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Abstract 

This study developed a finite element model according to higher-order shear deformation beam theory (HSDT) 

for the buckling analysis of functionally graded (FG) beams. Equilibrium equations of the FG beam are obtained 

from Lagrange’s equations. The beam element to be discussed within the scope of the study has 5 nodes and 16 

degrees of freedom (DOF). As a result of the buckling analysis, the critical buckling load of the beam was 

obtained for various boundary conditions, power-law index (p), and slenderness (L/h). When the critical 

buckling loads obtained as a result of the analysis were compared with the literature, it was seen that they were 

quite compatible. 

Keywords: Finite element model, FG beam, Buckling analysis, Higher-order shear deformation beam theory. 

Sonlu Elemanlar Yöntemi Kullanılarak Fonksiyonel Derecelendirilmiş Kirişlerin 

Burkulma Analizi 

Öz 

Bu çalışmada, fonksiyonel derecelendirilmiş (FG) kirişlerin burkulma analizi için yüksek mertebeden kayma 

deformasyonlu kiriş teorisine göre bir sonlu eleman modeli geliştirilmiştir. FG kirişin denge denklemleri 

Lagrange denklemlerinden elde edilmiştir. Çalışma kapsamında ele alınacak kiriş elemanı 5 düğüm noktasına 

ve 16 serbestlik derecesine sahiptir. Burkulma analizi sonucunda çeşitli sınır koşulları, kuvvet kuralı indeksi (p) 

ve narinlik (L/h) için kirişin kritik burkulma yükü elde edilmiştir. Analiz sonucunda elde edilen kritik burkulma 

yüklerinin literatür ile karşılaştırıldığında oldukça uyumlu oldukları görülmüştür. 

Anahtar Kelimeler: Sonlu eleman modeli, FG kiriş, Burkulma analizi, Yüksek mertebeden kayma 

deformasyonlu kiriş teorisi. 

1 Introduction 

Functionally graded materials (FGM) have superior mechanical and thermal properties. Due to 

their superior properties are widely used in maritime, aviation, space, and engineering fields. 

Many studies have been performed in the literature using functionally graded materials, 

especially beam and plate-type elements, as structural elements in civil engineering, one of the 

engineering fields. When these materials are used as structural elements, it is very important to 

determine their behavior according to different loadings, ambient conditions, and material 

properties. When the literature on functionally graded (FG) beams is examined, it is seen that 

there is extensive literature. Studies that perform mechanical analysis of FG beams with the 

analytical and finite element methods can be summarized as follows.
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In his doctoral thesis, Turan [1] developed an analytical and finite element method (FEM) 

according to the first-order shear deformation beam theory (FSDT) to examine the mechanical 

behavior of FG beams. In addition, if we summarize the analytical studies carried out, Nguyen 

et al. [2] suggested a new method based on HSDT for the free vibration and buckling behaviors 

of FG sandwich and isotropic FG beams. With their proposed method, the transverse shear 

stresses of the FG beam were expressed with a new hyperbolic distribution. The motion 

equations of the beam were obtained with Lagrange's equations. Nguyen and Nguyen [3] 

developed a new method for free vibration, buckling, and static analysis of FG sandwich beams 

using HSDT. The equilibrium equations of the FG beam were obtained by Hamilton's principle 

and solved with the Navier-type solution method. The transverse shear stress of the FG beam 

is taken into account in their new solution theory. The axial displacement expression of the FG 

beam contains third-order and inverse trigonometric expressions. Nguyen et al. [4] proposed a 

new HSDT using different beam theories for the buckling and vibration of FG sandwich beams. 

With the theory they proposed, they analyzed the FG beam analytically with the Ritz method. 

Transverse and normal shear deformations of the FG beam were considered in the analysis. 

They obtained the equations of motion with Lagrange formulations. Turan [5] carried out 

bending analyses of two-directional FG beams using the FSDT, considering various boundary 

conditions according to the Navier method. Turan and Kahya [6] investigated the free vibration 

and buckling of FG sandwich beams with the Navier method under various boundary 

conditions. The displacement relations of the beam were obtained according to FSDT. They 

obtained the equations of motion according to Lagrange's principle. They defined trigonometric 

functions separately for different boundary conditions in the analytical solution. Liu et al. [7] 

recommended solving the buckling problem of FG sandwich beams with an analytical solution 

based on the boundary FEM. Avcar et al. [8] carried out the vibration of sigmoid FG sandwich 

beams, employing the HSDT. Keleshteri and Jelovica [9] performed static and dynamic 

analyses of the beams with the generalized differential quadrature method. This simple method 

has a low computational cost. 

