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Abstract: The eigenvalue spectrum is studied in one-speed time-dependent neutron transport theory in a
uniform finite slab. The linear anisotropic scattering kernel together with the combination of forward and
backward scattering is used and time-dependent neutron transport equation is reduced to a stationary one.
Numerical results of eigenvalues for various combinations of the scattering parameters and the selected
values of the time decay constant are performed by using the Chebyshev polynomials approximation
method.
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Zamana Bagl, Tek-Hizh ve Tek-Boyutlu Anizotropik Sacilmal
Notron Transport Probleminin Ozdeger Spektrumu icin
UnYaklasim

Ozet: Diizgiin sonlu bir dilimde tek-hizli zamana bagli ndtron transport teorisinde 6zdeger spektrumu
calistlmustir. fleri ve geri sagilmayla birlikte lineer anizotropik sagilma foknsiyonu kullanilmis ve zamana
bagli noétron transport denklemi kararli denkleme indirgenmistir. Niimerik 6zdegerler, Chebyshev
polinomlar1 yaklasimi yontemi kullanilarak, zaman bozunum sabitinin seg¢ilmis bazi degerleri ve sagilma
parametrelerinin farkli degerleri i¢in hesaplanmuistir.

Anahtar kelimeler: Nétron transport denklemi, anizotropik sacilma, 6zdegerler, Uyyaklagimi
1. Introduction

In a nuclear reactor, the number of neutrons decreases with time after a short neutron
pulse. Then, basic and higher order eigenvalues of time (decay constants) can be
calculated by taking into account behavior of the neutrons migrated in the system.
Fundamental time eigenvalue is defined as the smallest number of A’s for the time-
dependent system which have a neutron distribution with a term exp(it). Therefore,
when the neutron flux density in a pulsed neutron experiment decays exponentially it is
possible to remove the time dependence from the neutron flux and to get a stationary
one in transport theory. The time eigenvalues of many systems can be determined by
calculating the critical size of those systems in stationary condition [1,2].

One of the important problems in the solution of neutron transport equation is the
calculation of eigenvalues. In nuclear reactor physics, the important coefficients such as
diffusion length, diffusion coefficient and buckling depend on the parameter c, the
number of secondary neutrons per collision. Since the eigenvalues depend on the values
of ¢, it is known as the fundamental eigenvalue in the transport theory.
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In this study, a new theoretical scheme is described for solving the time-dependent
neutron transport equation in plane geometry. First, the neutron angular flux is
expanded in terms of the second kind of Chebyshev polynomials. It is then used in
transport equation together with the linear anisotropic scattering kernel including
backward and forward scattering. Then, time-dependent transport equation reduced to a
stationary transport equation by applying the procedure described above. Finally, the
eigenvalue spectrum is obtained and numerical results are given in the tables for various
values of the anisotropic scattering parameters and time decay constants.

2. The Second Kind of Chebyshev Polynomials (Uy) Method

The linear transport equation for a time-dependent neutron population without source
can be written as [1],

lal//(r,ﬂ,t)

. =—Q-Vy (r,Qt)-cjy (rQt)+o: [ f(Q-Q (@ t)d (1)
| 4

where Q' is the direction of neutron velocity before (and @ after) a collision and
w (r,Q,t) is the time-dependent angular flux of neutrons at position r in direction Q.

o, and o denote the macroscopic total and scattering differential cross-sections of the

time-dependent system, respectively; v is the average neutron velocity. f (Q’-Q) is the

scattering kernel and it is assumed to be of the form of a combination of linearly
anisotropic scattering and backward-forward-isotropic scattering. The time dependence
of the angular flux of neutrons is assumed to be exponential with time and given by [1],

w(r,Q,t) =y (r,Q)exp(-At). (2)

The time-independent stationary transport equation for one-dimensional case can be
written as,

“W“ﬂ (1-ac)w (x 1) .

c 1 ’ o
= %(l—a—ﬂ).L'/’(X,,u )(1+3bd)dp' + feory (X, —u)
subject to free space boundary and symmetry conditions:

w(a,u)=0, (4a)

w(xu)=y(-xu), wu>0. (4b)

Here o and f parameters denote the forward and backward scattering probabilities in a
collision, respectively and they vary over the range of 0 < a, f <1, a + f <1 and. The
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parameter b; is the average cosine of the scattering angle and is restricted to the range
|b1| <1/3to ensure the positivity of the scattering function for all angles [1]. o is the

total macroscopic cross-section, ¢ is the mean number of secondary neutrons per
collision in the time-independent critical system and a is the critical half thickness of
the finite homogeneous slab in units of mean free path. By following the same general
notation as those of Sahni et al. [1], the time decay constant A can be related with the ¢
as,

A=1-1 5)
C

In this study, the neutron angular flux is expanded in terms of the Chebyshev
polynomials of second kind as in the previous works [3],

