

Proposition 2.12. If X is a strongly star-Lindelöf space and X is the union of less than
b Hurewicz spaces, then X is strongly star-Hurewicz.

Proof. Following the first lines of the proof of Proposition 2.11 and applying Lemma 2.9
(2) to the collections of countable open covers Wn = {St(xi

n,Un) : i ∈ ω}, we obtain that
X is E∗∗

ω and thus, the result follows. □

Using Lemma 2.9 (1) and same ideas as Propositions 2.11 y 2.12, the following result
holds:

Proposition 2.13. If X is a strongly star-Lindelöf space and X is the union of less than
b Menger spaces, then X is strongly star-Menger.

Proposition 2.14. If X is a star-Lindelöf space and X is the union of less than d
Hurewicz spaces, then X is star-Menger.

Proof. Let κ be any cardinal smaller than d and put X =
∪

α<κ Hα with each Hα being
a Hurewicz space. Let {Un : n ∈ ω} be a sequence of open covers of X. Since X is star-
Lindelöf, for each n ∈ ω there exists a countable subset Vn of Un such that St(

∪
Vn,Un) =

X. For each n ∈ ω, put Vn = {V i
n : i ∈ ω}. Note that St(

∪
Vn,Un) =

∪
i∈ω St(V i

n,Un) for
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each n ∈ ω. So, for each n ∈ ω, the collection Wn = {St(V i
n,Un) : i ∈ ω} is a countable

open cover of X. By Lemma 2.8, X is E∗
ω and then we can get finite subcollections Hn

of Wn so that {
∪
Hn : n ∈ ω} is an open cover of X. That is, we get finite sets Fn of

Un such that the collection {St(
∪
Fn,Un) : n ∈ ω} is an open cover of X. Thus, X is

star-Menger. □
Proposition 2.15. If X is a star-Lindelöf space and X is the union of less than b
Hurewicz spaces, then X is star-Hurewicz.

Proof. Arguing as in the first lines of the proof of Proposition 2.14 and applying Lemma
2.9 (2) to the collections of countable open covers Wn = {St(V i

n,Un) : i ∈ ω}, we obtain
that X is E∗∗

ω and thus, the result follows. □

Again, by using Lemma 2.9 (1) and same ideas as Propositions 2.14 y 2.15, the following
result holds:

Proposition 2.16. If X is a star-Lindelöf space and X is the union of less than b Menger
spaces, then X is star-Menger.

Another interesting fact is that we also have theorems of same structure for the selective
versions of the star selection principles. We recall the necessary definitions to state the
analogous theorem for these selective versions.

The following version of the strongly star-Lindelöf property was introduced and studied
by Bonanzinga in [1]:

Definition 2.17. A space X is absolutely strongly star-Lindelöf (aSSL) if for any open
cover U of X and any dense subset D of X, there is a countable set C ⊆ D such that
St(C,U) = X.

The selective versions below are stronger properties than the classical star selection
principles (see for instance [7] and [3] for more information of these properties§).

Definition 2.18. We say that a space X is:
(1) selectively strongly star-Menger (selSSM) if for each sequence {Un : n ∈ ω} of

open covers of X and each sequence {Dn : n ∈ ω} of dense sets of X, there
exists a sequence {Fn : n ∈ ω} of finite sets such that Fn ⊆ Dn, n ∈ ω, and
{St(Fn,Un) : n ∈ ω} is an open cover of X (defined in [10]).

(2) selectively strongly star-Hurewicz (selSSH) if for each sequence {Un : n ∈ ω}
of open covers of X and each sequence {Dn : n ∈ ω} of dense sets of X, there
exists a sequence {Fn : n ∈ ω} of finite sets such that Fn ⊆ Dn, n ∈ ω, and
{St(Fn,Un) : n ∈ ω} is a γ-cover of X.

Theorem 2.19. For any space X the following holds:
(
aSSL, (< d, H)

)

(
aSSL, (< b, H)

)
SelSSH SelSSM

(
aSSL, (< b, M)

)

§The Rothberger case and some other interesting properties are also given in [7]
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The proof is divided as Propositions 2.20, 2.21, 2.22.

Proposition 2.20. If X is an absolutely strongly star-Lindelöf space and X is the union
of less than d Hurewicz spaces, then X is selectively strongly star-Menger.

Proof. Assume X is aSSL and let κ < d such that X =
∪

α<κ Hα with each Hα being a
Hurewicz space. Let {Un : n ∈ ω} be any sequence of open covers and let {Dn : n ∈ ω}
be any sequence of dense subsets of X. For each n ∈ ω fix En = {dn

q : q ∈ ω} ∈ [Dn]≤ω

such that St(En,Un) = X. Thus, for each n ∈ ω, the collection {St(dn
q ,Un) : q ∈ ω} is a

countable open cover of X. In a similar fashion as Proposition 2.11, we use Lemma 2.8 to
conclude the proof. □
Proposition 2.21. If X is an absolutely strongly star-Lindelöf space and X is the union
of less than b Hurewicz spaces, then X is selectively strongly star-Hurewicz.

Proof. Assume X is aSSL and let κ < b such that X =
∪

α<κ Hα with each Hα being a
Hurewicz space. Let {Un : n ∈ ω} be any sequence of open covers and let {Dn : n ∈ ω}
be any sequence of dense subsets of X. For each n ∈ ω fix En = {dn

q : q ∈ ω} ∈ [Dn]≤ω

such that St(En,Un) = X. Thus, for each n ∈ ω, the collection {St(dn
q ,Un) : q ∈ ω} is a

countable open cover of X. In a similar fashion as Proposition 2.12, we use Lemma 2.9
(2) to complete the proof. □
Proposition 2.22. If X is an absolutely strongly star-Lindelöf space and X is the union
of less than b Menger spaces, then X is selectively strongly star-Menger.