If we list the studies made using the FEM, which is widely used in the literature, Oyekoya et 

al. [10] carried out the buckling and free vibration analyses of the FG beam using the FEM 

according to different material distributions and various support conditions. The material 

property of the FG beam changes with the power law. The beam's axial and transverse 

displacement expressions were obtained according to the Euler-Bernoulli beam theory. 

Alshorbagy et al. [11] investigated the free vibration and buckling analysis of FG sandwich 

beams with a new method based on the FEM under various boundary conditions, using HSDT. 

They obtained the governing equations of the FG beam with Hamilton's principle. Vo et al. [12] 

proposed a new method based on the FEM for free vibration and buckling analysis of FG 

sandwich beams using HSDT. The governing equations of the beam were obtained with the 

help of Hamilton's principle. Vo et al. [13] developed a FEM based on HSDT for the vibration 

and buckling analysis of FG beams considering the effects of stress and shear deformation in 

the z-direction. Liu et al. [14] carried out the vibration analysis of FG isotropic beams and plates 

using the differential quadrature finite element method. Analyses were made under different 

boundary conditions using Voigt's mixing rule and the Mori-Tanaka model as FG material 

properties. Yarasca et al. [15] investigated static analyses of FG monolayer and sandwich beams 
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with the FEM based on the quasi-3D hybrid theory with seven degrees of freedom. Kahya and 

Turan [16] developed a finite element based on FSDT for the free vibration and buckling of FG 

beams. Along with the thickness changes the material properties of the beam. The governing 

equations of the beam were obtained by the Lagrange formulation. Kahya and Turan [17] 

proposed a finite element model based on HSDT for the vibration and buckling of lamina 

composite and sandwich beams. Reddy et al. [18] developed a double mesh finite field and 

finite element model for the nonlinear behaviors of FG beams. The beam is analyzed separately 

according to various beam theories. Yaghoobi et al. [19] proposed a simple and efficient 

element according to the Timoshenko beam theory for the vibration and buckling analysis of 

FG beams. The assumption of constant shear strain partially reduces the number of unknowns 

and improves the efficiency of the new element. Koutoati et al. [20] analyzed multilayer 

composite and FG structures with a finite element approach. The material properties of the FG 

beam vary with the power-law distribution. This study investigated the vibration and static 

behaviors of the bi-directional FG beams. Belarbi et al. [21] investigated the static behaviors of 

FG sandwich curved beams with a novel refined shear deformation beam theory. The shear 

stress distribution along the thickness direction changes parabolic in this theory. Thus, a shear 

correction factor is not used. 

This study aims to develop a finite element model based on high-order shear deformation beam 

theory for the buckling analysis of FG beams. When the literature is examined, it has been seen 

that the buckling behavior of FG beams has not been examined with the proposed finite element. 

The proposed finite element in which a third-order polynomial describes shear deformations 

can accurately predict critical buckling loads, especially in short beams. It also saves time and 

offers fast solutions when examining the buckling behavior of FG beams, as here. The proposed 

FG beam element has 5 nodes and 16 DOF. The material property of the beam changes along 

the beam thickness with the power-law distribution. The equilibrium equations are derived with 

Lagrange's equations. The buckling analysis of the FG beam with the proposed FEM was 

performed according to the various boundary conditions, power-law index, and slenderness. 

The results obtained were compared with the results of the literature, and it was seen that the 

results were in good agreement. 

2 Material and Methods 

As a functionally graded beam, an inhomogeneous isotropic rectangular beam with a length L 

of b x h dimensions, seen in Fig. 1, is used. The upper part of the beam is made of ceramic, and 

the lower part is made of metal. Pressure force P0 was applied from the ends of the beam. 

Material behavior obeys Hooke's law. In addition, the material properties of the beam, 

according to power-law distribution, are constantly changing in the direction of thickness. 

 

( ) ( ) ( )m c m cP z P P P V z= + −  (1) 
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where 
cP ceramic

mP  shows the material properties of the metal phase. The volumetric ratio 

function of the ceramic phase to be used is as follows. 

 

( )( ) 0.5 ,    2 2
p

cV z z h h z h= + −    (2) 

 

where p is power-law index. The finite element considered in the finite element model is given 

in Fig. 2. The finite element has 5 nodes and 16 DOF. The displacement expressions u and w at 

any point of the beam are expressed as follows. 

 
0 0 2 3

1 2

0

( , , ) ( , ) ( , ) ( , ) ( , ),

( , , ) ( , )

u x z t u x t z x t z x t z x t

w x z t w x t

  = − − −

=

 (3) 

 

where t is time, u0 horizontal displacement, w0 vertical displacement, 0 cross-sectional rotation, 

1  ve 
2  represents higher-order terms coming from the Taylor expansion. Strain and 

displacement expressions, respectively, are written as follows. 