() =23 @, (U, (1), ~a<x<a-1<u<l. )

n=0

By inserting Eq.(6) into Eq.(1) and using the recurrence and orthogonality relations of
the Chebyshev polynomials of second kind, one can obtain the Uy moments of the
angular flux for n =0 and n = 1, respectively;

do Z“" D,
dlx(X) " ZGT (1_C(a +ﬂ))q)0(X) B ZCJT (1_a _ﬂ) n=0 2n f');.) ’ (7a)
do,(x)  do, v P24 (X)
dx(X) " dx(X) +20; [1-c(a-£) ], =6bcor (1-a=5) X, o _(1X ), ()

and in general,

do, do, )
. ) , dX(X)+2aT [1—C(a+(—1) ﬁ)}Dn(x)zo, n> 2. (70)

A well-known procedure for the eigenvalue spectrum is applied in the form of [4],
@, (x) =G, (v)exp(orx/v) (8)

and by inserting Eqg. (8) in Egs.(7) one can obtain analytical expressions for n =0, 1 and
in general, respectively;

G,(v) + 2v[1-c(a+ B)]Gy(v) = 2ve(l—ar - ﬁ)i%ﬂn—g , (9a)
G,(v)+G,(v)+2v[l-c(a - B)]G,(v) =6byvc(l-« —ﬁ)irlzz]’;—‘l_(:) . (9b)
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Gyu (V) +G, 4 (V) +2v {1-c[ @ +(-1)" £} G, (v) =0, n> 2. (9c)

Here, the normalizations G_,(v)=0 and G,(v)=1 are used. Setting G,,,,(v)=0 is
identical with @, (x) =0 in Uy approximation and other polynomial expansion based
techniques; therefore the discrete and continuum eingenvales (u) may be calculated for

various values of ¢, a, f and b;. The other way to compute eigenvalues is to use the
determinant of the coefficients matrix of G, (v),

[M(v)]G(v) =0, (10)

where M(v)is the (N-+1)x(N+1) coefficient matrix, 0 is a null vector and
G()=[Gy, Gy, Gy |-

Table 1. Eigenvalue spectrum for forward scattering (a« = 0.3 = 0.0)
A by N=4 N=6 N=8 N =10
6.027434i 6.021161i 6.021224i 6.021223i
0.624152 0.414057 0.301062 0.238856

-03 - 1.082479 0.859564 0.686140
- - 1.242446  1.070303
- - - 1.314906

6.881926i 6.876434i 6.876476i 6.876476i
0.624313 0.414021 0.301074 0.238851

0.0099 0.0 - 1.082589 0.859513 0.686173
- - 1.242494 1.070274
- - - 1.314928

8.248743i 8.244161i 8.244186i 8.244186i
0.624475 0.413985 0.301087 0.238846

03 - 1.082700 0.859462 0.686207
- - 1.242541  1.070245
1.314950

1.256274i 1.227171i 1.231290i 1.230467i
0.736310 0.488752 0.347064 0.273272

-03 - 1.204820 0.967334 0.769808
- - 1.365650 1.184053
- - - 1.438921

1.464334i 1.440329i 1.443178i 1.442725i
0.745744  0.488844 0.347847 0.273263

0.1666 0.0 - 1.211624 0.969623 0.772573
- - 1.369176  1.186327
- - - 1.440897

1.852166i 1.834921i 1.836443i 1.836276i
0.757193 0.488944 0.348667 0.273254

03 - 1.221182 0.972540 0.775854
- - 1.374456  1.189484
- - - 1.443962
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0.539726i 0.464582i 0.456200i 0.434115i
1.278792 0.956408 0.675996 0.551185

-0.3 - 1941681 1.597050 1.277870
- - 2.189654  1.913075
- - - 2.304528

0.664403i 0.578930i 0.554821i 0.535271i
1.487368 1.050162 0.746806 0.583846

0.5000 0.0 - 2.031785 1.669034  1.354252
- - 2.232771  1.958734
- - - 2.328269

1.165834i 1.091129i 0.983094i 0.988384i
3.790778i 3.651811i 3.662755i 3.661979i
03 - 1.386406 0.961407 0.654621
- - 1.994687 1.647346
- - - 2.211459

Table 2. Eigenvalue spectrum for isotropic scattering (o = 0.0 = 0.0)
A b, N=4 N=6 N=38 N =10
5.041691i  5.038026i 5.038051i 5.038051i
0.434424  0.288244 0.209662 0.166363
-03 - 0.754118 0.598735 0.477987
- - 0.865790  0.745745
- - - 0.916378

5.754027i  5.750816i 5.750833i 5.750833i
0.434500 0.288226 0.209668 0.166360
0.0099 0.0 - 0.754169 0.598709 0.478003
- - 0.865812  0.745730
- - - 0.916388

