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Abstract: The eigenvalue spectrum is studied in one-speed time-dependent neutron transport theory in a 

uniform finite slab. The linear anisotropic scattering kernel together with the combination of forward and 

backward scattering is used and time-dependent neutron transport equation is reduced to a stationary one. 

Numerical results of eigenvalues for various combinations of the scattering parameters and the selected 

values of the time decay constant are performed by using the Chebyshev polynomials approximation 

method. 
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Zamana Bağlı, Tek-Hızlı ve Tek-Boyutlu Anizotropik Saçılmalı 

Nötron Transport Probleminin Özdeğer Spektrumu için 

UNYaklaşımı 
 
Özet: Düzgün sonlu bir dilimde tek-hızlı zamana bağlı nötron transport teorisinde özdeğer spektrumu 

çalışılmıştır. İleri ve geri saçılmayla birlikte lineer anizotropik saçılma foknsiyonu kullanılmış ve zamana 

bağlı nötron transport denklemi kararlı denkleme indirgenmiştir. Nümerik özdeğerler, Chebyshev 

polinomları yaklaşımı yöntemi kullanılarak, zaman bozunum sabitinin seçilmiş bazı değerleri ve saçılma 

parametrelerinin farklı değerleri için hesaplanmıştır. 

 

Anahtar kelimeler: Nötron transport denklemi, anizotropik saçılma, özdeğerler, UNyaklaşımı 

 

1. Introduction 

 

In a nuclear reactor, the number of neutrons decreases with time after a short neutron 

pulse. Then, basic and higher order eigenvalues of time (decay constants) can be 

calculated by taking into account behavior of the neutrons migrated in the system. 

Fundamental time eigenvalue is defined as the smallest number of λ’s for the time-

dependent system which have a neutron distribution with a term exp(λt). Therefore, 

when the neutron flux density in a pulsed neutron experiment decays exponentially it is 

possible to remove the time dependence from the neutron flux and to get a stationary 

one in transport theory. The time eigenvalues of many systems can be determined by 

calculating the critical size of those systems in stationary condition [1,2]. 

 

One of the important problems in the solution of neutron transport equation is the 

calculation of eigenvalues. In nuclear reactor physics, the important coefficients such as 

diffusion length, diffusion coefficient and buckling depend on the parameter c, the 

number of secondary neutrons per collision. Since the eigenvalues depend on the values 

of c, it is known as the fundamental eigenvalue in the transport theory. 
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In this study, a new theoretical scheme is described for solving the time-dependent 

neutron transport equation in plane geometry. First, the neutron angular flux is 

expanded in terms of the second kind of Chebyshev polynomials. It is then used in 

transport equation together with the linear anisotropic scattering kernel including 

backward and forward scattering. Then, time-dependent transport equation reduced to a 

stationary transport equation by applying the procedure described above. Finally, the 

eigenvalue spectrum is obtained and numerical results are given in the tables for various 

values of the anisotropic scattering parameters and time decay constants. 

 

2. The Second Kind of Chebyshev Polynomials (UN) Method 

 

The linear transport equation for a time-dependent neutron population without source 

can be written as [1], 
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where Ω  is the direction of neutron velocity before (and Ω  after) a collision and 

 , ,r t Ω  is the time-dependent angular flux of neutrons at position r in direction Ω . 

T
 and

S  denote the macroscopic total and scattering differential cross-sections of the 

time-dependent system, respectively; v is the average neutron velocity.  f  Ω Ω  is the 

scattering kernel and it is assumed to be of the form of a combination of linearly 

anisotropic scattering and backward-forward-isotropic scattering. The time dependence 

of the angular flux of neutrons is assumed to be exponential with time and given by [1], 

 

   , , , exp( )t t   r Ω r Ω .    (2) 

 

The time-independent stationary transport equation for one-dimensional case can be 

written as, 
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subject to free space boundary and symmetry conditions: 

 

 , 0a   ,      (4a) 

 

   , , , 0x x       .    (4b) 

 

Here α and β parameters denote the forward and backward scattering probabilities in a 

collision, respectively and they vary over the range of 0 ≤ α, β ≤ 1, α + β ≤ 1 and. The 
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parameter b1 is the average cosine of the scattering angle and is restricted to the range 