Proof. Assume X is aSSL and let κ < b such that X =
∪

α<κ Mα with each Mα being
a Menger space. Let {Un : n ∈ ω} be any sequence of open covers and let {Dn : n ∈ ω}
be any sequence of dense subsets of X. For each n ∈ ω fix En = {dn

q : q ∈ ω} ∈ [Dn]≤ω

such that St(En,Un) = X. Thus, for each n ∈ ω, the collection {St(dn
q ,Un) : q ∈ ω} is a

countable open cover of X. In a similar way as Proposition 2.13, we use Lemma 2.9 (1)
to conclude the proof. □

3. Iterated stars
A well-known study about iterations of star versions of Lindelöf properties was made

in [11] (see also [20]). The previous section motivated a similar study for star selection
properties. We start giving some results that involve refinements of open covers.

Let n be a positive integer. In [11] the properties n-star Lindelöf and strongly n-star
Lindelöf are defined and the authors show that every n-star Lindelöf space is strongly
n + 1-star-Lindelöf (Theorem 3.1.1 (3) in [11]). In the class of metaLindelöf spaces the
converse holds:

Proposition 3.1. If X is metaLindelöf and strongly n + 1-star Lindelöf then X is n-star
Lindelöf.

Proof. Let U be an open cover of X. Since X is metaLindelöf we can assume that U is
point-countable. Let C be a countable subset of X so that Stn

(
St(C,U),U

)
= X. Since

U is point-countable, there exists a countable subset W of U so that St(C,U) ⊆
∪

W .
Hence, Stn+1(C,U) ⊆ Stn(

∪
W,U) i.e., X is n-star-Lindelöf. □

Lemma 3.2 (Folklore). Let U be an open cover of a topological space X. If A ⊆ B ⊆ X
and V is a refinement of U, then for each n ∈ ω, Stn(A,V) ⊆ Stn(B,U).

Proposition 3.3. Every paraLindelöf and n-star-Lindelöf space X is strongly n-star-
Lindelöf for each n ∈ ω.

Proof. Assume X is a paraLindelöf n-star-Lindelöf space for some n ∈ ω. Let U be an
open cover of X. Without loss of generality we can assume that U is locally countable.
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For each x ∈ X, let Ux be an open set so that |{U ∈ U : Ux ∩ U ̸= ∅}| ≤ ω and
V := {Ux : x ∈ X} refines U. Since X is n-star-Lindelöf, there exists a countable set
C ⊆ X so that Stn(

∪
x∈C Ux,V) = X.

For x ∈ C, let Wx = {U ∈ U : Ux ∩ U ̸= ∅}. Then |Wx| ≤ ω. If W =
∪

x∈C Wx, then
|W| ≤ ω. Thus, for each W ∈ W, fix yW ∈ W .
Claim: St(

∪
x∈C Ux,V) ⊆ St({yW : W ∈ W},U).

Indeed, let y ∈ St(
∪

x∈C Ux,V), hence, there exists V ∈ V so that y ∈ V and V ∩
∪

x∈C Ux ̸=
∅. Let U ∈ U so that V ⊆ U . Then, U ∈ W. Thus, y ∈ St(yU ,U) ⊆ St({yW : W ∈ W},U).
Since V is a refinement of U, and St(

∪
x∈C Ux,V) ⊆ St({yW : W ∈ W},U), by Lemma

3.2, X = Stn(
∪

x∈C Ux,V) ⊆ Stn({yW : W ∈ W},U). That is, X is strongly n-star-
Lindelöf. □

Observe that if we have a paraLindelöf space X that is either n-star-Lindelöf or strongly
n-star-Lindelöf for some n ∈ ω, we can use Proposition 3.3 and Proposition 3.1, as many
times as needed to get that X is star-Lindelöf. Since paraLindelöf, star-Lindelöf spaces
are Lindelöf (check Theorem 2.6 in [8] or Theorem 2.24 in [28]), we have the following:

Corollary 3.4. In the class of paraLindelöf spaces, for each n ∈ ω, the following properties
are equivalent:

(i) Lindelöf;
(ii) strongly n-star-Lindelöf;
(iii) n-star-Lindelöf.

In Proposition 53 of [20], Matveev shows that every metaLindelöf strongly 2-star Lin-
delöf is absolutely strongly 2-star Lindelöf (he calls star Lindelöf what we call strongly
star Lindelöf). Thus, we can ask the general case:

Question 3.5. Is it true that every metaLindelöf strongly n-star-Lindelöf space is abso-
lutely strongly n-star-Lindelöf?

Additionally, since both properties, absolutely strongly n + 1-star Lindelöf and n-star
Lindelöf are stronger than strongly n + 1-star Lindelöf, it is worth to investigate the
following:

Question 3.6. What is the relationship between the properties absolutely strongly n+1-
star Lindelöf and n-star Lindelöf?

We introduce similar definitions for the star versions of the Menger property:

Definition 3.7. (1) A space X is called k-star-Menger if for every sequence of open
covers {Un : n ∈ ω} there exists a sequence {Vn : n ∈ ω} so that for each n ∈ ω,
Vn ∈ [Un]<ω and {Stk(

∪
Vn,Un) : n ∈ ω} is an open cover of X.

(2) A space X is called strongly k-star-Menger if for every sequence of open covers
{Un : n ∈ ω} there exists a sequence {Fn : n ∈ ω} so that for each n ∈ ω,
Fn ∈ [X]<ω and {Stk(Fn,Un) : n ∈ ω} is an open cover of X.

Observe that 1-star-Menger and strongly 1-star-Menger spaces are precisely star-Menger
and strongly star-Menger spaces, respectively.

It follows immediately from Proposition 3.1 that if X is metaLindelöf and strongly k+1-
star-Menger then X is k-star Lindelöf. In addition, the next proposition is the Menger
version of Theorem 3.1.1(3) in [11].

Proposition 3.8. If X is k-star-Menger, then X is strongly k + 1-star-Menger.