6.890942i  6.888261i 6.888271i 6.888271i
0.434577 0.288209 0.209674 0.166358

03 - 0.754221 0.598683 0.478019
- - 0.865833 0.745714

- - - 0.916398
1.044406i  1.029511i 1.031180i 1.030961i
0.459087 0.303786 0.217502 0.171686

-03 - 0.766541 0.612922 0.487912
- - 0.871969  0.754483

- - - 0.919826

1.210088i  1.197559i 1.198700i 1.198581i
0.462075 0.303635 0.217734 0.171662
0.1666 0.0 - 0.768865 0.613381 0.488749
- - 0.873177  0.755073
- - - 0.920499

1.501750i  1.492094i 1.492727i 1.492681i
0.465406 0.303478 0.217972 0.171637
03 - 0.771748 0.613913 0.489674
- - 0.874746  0.755801
- - - 0.921395
0.388283i  0.356252i 0.357995i 0.354266i
0.509016 0.355490 0.247097 0.194197
-03 - 0.780305 0.636335 0.508269
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0.5000

0.0

0.3

0.4601975i
0.5432450

0.635379i
0.622125

0.430653i
0.363842
0.797756

0.616934i
0.377095
0.849553

0.877790

0.430950i
0.252612
0.647670
0.886432

0.615418i
0.260039
0.673315
0.917114

0.765559
0.922880

0.428767i
0.195500
0.519441
0.773642
0.927692

0.615126i
0.197036
0.540865
0.795849
0.947090

Table 3. Eigenvalue spectrum for isotropic scattering (o = 0.0 8 =0.3)

A

by

N=4

N=6

N=8

N =10

0.0099

-0.3

0.0

0.3

4.668376i
0.456549

5.033318i
0.456611

5.500143i
0.456675

4.664044i
0.302822
0.791743

5.029301i
0.302808
0.791786

5.496468i
0.302794
0.791829

4.664083i
0.220196
0.628653
0.908719

5.029331i
0.220200
0.628633
0.908738

5.496491i
0.220205
0.628613
0.908756

4.664082i
0.174693
0.501842
0.782791
0.961706

5.029331i
0.174691
0.501855
0.782779
0.961715

5.496491i
0.174690
0.501868
0.782768
0.961723

0.1666

0.0

0.3

0.928498i
0.508403

1.004558i
0.511593

1.105392i
0.515087

0.910266i
0.335325
0.828819

0.988090i
0.335356
0.831195

1.090939i
0.335387
0.833979

0.912639i
0.238373
0.664394
0.938031

0.990045i
0.238629
0.665178
0.939278

1.092465i
0.238891
0.666056
0.940784

0.912214i
0.187466
0.529067
0.813048
0.987776

0.989734i
0.187463
0.529998
0.813841
0.988480

1.092256i
0.187460
0.531007
0.814765
0.989343

-0.3

0.311974i
0.704783

0.270716i
0.508911
0.997466

0.261299i
0.361744
0.820737
1.107114

0.251000i
0.286860
0.663175
0.970073
1.158884
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0.332201i 0.289465i 0.277410i 0.267636i
0.743684 0.525081 0.373403 0.291923

0.5000 0.0 - 1.015893 0.834517 0.677126
- - 1.116385 0.979367
- - - 1.164135

0.358164i 0.313829i 0.298299i 0.289339i
0.803207 0.546876 0.388371 0.297993

03 - 1.047629 0.855463 0.697003
- - 1.133885 0.994896
- - - 1.174690

3. Results and Discussion

In this study, we investigated the applicability of the second kind of Chebyshev
polynomial approximation method for the general eigenvalue spectrum of the time-
dependent neutron transport equation in slab geometry. Numerically calculated
eigenvalues for ¢> 1 are given in Tables 1, 2 and 3 for forward, isotropic and backward
scattering, respectively.

The analytical expressions for all G, (v) are present in Egs.(9) and by using these the
discrete and continuum v eigenvalues can be calculated by setting G, ,(v)=0 for

various values of ¢, b;, « and g. This comes from essential idea of the Uy method for
which @, (x) =0 as in the case of spherical harmonics (Py) method. As can be seen in

Table 1 when ¢ > 1 then at least one pair of the roots is purely imaginary and the others
lie as pairs in the interval [-1, 1] as expected since it is possible to see in literature [5, 6]
that when ¢ > 1 asymptotic roots or discrete eigenvalues are purely imaginary.

As a result, the Chebyshev polynomials of second kind other than the traditional
Legendre polynomials are proved to be applied to solve the time-dependent neutron
transport equation. For this purpose, the eigenvalue spectrum of the neutrons is
investigated as a first step successfully. Therefore, one can use this spectrum to solve
other problems such as criticality, albedo, scalar flux, etc in transport theory.
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