1 1/ 3b  to ensure the positivity of the scattering function for all angles [1]. 
T is the 

total macroscopic cross-section, c is the mean number of secondary neutrons per 

collision in the time-independent critical system and a is the critical half thickness of 

the finite homogeneous slab in units of mean free path. By following the same general 

notation as those of Sahni et al. [1], the time decay constant  can be related with the c 

as, 

 

1
1

c
         (5) 

 

In this study, the neutron angular flux is expanded in terms of the Chebyshev 

polynomials of second kind as in the previous works [3], 
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By inserting Eq.(6) into Eq.(1) and using the recurrence and orthogonality relations of 

the Chebyshev polynomials of second kind, one can obtain the UN moments of the 

angular flux for n = 0 and n = 1, respectively; 
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and in general, 
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A well-known procedure for the eigenvalue spectrum is applied in the form of [4], 

 

   ( ) expn n Tx G x         (8) 

 

and by inserting Eq. (8) in Eqs.(7) one can obtain analytical expressions for n = 0, 1 and 

in general, respectively; 
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 1 1( ) ( ) 2 1 ( 1) ( ) 0n

n n nG G c G      
        , n 2.  (9c) 

 

Here, the normalizations  1 0G    and  0 1G    are used. Setting 
1( ) 0NG    is 

identical with 
1( ) 0N x   in UN approximation and other polynomial expansion based 

techniques; therefore the discrete and continuum eingenvales    may be calculated for 

various values of c, α, β and b1. The other way to compute eigenvalues is to use the 

determinant of the coefficients matrix of  nG  , 

 

 ( ) ( ) ,  M G 0      (10) 

 

where ( )M is the (N+1)×(N+1) coefficient matrix, 0 is a null vector and

 0 1( )= , ,.....,
T

NG G GG . 

 

 

Table 1. Eigenvalue spectrum for forward scattering (α = 0.3 β = 0.0) 

 b1 N = 4 N = 6 N = 8 N = 10 

 

 

 

 

 

 

 

 

0.0099 

 

 

-0.3 

 

 

 

 

 

0.0 

 

 

 

 

 

0.3 

6.027434i 

0.624152 

- 

- 

- 

 

6.881926i 

0.624313 

- 

- 

- 

 

8.248743i 

0.624475 

- 

- 

- 

6.021161i 

0.414057 

1.082479 

- 

- 

 

6.876434i 

0.414021 

1.082589 

- 

- 

 

8.244161i 

0.413985 

1.082700 

- 

- 

6.021224i 

0.301062 

0.859564 

1.242446 

- 

 

6.876476i 

0.301074 

0.859513 

1.242494 

- 

 

8.244186i 

0.301087 

0.859462 

1.242541 

- 

6.021223i 

0.238856 

0.686140 

1.070303 

1.314906 

 

6.876476i 

0.238851 

0.686173 

1.070274 

1.314928 

 

8.244186i 

0.238846 

0.686207 

1.070245 

1.314950 

 

 

 

 

 

 

 

 

0.1666 

 

 

-0.3 

 

 

 

 

 

0.0 

 

 

 

 

 

0.3 

1.256274i 

0.736310 

- 

- 

- 

 

1.464334i 

0.745744 

- 

- 

- 

 

1.852166i 

0.757193 

- 

- 

- 

1.227171i 

0.488752 

1.204820 

- 

- 

 

1.440329i 

0.488844 

1.211624 

- 

- 

 

1.834921i 

0.488944 

1.221182 

- 

- 

1.231290i 

0.347064 

0.967334 

1.365650 

- 

 

1.443178i 

0.347847 

0.969623 

1.369176 

- 

 

1.836443i 

0.348667 

0.972540 

1.374456 

- 

1.230467i 

0.273272 

0.769808 

1.184053 

1.438921 

 

1.442725i 

0.273263 

0.772573 

1.186327 

1.440897 

 

1.836276i 

0.273254 

0.775854 

1.189484 

1.443962 
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0.5000 

 

 

-0.3 

 

 

 

 

 

0.0 

 

 

 

 

 

0.3 

0.539726i 

1.278792 

- 

- 

- 

 