Proof. Assume X is k-star-Menger. Let {Un : n ∈ ω} be a sequence of open covers of
X. For each n ∈ ω, let Vn ∈ [Un]<ω so that {Stk(

∪
Vn,Un) : n ∈ ω} is an open cover of
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X. Put Vn = {V i
n : i ∈ In}. Take for each n ∈ ω and i ∈ In, xi

n ∈ V i
n and define for each

n ∈ ω, Fn = {xi
n : i ∈ In}. Observe that for each n ∈ ω,

∪
Vn ⊆ St(Fn,Un). Hence,

Stk(
∪

Vn,Un) ⊆ Stk(St(Fn,Un),Un) = Stk+1(Fn,Un).

Thus, {Stk+1(Fn,Un) : n ∈ ω} is an open cover of X. That is, X is strongly k + 1-star-
Menger. □

In the class of metacompact spaces the properties k-star-Menger and strongly k + 1-
star-Menger coincide:
Proposition 3.9. If X is strongly k +1-star-Menger and metacompact, then X is k-star-
Menger.
Proof. Let {Un : n ∈ ω} be a sequence of open covers of X. Since X is metacompact we
can assume that for each n ∈ ω, Un is point-finite.
Since X is strongly k + 1-star-Menger, for each n ∈ ω, there exists Fn ∈ [X]<ω so that{

Stk+1(Fn,Un) : n ∈ ω
}

is an open cover of X. For each n ∈ ω, let Wn = {U ∈ Un : Fn ∩ U ̸= ∅}. Note |Wn| < ω
and St(Fn,Un) =

∪
Wn. Then, for each n ∈ ω Stk

(
St(Fn,Un),Un

)
= Stk(

∪
Wn,Un).

Thus, {Stk(
∪
Wn,Un) : n ∈ ω} is an open cover of X. That is, X is k-star-Menger. □

Corollary 3.10. If X is strongly 2-star-Menger and paracompact, then X is Menger.
Proof. Since paracompact implies metacompact, if X is strongly 2-star-Menger and para-
compact, using the previous result, X is star-Menger. In addition, paracompact star-
Menger spaces are Menger (see [17]). □

Actually something stronger holds. In [8], the authors showed that for paraLindelöf
spaces, the three Menger-type properties, strongly star-Menger, star-Menger and Menger,
are equivalent. Theorem 3.11 shows that this fact is still true when taking iterations of
those properties. Recall that a cover B is said to be a star refinement of a cover U, which
is denoted by B ≺∗ U, if for each B ∈ B, there is some U ∈ U so that St(B,B) ⊆ U . A
space is paracompact if every open cover has an open star refinement (see Theorem 5.1.12
in [12]).

Theorem 3.11. In the class of paraLindelöf spaces, given any k ∈ ω the properties k-
star-Menger, strongly k-star-Menger and Menger, are equivalent.
Proof. Fix m ∈ ω and let X be a paraLindelöf, m-star-Menger space. By Corollary 3.4,
X is Lindelöf and, in particular, paracompact.

Now let {Un : n ∈ ω} be any sequence of open covers of X. For each i ≤ m define Bi
n

open cover of X so that Bm
n ≺∗ Bm−1

n ≺∗ · · · ≺∗ B0
n ≺∗ Un.

Claim: For each n ∈ ω and for each W ∈ Bm
n , there is UW ∈ Un so that Stm(W,Bm

n ) ⊆ UW .
Indeed, fix n ∈ ω and Wm ∈ Bm

n , since Bm
n ≺∗ Bm−1

n , there is Wm−1 ∈ Bm−1
n so that

St(Wm,Bm
n ) ⊆ Wm−1. By Lemma 3.2,

St2(Wm,Bm
n ) = St(St(Wm,Bm

n ),Bm
n ) ⊆ St(Wm−1,Bm−1

n ).
Now, since Bm−1

n ≺∗ Bm−2
n , there is Wm−2 ∈ Bm−2

n so that St(Wm−1,Bm−1
n ) ⊆ Wm−2.

Then, St2(Wm,Bm
n ) ⊆ Wm−2. It is possible to repeat this process m − 2 more times to

get UWm ∈ Un with Stm(Wm,Bm
n ) ⊆ UWm .

Since X is m-star-Menger, let Wn ∈ [Bm
n ]<ω so that {Stm(

∪
Wn,Bm

n ) : n ∈ ω} is an open
cover of X.
For each n ∈ ω and each W ∈ Wn fix UW ∈ Un such that Stm(W,Bm

n ) ⊆ UW . For all
n ∈ ω, let Vn = {UW : W ∈ Wn}. Each Vn ∈ [Un]<ω and {

∪
Vn : n ∈ ω} is an open cover

of X. Thus, X is Menger. □
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4. Ψ-spaces
A natural question in this context is whether every 2-star-Menger is star-Menger. This

is not the case, in fact, Tree ([31]) built a 2-starcompact (hence 2-star-Menger), space
which is not strongly 2-star Lindelöf (in particular, not star Lindelöf and therefore, not
star-Menger). Since, every star-Menger space is both 2-star-Menger and star-Lindelöf, it
is worth asking whether the converse holds true, i.e., Is it true that every 2-star-Menger,
star-Lindelöf space is star-Menger?. The answer is no, at least consistently (see Example
4.4 below). For this, we use a Luzin family A. Recall that an almost disjoint family
A = {aα : α < ω1} is called a Luzin family (see [18] and [15]) if it satisfies that for each
α < ω1 and each n ∈ ω the set {β < α : aβ ∩ aα ⊆ n} is finite. First of all, we introduce
the analogous definitions to Definition 3.7 for the Rothberger property:

Definition 4.1. (1) A space X is called k-star-Rothberger if for every sequence of
open covers {Un : n ∈ ω} there exists a sequence {Un : n ∈ ω} so that for each
n ∈ ω, Un ∈ Un and {Stk(Un,Un) : n ∈ ω} is an open cover of X.

(2) A space X is called strongly k-star-Rothberger if for every sequence of open covers
{Un : n ∈ ω} there exists a sequence {xn : n ∈ ω} so that for each n ∈ ω, xn ∈ X
and {Stk(xn,Un) : n ∈ ω} is an open cover of X.

Observe that 1-star-Rothberger and strongly 1-star-Rothberger spaces are precisely star-
Rothberger and strongly star-Rothberger spaces, respectively.