0.664403i 

1.487368 

- 

- 

- 

 

1.165834i 

3.790778i 

- 

- 

- 

0.464582i 

0.956408 

1.941681 

- 

- 

 

0.578930i 

1.050162 

2.031785 

- 

- 

 

1.091129i 

3.651811i 

1.386406 

- 

- 

0.456200i 

0.675996 

1.597050 

2.189654 

- 

 

0.554821i 

0.746806 

1.669034 

2.232771 

- 

 

0.983094i 

3.662755i 

0.961407 

1.994687 

- 

0.434115i 

0.551185 

1.277870 

1.913075 

2.304528 

 

0.535271i 

0.583846 

1.354252 

1.958734 

2.328269 

 

0.988384i 

3.661979i 

0.654621 

1.647346 

2.211459 

 
Table 2. Eigenvalue spectrum for isotropic scattering (α = 0.0 β = 0.0) 

 b1 N = 4 N = 6 N = 8 N = 10 

 

 

 

 

 

 

 

 

0.0099 

 

 

-0.3 

 

 

 

 

 

0.0 

 

 

 

 

 

0.3 

5.041691i 

0.434424 

- 

- 

- 

 

5.754027i 

0.434500 

- 

- 

- 

 

6.890942i 

0.434577 

- 

- 

- 

5.038026i 

0.288244 

0.754118 

- 

- 

 

5.750816i 

0.288226 

0.754169 

- 

- 

 

6.888261i 

0.288209 

0.754221 

- 

- 

5.038051i 

0.209662 

0.598735 

0.865790 

- 

 

5.750833i 

0.209668 

0.598709 

0.865812 

- 

 

6.888271i 

0.209674 

0.598683 

0.865833 

- 

5.038051i 

0.166363 

0.477987 

0.745745 

0.916378 

 

5.750833i 

0.166360 

0.478003 

0.745730 

0.916388 

 

6.888271i 

0.166358 

0.478019 

0.745714 

0.916398 

 

 

 

 

 

 

 

 

0.1666 

 

 

-0.3 

 

 

 

 

 

0.0 

 

 

 

 

 

0.3 

1.044406i 

0.459087 

- 

- 

- 

 

1.210088i 

0.462075 

- 

- 

- 

 

1.501750i 

0.465406 

- 

- 

- 

1.029511i 

0.303786 

0.766541 

- 

- 

 

1.197559i 

0.303635 

0.768865 

- 

- 

 

1.492094i 

0.303478 

0.771748 

- 

- 

1.031180i 

0.217502 

0.612922 

0.871969 

- 

 

1.198700i 

0.217734 

0.613381 

0.873177 

- 

 

1.492727i 

0.217972 

0.613913 

0.874746 

- 

1.030961i 

0.171686 

0.487912 

0.754483 

0.919826 

 

1.198581i 

0.171662 

0.488749 

0.755073 

0.920499 

 

1.492681i 

0.171637 

0.489674 

0.755801 

0.921395 

 

 

 

 

 

-0.3 

0.388283i 

0.509016 

- 

0.356252i 

0.355490 

0.780305 

0.357995i 

0.247097 

0.636335 

0.354266i 

0.194197 

0.508269 
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0.5000 

 

 

 

 

 

0.0 

 

 

 

 

 

0.3 

- 

- 

 

0.4601975i 

0.5432450 

- 

- 

- 

 

0.635379i 

0.622125 

- 

- 

- 

- 

- 

 

0.430653i 

0.363842 

0.797756 

- 

- 

 

0.616934i 

0.377095 

0.849553 

- 

- 

0.877790 

- 

 

0.430950i 

0.252612 

0.647670 

0.886432 

- 

 

0.615418i 

0.260039 

0.673315 

0.917114 

- 

0.765559 

0.922880 

 

0.428767i 

0.195500 

0.519441 

0.773642 

0.927692 

 

0.615126i 

0.197036 

0.540865 

0.795849 

0.947090 

 
Table 3. Eigenvalue spectrum for isotropic scattering (α = 0.0 β = 0.3) 

 b1 N = 4 N = 6 N = 8 N = 10 

 

 

 

 

 

 

 

 

0.0099 

 

 

-0.3 

 

 

 

 

 

0.0 

 