It is surprising that, regardless of the size of the continuum, Ψ-spaces induced by a
Luzin family, are always strongly 2-star-Rothberger.
Proposition 4.2. If A is Luzin, then Ψ(A) is strongly 2-star-Rothberger.
Proof. Let A = {aα : α < ω1} be a Luzin family. Let {Un : n ∈ ω} be any sequence of
open covers of Ψ(A). For each α < ω1, fix U0

α ∈ U0 such that aα ∈ U0
α. For α < ω1, let

f(α) ∈ aα ∩ ω so that aα \ f(α) ⊆ U0
α.

For each k ∈ ω, let Wk = {α < ω1 : f(α) = k}. Observe
∪

k∈ω Wk = ω1. Since
f : ω1 \ ω → ω1 is a regressive function, by Fodor’s Lemma, there is A0 ⊆ ω1 stationary
and n0 ∈ ω such that for each α ∈ A0, f(α) = n0. Now, defining a function g : A0 → ω1
as g(α) = min U0

α, we can apply again Fodor’s Lemma to get A1 ⊆ A0 and n1 ∈ ω so
that A1 = {α < ω1 : min U0

α = n1} is stationary. For each k ∈ ω and each α ∈ A1, let
Bα,k = {β < α : aβ ∩ aα ⊆ max{k, n0, n1}}. Since A is Luzin, each Bα,k is finite.
Claim: For each k ∈ ω, Gk =

∪
α∈A1(α \ Bα,k) is cofinite.

Indeed, if for some k ∈ ω, ω1 \ Gk = J is infinite, let α < ω1 such that |J ∩ α| = ω. Pick
β ∈ A1 with β > α. Observe that since Bβ,k is finite, we get J ∩ α is almost contained in
β \ Bβ,k ⊆ Gk, which is a contradiction.
Since for each k ∈ ω, Gk is cofinite, then Wk \ Gk is finite. Hence,

∪
k∈ω Wk ∩ Gk is

cocountable. Now we show that {aβ : β ∈
∪

k∈ω Wk ∩ Gk} ⊆ St2(n1,U0). Fix k ∈ ω and
let β ∈ Wk ∩Gk, then f(β) = k and there is α ∈ A1 such that β ∈ α\Bα,k. Thus, aβ ∩aα ̸⊆
max{k, n0, n1}. Fix m ∈ aβ ∩ aα with m > max{k, n0, n1}. Hence, m ∈ U0

α, m ∈ U0
β and

m > n1 = minU0
α. Therefore, m ∈ St(n1,U0) and aβ ∈ U0

β ⊆ St(m,U0) ⊆ St2(n1,U0).
Therefore, St2(n1,U0) contains all but countably many members of Ψ(A). Thus, the
countable set of points {yn : n ∈ N} of Ψ(A) that are not contained in St2(n1,U0) are
recollected at stage n > 0 with St2(yn,Un), hence Ψ(A) is strongly 2-star-Rothberger. □

Another fact, which is also interesting, is that Ψ-spaces induced by a maximal almost-
disjoint family can be characterized in terms of the strongly 2-starcompact property
(see [11] for information about iterated (strongly) starcompact property). It is worth to
mention that the equivalences (3) − (6) in Proposition 4.3 were showed in [11] for spaces
in general (by using pseudocompactness instead of a maximal almost disjoint family) and
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the proof for (6) ⇒ (1) is contained in the proof of Example 2.2.5 in same article. For
convenience of the reader, we outline the proof of these equivalences for Ψ-spaces.

Proposition 4.3 ([11]). For an a.d. family A, the following are equivalent:
(1) Ψ(A) is strongly 2-starcompact.
(2) Ψ(A) is strongly k-starcompact for every k ≥ 2.
(3) Ψ(A) is 2-starcompact.
(4) Ψ(A) is k-starcompact for every k ≥ 2.
(5) Ψ(A) is k-starcompact for some k ≥ 2.
(6) A is maximal.

Proof. Since the implications (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) always hold, we just show
(5) ⇒ (6) and (6) ⇒ (1).

Assume that Ψ(A) is k-starcompact for some k ≥ 2. If A is not maximal, there is
some B ⊆ ω which is almost disjoint from every member of A. Consider the open cover
U consisting of singletons from ω together with sets of the form A \ B for A ∈ A. Then
for any W ⊆ U, Stk(

∪
W,U) intersects B just in those natural numbers whose singletons

were chosen in W, as all other members of U are disjoint from B. Therefore Ψ(A) is not
k-starcompact.

If Ψ(A) is not 2-strongly starcompact, then there is an open cover U so that the star of
every finite subcollection misses some element of ω, otherwise taking another star would
give all of Ψ(A). Now we can choose an infinite subset B with increasing enumeration
{bi : i < ω} of ω recursively so that for every j < ω, bj ̸∈ St({bi : i < j},U). Now we claim
that B is almost disjoint from every member of A, and so A cannot be maximal. To see
this, suppose that there is A ∈ A which intersects B infinitely. Then the neighborhood
of A in U contains two points bj0 , bj1 with j0 < j1. So this neighborhood is contained in
St(bj0 ,U), contradicting the choice of j1. □

Example 4.4. (d = ω1) There is a Tychonoff, strongly 2-star-Rothberger, strongly star-
Lindelöf, not star-Menger space.

Proof. Let A be a Luzin family. Since Ψ(A) is separable, it is strongly star-Lindelöf and,
by Proposition 4.2, it is strongly 2-star-Rothberger. Since d = ω1, by Proposition 9 in [4],
Ψ(A) is not star-Menger. □

Corollary 4.5. If d = ω1 then there is a Tychonoff, 2-star-Menger, star-Lindelöf, not
star-Menger space.

In contrast to Ψ-spaces induced from Luzin families, we also have examples of Ψ-spaces
that do not hold any iteration of star-Menger property.

Example 4.6. There is a Ψ-space which is not m-star-Menger for any m < ω.

Proof. Identify ω<ω with ω and let A be the branches of the tree ω<ω. Now, for each n,
let Un be the open cover consisting of the sets Ns = {a ∈ Ψ(A) : s ⊑ a}, where s ∈ ωn+1,
and the sets {x} for all x ̸∈

∪
{Ns : s ∈ ωn+1}. Then, for each n ∈ ω, Un consists of

pairwise disjoint clopen sets and therefore, no new elements are picked up when taking
iterations of stars.

Suppose Vn ⊆ Un is finite. By induction, define x ∈ A so that Nx↾(n+1) ̸∈ Vn. It is clear
that x ̸∈ Stm(

∪
Vn,Un) for any m, n < ω. □

We can also define Ψ-spaces associated to maximal almost disjoint (MAD for short)
families that do not satisfy any iteration of the star-Rothberger property.

Example 4.7. There is a MAD family A so that Ψ(A) is not k-star-Rothberger for any
k.



14 J. Casas-de la Rosa, W. Chen-Mertens, S. A. Garcia-Balan

Proof. Enumerate all infinite subsets of ω as ⟨bα : α < c, α even⟩ and all functions in∏
n

n3 as ⟨sα : α < c, α odd⟩. Note that any ordinal can be written as α + n for some
n < ω, and “odd” and “even” above refer to the parity of this integer n.

Let {Bt : t ∈ <ω3} be a sequence of infinite subsets of ω so that B∅ = ω and for all
t ∈ <ω2, {Bt⌢0, Bt⌢1, Bt⌢2} partition Bt.

We will define A = {aα : α < c}. Suppose aβ, β < α, have already been defined.
We will construct aα infinite subsets of ω and xα branches of the tree so that
(1) For β < α, aα is almost disjoint from aβ.
(2) For each n, {zm : m ≥ n} ⊆ Bxα↾n, where {zm : m < ω} is the increasing

enumeration of aα (so that in particular, aα ⊆∗ Bxα↾n for any n).
If α is even, then we will construct aα so that

3’. If bα is almost disjoint from each aβ, β < α, then aα ⊆ bα.
Let us assume the case where bα is almost disjoint from each aβ, β < α, and hence the
third condition applies. Note that if 3′ is satisfied, then so is the first condition. Let xα

be a branch through the tree so that Bxα↾n ∩ bβ is infinite for each n. Define {zn : n < ω}
to be an increasing sequence of natural numbers so that zn ∈ Bxα↾n ∩ bα.

If α is odd, then we will construct aα so that
3”. For each n, {zm : m ≥ n} ∩ Bsα(n+1) = ∅.

This construction will proceed in ω steps. Let S be the subtree of <ω3 of all t so that for
all s ≤ t, s ̸= sα(n), where n is the length of s. The resulting subtree S still splits at every
node.

Let xα be a branch through this tree which is not xβ for any β < α. This is possible
since the tree has c branches.

In step n, pick zn ∈ Bxα↾(n+1) greater than all previously chosen zm, m < n. Let
aα = {zn : n < ω}. As Bxα↾n is ⊆-decreasing along the branch, this ensures that for each
n, {zm : m ≥ n} ⊆ Bxα↾n.

If β < α, then let i be so that xα(i) ̸= xβ(i). We have that aα ⊆∗ Bxα↾(i+1) and
aβ ⊆∗ Bxβ↾(i+1), yet Bxα↾(i+1) is disjoint from Bxβ↾(i+1). Therefore aα is almost disjoint
from aβ.

Since xα ↾ (n + 1) ̸= sα(n + 1) and {zm : m ≥ n} ⊆ Bxα↾n, we have that 3” holds.
For each n, let a

(n)
α be the set aα with the least n elements removed and let Un be

the open cover of Ψ(A) consisting of singletons from ω together with {aα} ∪ a
(n)
α . This

sequence of covers shows that Ψ(A) is not k-star-Rothberger. For any selection of sets
{Un : n < ω}, for each n there is some s(n) ∈ n3 so that Un ⊆ Bs(n). Now take α
so that s = sα. Then aα is disjoint from the k-iterated star of Un in Un for each n by
construction. □

We finish this section giving a result on Ψ-spaces that combines the style of the results
in Section 2 with iterations of a star selection property introduced in Section 3.

Theorem 4.8. For any k ∈ ω, if X is the union of less than b strongly k-star-Menger
Ψ-spaces on ω, then X is strongly k-star-Menger.

Proof. Fix k ∈ ω. Let κ be a cardinal less than b. For each α < κ, let Ψα be a Ψ-space
on ω defined by an a.d. family Aα and put X =

∪
α<κ Ψα where each Ψα is strongly k-

star-Menger. Let {Un : n ∈ ω} be a sequence of open covers of X consisting of basic open
sets (for each α < κ, n ∈ ω and U ∈ Un, |U ∩ Aα| ≤ 1). For each α < κ, let F α

n ∈ [Ψα]<ω

such that for every m ∈ ω, {Stk(F α
n ,Un) : m ≤ n < ω} is an open cover of Ψα.

Fix α < κ and n ∈ ω. For each A ∈ F α
n ∩ Aα, let UA be a member of Un such that

A ∈ UA. So, UA = {A} ∪ A \ FA for some FA ∈ [A]<ω. For each A ∈ F α
n ∩ Aα, fix
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nA ∈ A \ FA. Thus, for each α < κ and for each n ∈ ω, let

Gα
n = (F α

n ∩ ω) ∪ {nA : A ∈ F α
n ∩ Aα} ∪ {

∪
FA : A ∈ F α

n ∩ Aα}.

Then, for each α < κ and each n ∈ ω, we have Gα
n ∈ [ω]<ω and St(F α

n ,Un) ⊆ St(Gα
n,Un).

Indeed, let x ∈ St(F α
n ,Un). Then there exists U ∈ Un such that x ∈ U and U ∩ F α

n ̸= ∅.
We have two cases:
If U ∩ (F α

n ∩ ω) ̸= ∅, then U ∩ Gα
n ̸= ∅ and therefore, x ∈ U ⊆ St(Gα

n,Un).
If U ∩(F α

n ∩Aα) ̸= ∅, then U = {A}∪A\F for some A ∈ F α
n ∩Aα and for some F ∈ [A]<ω.