 

 

 

 

0.3 

4.668376i 

0.456549 

- 

- 

- 

 

5.033318i 

0.456611 

- 

- 

- 

 

5.500143i 

0.456675 

- 

- 

- 

4.664044i 

0.302822 

0.791743 

- 

- 

 

5.029301i 

0.302808 

0.791786 

- 

- 

 

5.496468i 

0.302794 

0.791829 

- 

- 

4.664083i 

0.220196 

0.628653 

0.908719 

- 

 

5.029331i 
0.220200 

0.628633 

0.908738 

- 

 

5.496491i 

0.220205 

0.628613 

0.908756 

- 

4.664082i 

0.174693 

0.501842 

0.782791 

0.961706 

 

5.029331i 

0.174691 

0.501855 

0.782779 

0.961715 

 

5.496491i 

0.174690 

0.501868 

0.782768 

0.961723 

 

 

 

 

 

 

 

 

0.1666 

 

 

-0.3 

 

 

 

 

 

0.0 

 

 

 

 

 

0.3 

0.928498i 

0.508403 

- 

- 

- 

 

1.004558i 

0.511593 

- 

- 

- 

 

1.105392i 

0.515087 

- 

- 

- 

0.910266i 

0.335325 

0.828819 

- 

- 

 

0.988090i 

0.335356 

0.831195 

- 

- 

 

1.090939i 

0.335387 

0.833979 

- 

- 

0.912639i 

0.238373 

0.664394 

0.938031 

- 

 

0.990045i 

0.238629 

0.665178 

0.939278 

- 

 

1.092465i 

0.238891 

0.666056 

0.940784 

- 

0.912214i 

0.187466 

0.529067 

0.813048 

0.987776 

 

0.989734i 

0.187463 

0.529998 

0.813841 

0.988480 

 

1.092256i 

0.187460 

0.531007 

0.814765 

0.989343 

 

 

 

 

 

 

 

 

-0.3 

 

 

 

0.311974i 

0.704783 

- 

- 

- 

 

0.270716i 

0.508911 

0.997466 

- 

- 

 

0.261299i 

0.361744 

0.820737 

1.107114 

- 

 

0.251000i 

0.286860 

0.663175 

0.970073 

1.158884 
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0.5000 

 

 

0.0 

 

 

 

 

 

0.3 

0.332201i 

0.743684 

- 

- 

- 

 

0.358164i 

0.803207 

- 

- 

- 

0.289465i 

0.525081 

1.015893 

- 

- 

 

0.313829i 

0.546876 

1.047629 

- 

- 

0.277410i 

0.373403 

0.834517 

1.116385 

- 

 

0.298299i 

0.388371 

0.855463 

1.133885 

- 

0.267636i 

0.291923 

0.677126 

0.979367 

1.164135 

 

0.289339i 

0.297993 

0.697003 

0.994896 

1.174690 

 

3. Results and Discussion 

 

In this study, we investigated the applicability of the second kind of Chebyshev 

polynomial approximation method for the general eigenvalue spectrum of the time-

dependent neutron transport equation in slab geometry. Numerically calculated 

eigenvalues for c> 1 are given in Tables 1, 2 and 3 for forward, isotropic and backward 

scattering, respectively. 

 

The analytical expressions for all ( )nG  are present in Eqs.(9) and by using these the 

discrete and continuum   eigenvalues can be calculated by setting 
1( ) 0NG    for 

various values of c, b1, α and β. This comes from essential idea of the UN method for 

which 
1( ) 0N x   as in the case of spherical harmonics (PN) method. As can be seen in 

Table 1 when c > 1 then at least one pair of the roots is purely imaginary and the others 

lie as pairs in the interval [1, 1] as expected since it is possible to see in literature [5, 6] 

that when c > 1 asymptotic roots or discrete eigenvalues are purely imaginary. 

 

As a result, the Chebyshev polynomials of second kind other than the traditional 

Legendre polynomials are proved to be applied to solve the time-dependent neutron 

transport equation. For this purpose, the eigenvalue spectrum of the neutrons is 

investigated as a first step successfully. Therefore, one can use this spectrum to solve 

other problems such as criticality, albedo, scalar flux, etc in transport theory. 
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