Then x ∈ St(FA ∪ {nA},Un) ⊆ St(Gα
n,Un).

We conclude that St(F α
n ,Un) ⊆ St(Gα

n,Un).
Now, we define, for each α < κ, a function fα : ω → ω as fα(n) = max(Gα

n) for each
n ∈ ω. Since the collection {fα : α < κ} has size less than b, there exists g ∈ ωω such that
for every α < κ, fα ≤∗ g. For each n ∈ ω, let Dn = {i ∈ ω : 0 ≤ i ≤ g(n)}. Then each Dn is
a finite subset of ω and it follows that {Stk(Dn,Un) : n ∈ ω} is an open cover of X. Indeed,
let x ∈ X. Then, there exists α < κ such that x ∈ Ψα. Since fα ≤∗ g, there is m ∈ ω
so that for every n ≥ m, fα(n) ≤ g(n). Furthermore, since the collection {Stk(F α

n ,Un) :
m ≤ n < ω} is an open cover of Ψα, let n ≥ m such that x ∈ Stk(F α

n ,Un). We obtain that
St(F α

n ,Un) ⊆ St(Gα
n,Un) ⊆ St({1, . . . , fα(n)},Un) ⊆ St({1, . . . , g(n)},Un) = St(Dn,Un).

Thus, x ∈ Stk(F α
n ,Un) ⊆ Stk(Dn,Un). Therefore, the collection {Stk(Dn,Un) : n ∈ ω} is

an open cover of X. Thus, X is strongly k-star-Menger. □

5. Normal star-Menger not strongly star-Menger not Dowker space
Recall that X is a Dowker space if and only if X is normal and its Cartesian product with
the closed unit interval I is not normal. Equivalently, X is normal and not countably
paracompact. In [8] the following questions were posed:

Question 5.1 ([8] Question 2.4). Is there a normal star-Menger space which is not strongly
star-Menger?

Question 5.2 ([8] Question 2.21). Are normal, countably paracompact star-Menger spaces
strongly star-Menger? I.e., if X is normal, star-Menger, not strongly star-Menger, is X a
Dowker Space?

In this section we present a consistent example (Example 5.4 below), of a normal star-
Menger not strongly star-Menger not Dowker space. This space answers consistently in
the affirmative Question 5.1 and in the negative Question 5.2.
In [29] Tall presented an example of a separable normal space with an uncountable dis-
crete subspace. Below we provide details of the construction of such example for sake of
completeness:

Example 5.3 ([29] Example E). Assuming 2ℵ0 = 2ℵ1 there exists a separable normal T1
space with an uncountable closed subspace.

Construction: Let L be a set of cardinality ℵ1 disjoint from ω. The existence of a
strongly independent family F¶ of subsets of ℵ0 of size 2ℵ0 = c is guaranteed by the
Fichtenholz-Kantorovitch-Hausdorff Theorem‖.

Write F = {Aα : α < c}. Since |L| = ℵ1, |P(L)| = 2ℵ1 . Assuming 2ℵ0 = 2ℵ1 it is
possible to build a function f : P(L) → {Aα : α < c} ∪ {ω ∖Aα : α < c} which is bijective

¶For an infinite cardinal κ, a family F ⊆ P(κ) is called independent if for all pairs of disjoint F, G ∈ [F]<ω

we have:
CF,G =

∩
A∈F

A ∩
∩

A∈G

(κ ∖ A) ̸= ∅

(Assume
∩

∅ = κ). If in addition, for each pair (F, G) as above, |CF,G| = κ, F is called strongly independent.
‖For every infinite cardinal κ there exists a strongly independent family F ⊆ P(κ) such that |F| = 2κ.
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and complement-preserving (for each B ⊆ L, f(L ∖ B) = ω ∖ f(B)).
Now let X = L ∪ ω with a subbase φ for a topology defined by

(1) if M ⊆ L, then M ∪ f(M) ∈ φ,
(2) if n ∈ ω, then {n} ∈ φ,
(3) if p ∈ X, then X ∖ {p} ∈ φ.

Observe that by condition (3) X is T1. By (2) ω is open, therefore L = X ∖ ω is closed
and, by (1) for any x ∈ L, {x} ∪ f({x}) is open such that [{x} ∪ f({x})] ∩ L = {x}, that
is L is discrete. X is separable since ω is dense in X: let U be any nonempty basic open
set, then

U =
∩

U∈F

U ∩
∩

U∈G

U ∩
∩

U∈H

U

where F, G, H are finite (possibly empty), each U ∈ F is a subbasic open set defined as in
(1), each U ∈ G is a subbasic open set defined as in (2), and each U ∈ H is a subbasic open
set defined as in (3). To show U ∩ ω ̸= ∅ it is enough to observe that |

( ∩
U∈F U

)
∩ ω| = ω.

This is always the case since F is a strongly independent family. Now let Y, Z be disjoint
closed subsets of X and observe:

UY =
(
(Y ∖ L) ∪ [(Y ∩ L) ∪ f(Y ∩ L)]

)
∩ (X ∖ Z)

=
(
Y ∪ f(Y ∩ L)

)
∩ (X ∖ Z)

UZ =
(
(Z ∖ L) ∪ [(L ∖ Y ) ∪ f(L ∖ Y )]

)
∩ (X ∖ Y )

are open sets and Y ⊆ UY , Z ⊆ UZ . Assume x ∈ UY ∩ UZ , then x ∈ X ∖ (Y ∪ Z) and
x ∈ f(Y ∩ L) ∩ f(L ∖ Y ). But this is a contradiction since f is complement preserving:
f(L ∖ Y ) = f(L ∖ (Y ∩ L)) = ω ∖ (Y ∩ L). Hence, X is normal. ■

The following example presented by Song in [26] and [27] is a modification of Example
5.3. Song proved, in particular, that this space is normal, star-Lindelöf and not strongly
star-Lindelöf (actually he showed something stronger: there is U ∈ O(X) such that for all
L ⊆ X Lindelöf subspace of X, St(L,U) ̸= X).
Example 5.4 ([26], [27]). Assuming 2ℵ0 = 2ℵ1 there exists a normal T1 space which is
star-Lindelöf and not strongly star Lindelöf.
Construction: Let X0 = L∪ω denote the space built in Example 5.3. Let X = L∪(ω1×ω)
and topologize it as follows, a basic open set of

(i): x ∈ L is a set of the form V U
α (x) = (U ∩ L) ∪

(
(α, ω1) × (U ∩ ω)

)
where U is a

neighbourhood of x ∈ X0 and α < ω1.
(ii): ⟨α, n⟩ ∈ (ω1 × ω) is a set of the form VW (⟨α, n⟩) = W × {n} where W is a

neighbourhood of α in ω1 with the usual topology.
Condition (i) guarantees that X is T1. Furthermore, ω1 × ω is open in X and for x ∈ L,

if we let U = {x} ∪ f({x}). then for any α < ω1, V U
α (x) ∩ L = {x}. That is, L is closed

and discrete in X.

X is normal: Let Y, Z ⊆ X closed and disjoint. Define YL = Y ∩ L and ZL = Z ∩ L
and for each n ∈ ω, Yn = Y ∩ (ω1 × {n}), Zn = Z ∩ (ω1 × {n}). Since Y ∩ Z = ∅ and
ω1 × {n} is a copy of ω1 with the usual topology (for each n ∈ ω), then we can find clopen
sets Y ′

n, Z ′
n ⊆ ω1 × {n} such that Y ′

n ∩ Z ′
n = ∅, Yn ⊆ Y ′

n, Zn ⊆ Z ′
n and so that for each

n ∈ ω, Y ′
n is cofinal in ω1 × {n} if and only if Yn is cofinal in ω1 × {n} and Z ′

n is cofinal
in ω1 × {n} if and only if Zn is cofinal in ω1 × {n}. This is possible since for each n ∈ ω,
Yn and Zn cannot be both cofinal (otherwise Yn ∩ Zn ̸= ∅). Let

Y = YL ∪
∪

n∈ω

Y ′
n, Z = ZL ∪

∪
n∈ω

Z ′
n
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Observe Y ⊆ Y, Z ⊆ Z and Y ∩ Z = ∅.
Claim: Y and Z are closed in X.
Indeed, if ⟨α, m⟩ ∈ (ω1 × ω) ∖ Y, since Y ′

m is clopen in ω1 × {m}, then there is U open
neighbourhood of ⟨α, m⟩ in ω1 ×{m} (and therefore open neighbourhood in X), such that
U ∩ Y ′

m = ∅. Now, let x ∈ L ∖ Y and assume that for each U open neighbourhood of x in
X0 and each α < ω1, V U

α (x) ∩ Y ̸= ∅. This implies that for each U open neighbourhood of
x in X0 and each α < ω1 there is some n ∈ ω such that V U

α (x)Y ′
n ̸= ∅ and Y ′

n is cofinal in
ω1 × {n}. Then Yn is cofinal in ω1 × {n} and V U

α (x)Yn ̸= ∅. Hence, x ∈ Y = Y which is a
contradition. Thus, Y is closed. A similar argument shows that Z is closed.
Since YL and ZL are disjoint closed subsets of X0 and X0 is normal (recall X0 is the space
constructed in Example 5.3), then there exist disjoint open sets UY , UZ in X0 such that
YL ⊆ UY , ZL ⊆ UZ . Let

VY = (UY ∩ Y ) ∪
∪

n∈UY ∩ω

(ω1 × {n}), VZ = (UZ ∩ Z) ∪
∪

n∈UZ∩ω

(ω1 × {n}).

Observe that VY and VZ are disjoint open subsets in X and YL ⊆ VY , ZL ⊆ VZ . Let
WY = Y ∪ (VY ∖ Z), WZ = Z ∪ (VZ ∖ Y). Hence, WY and WZ are open sets in X,
WY ∩ WZ = ∅, and y ⊆ WY , Z ⊆ WZ .

X is not strongly star-Lindelöf: List L = {xα : α < ω1}. Since L is a closed
discrete subset of X0, for α < ω1 let Dα be an open neighbourhood of xα in X0 such that
Dα ∩ L = {xα}. Hence,

U = {V Dα
α (xα) : α < ω1} ∪ {ω1 × ω} ∈ O(X).

Assume E ∈ [X]ω, we show St(E,U) ̸= X. Since E is countable, fix β0, β1 < ω1 such
that sup{α : xα ∈ E ∩ L} < β0 and sup{γ : ⟨γ, n⟩ ∈ E for some n ∈ ω} < β1. Let
α = max{β0, β1} and observe E ∩ V Dα

α (xα) = ∅ Since V Dα
α (xα) is the only element of U

that contains xα, then xα /∈ St(E,U). Thus, X is not strongly star-Lindelöf.

X is star-Lindelöf: Let U ∈ O(X) and define
M = {n ∈ ω : (∃U ∈ U)(∃β < ω1)[(β, ω1) × {n} ⊆ U ]}.

For each n ∈ M fix Un ∈ U and βn < ω1 such that (β, ω1) × {n} ⊆ Un. Put V′ = {Un :
n ∈ M}.
Claim: L ⊆ St(

∪
V′,U).

Indeed, let x ∈ L, there is Ux ∈ Un such that x ∈ Ux and therefore, there is U open
neighbourhood of x in X0 and α < ω1 such that V U

α (x) ⊆ Ux. Since V U
α (x) ∩ (ω1 × ω) =

(α, ω1) × (U ∩ ω) and U = N ∪ f(N) for some N ⊆ L, with x ∈ N , it holds true that
n ∈ f(N) → n ∈ M . Then, for n ∈ f(N), V U

α (x) ∩ (ω1 × {n}) ∩ [(βn, ω1) × {n}] ̸= ∅.
Thus, V U

α (x) ∩ Un ̸= ∅. Hence, Ux ∩ Un ̸= ∅. Therefore x ∈ St(Un,U) ⊆ St(
∪
V′,U).

Now, ω1 × ω is a countable union of strongly starcompact spaces, then there is a count-
able V′′ ⊆ U such that ω1×ω ⊆ St(

∪
V′′,U). If we let V = V′∪V′′, then St(

∪
V,U) = X. ■

Proposition 5.5. Assuming 2ℵ0 = 2ℵ1 and ℵ1 < d the space X built in Example 5.4 is
normal, star-Menger, and is not either strongly star-Menger nor Dowker.

Proof. It has been shown that X is normal and not strongly star-Lindelöf (in particular,
X is not strongly star-Menger). It remains to show that it is star-Menger and is not a
Dowker space.

X is star-Menger: let (Un : n ∈ ω) be any sequence of open covers of X. Write
L = {xα : α < ω1} and for each α < ω1 and each n ∈ ω, let fα(n) = min{i ∈ ω : (∃U ∈
Un)(∃β < ω1)[xα ∈ U ∧ (β, ω1) × {i} ⊆ U ]}. Observe that for each α < ω1, fα : ω → ω is
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well defined. Since {fα : α < ω1} has size less than d, there is a funtion g ∈ ωω such that
for all α < ω1 : g ̸≤∗ fα. For n ∈ ω let

Mn = {i ∈ ω : (∃U ∈ Un)(∃β < ω1)[(β, ω1) × {i} ⊆ U ]}.

Now, for each n ∈ ω and each i ∈ Mn, fix U i
n ∈ Un and βi

n < ω1 such that (βi
n, ω1) × {i} ⊆

U i
n and let Vn = {U i

n : i ∈ Mn ∩ g(n)}.
Claim: L ⊆

∪
{St(

∪
Vn,Un) : n ∈ ω}.

Indeed, fix xα ∈ L. There is n ∈ ω such that fα(n) < g(n). Hence, there are U ∈ Un and
β < ω1 such that xα ∈ U and (β, ω1) × {fα(n)} ⊆ U . Thus, fα(n) ∈ Mn and U

fα(n)
n ∈ Vn.

In addition, U
fα(n)
n ∩ U ̸= ∅. Hence, x ∈ St(

∪
Vn,Un) ⊆

∪
{St(

∪
Vn,Un) : n ∈ ω}.

X it is not a Dowker space: Let us recall the following characterization: A normal
space D is a Dowker space (see [24]) if, and only if, D has a countable increasing open cover
{Un : n ∈ ω} such that there is no closed cover {Fn : n ∈ ω} of D with Fn ⊆ Un for each
n ∈ ω. Hence, let {Un : n ∈ ω} be any countable increasing open cover (U0 ⊆ U1 ⊆ · · · ) of
X, we must find a countable cover of closed sets {Fn : n ∈ ω}, such that for each n ∈ ω,
Fn ⊆ Un.

For each i ∈ ω define ni = min{n ∈ ω : i ≤ n ∧ (∃γ < ω1)
[
[γ, ω1) × {i} ⊆ Un

]
}. Observe

that since {Un : n ∈ ω} is a countable cover of X, ni is well defined for each i ∈ ω. In
addition, for each n ∈ ω and i ∈ ω with i ≤ ni ≤ n let

γn
i = min{γ < ω1 : [γ, ω1) × {i} ⊆ Un} (∗)

Since for each n ∈ ω, Un ⊆ Un+1, then γn
i is well defined. Now, for n ∈ ω let

Fn =
( ∪

i≤n

{[γn
i , ω1) × {i} : i ≤ ni ≤ n}

)
∪ (Un ∩ L).

Claim:

(1): For each n ∈ ω, Fn is closed,
(2): For each n ∈ ω, Fn ⊆ Un,
(3):

∪
n∈ω Fn = X.

Indeed, to show (1), fix n ∈ ω. First assume x ∈ (X ∖ Fn) ∩ (ω1 × ω). Hence x =
⟨α, m⟩ for some α < ω1 and m ∈ ω. If Fn ∩ (ω1 × {m}) = ∅, any U ⊆ ω1 × {m} open
neighbourhood of x is disjoint from Fn. If Fn ∩ (ω1 × {m}) ̸= ∅, then α < γn

m and
for each β < α, (β, α] × {m} is an open neighbourhood of x disjoint from Fn. Now,
assume x ∈ (X ∖ Fn) ∩ L, let N ⊆ L such that N ∩ Fn = ∅ and x ∈ N . Observe that
U = N ∪ f(N) ∖ (n + 1) =

(
N ∪ f(N)

)
∩

( ∩
j≤n+1(X0 ∖ {j})

)
is an open neighbourhood

of x in X0 (see condition (1) and (3) of Example 5.3). Hence, for any α < ω1, V U
α (x) (

= [U ∩L]∪[(α, ω1)×(U ∩ω)]) is an open neighbourhood of x in X such that V U
α (x)∩Fn = ∅

since Fn ⊆ ω1 × [0, n] and V U
α (x) ∩ (ω1 × [0, n]) = ∅. Thus, Fn is closed.

To show (2), fix n ∈ ω. If x ∈ Fn ∩ L, then x ∈ Un. If x = ⟨α, m⟩ ∈ Fn ∩ (ω1 × ω),
then there is some i ≤ ni ≤ n such that ⟨α, m⟩ ∈ [γn

i , ω1) × {i}. Thus , m = i and
[γn

i , ω1) × {i} ⊆ Un. Hence Fn ⊆ Un.
Let us show (3). If x ∈ X ∩ L, then there is some n ∈ ω such that x ∈ Un. Hence,
x ∈ Un ∩ L ⊆ Fn. If x ∈ X ∖L, there is some i ∈ ω such that x ∈ ω1 × {i}. By (∗) and the
fact that Un ⊆ Un+1, {γn

i : n ∈ ω} is a decreasing sequence of ordinals. Since Un : n ∈ ω)
covers X, there is some m ∈ ω such that γm

i = 0. Thus, x ∈ Fm. □
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