 
0 0 2 3

, , 1, 2,

0 0 2

, 1 2

,

2 3

xx x x x x

xz x

u z z z

w z z

   

   

= − − −

= − − −
 (4) 

 

,( ) x  shows the derivative with respect to x. 
xx  normal stress and 

xz  shear stress is expressed 

as follows. 

 

( ) ,

( )

xx xx

xz xz

E z

G z

 

 

=

=
 (5) 

 

E modulus of elasticity, G represents the shear modulus and varies along the beam thickness. 

u0, w0,  0, 
1 , and 

2  to solve the problem, it is defined as follows. 
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    
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  
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 (6) 

 

where, ( )ju t , ( )jw t , ( )j t , 1 ( )j t  and 2 ( )j t  generalized displacements, ( )j x , ( )j x , ( )j x

, 1 ( )j x  and 2 ( )j x  shows the shape functions and are given as follows. 

101



Buckling Analysis of Functionally Graded Beams Using the Finite Element Method 

 

( )

( ) ( )

( )

1 1 11 21 2 2 12 22

3 3 13 23 1

2 3

4

(1 )(1 2 ), 4 (1 ),

(1 2 ), (1 ) 2 3 (1 3 ) / 2,

9 2 3 (1 ) / 2, 9 1 (1 3 ) / 2,

2 3 (1 3 ) / 2

e e e e

e e e e e

e e e e e e

e e e

x L x L x L x L

x L x L x L x L x L

x L x L x L x L x L x L

x L x L x L

       

    

 



= = = = − − = = = = −

= = = = − − = − − −

= − − = − − −

= − −

 (7) 

 

The equations of motion were obtained with Lagrange’s formulation given as follows. 

 

0
i i

d

dt q q

  
− = 

  
 (8) 

 

where 
iq  and 

iq  denote the independent variables and the Lagrangian formulation is expressed 

as follows. 

 

T U V = − −  (9) 

 

The strain energy of the FG beam is expressed as follows. 
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 (10) 

 

where the coefficients covering the material constants are given in Eq. 11. 

 

( ) ( )( 0,1,...,6), ( 0,1,...,4)i k

n m
A A

A E z z dA i B G z z dA k= = = =   (11) 

 

 

Figure 1. Dimensions and geometry of functionally graded beam 
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Figure 2. 16 degrees of freedom beam element with 5 nodes 

 

The kinetic energy of the FG beam is expressed in Eq. 12. 

 

( ) ( )( ) ( )
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Explicit expressions of the coefficients depending on the material constants in the kinetic 

energy equation are given in Eq. 13. 

 

( ) ( 0,1,...,6)n

n
A

I z z dA n= =  (13) 

 

The work done by the P0 pressure force acting from the endpoints of the FG beam is as follows. 

 

( )
2

0

0 ,
0

1

2

eL

xV P w dx=   (14) 

 

By substituting the displacement, stress, and work-energy equations described above in the 

Lagrangian equation, the equation of motion for a single layer higher-order beam element is 

obtained below. 

 

0P−e gmu +(k k )u = f  (15) 

where m is the element mass matrix, ke is the element stiffness matrix, kg is the geometric 

stiffness matrix, f is the load vector. For a beam of length L, the equation of motion of the 

system is obtained by the finite element method as follows. 
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0P+ − gMX (K K )X = F  (16) 

where M is the system mass matrix, K is the system stiffness matrix, Kg is the system geometric 

stiffness matrix and F is the system load vector. For the buckling analysis, if M = 0, F = 0, and 

0P x
e=X U  are taken in Eq.16, the buckling equation is obtained as follows. 

0P− g(K K )U = 0  (17) 

where ( )0 0 cr
P P=  is critical buckling load. Equation 17 is an eigenvalue problem. The P0 

values, which make the coefficient matrices of these systems of equations zero, are the critical 

buckling loads of the beam. 

3 Results and Discussion 

Numerical results of buckling analysis of FG beams with various boundary conditions are given 

with the help of the FORTRAN program in this section. As the different boundary conditions 

of the FG beam, clamped-clamped support (C-C), simply supported (S-S), and cantilever (C-F) 

beams are considered. 

The material properties of the FG beam are given in Table 1. The critical buckling load of the 

beam is given below in the dimensionless form. 

( )
2

03

12
cr

m

L
P

E bh
 =  (18) 

Table 2 examines the variation of the dimensionless critical buckling load of the functionally 

graded beam with the number of elements. According to the table, it was seen that the number 

of 14 elements was sufficient. 

Table 1. Properties of materials 

Material  Properties   

 E (Pa) ρ (kg/m3) ν 

Metal (Al) 70x109 2702 0.3 

Ceramic (Al2O3) 380x109 3960 0.3 

 

Table 2. Variation of dimensionless critical buckling loads of FG beams according to various 

boundary conditions with the number of elements (L/h=5, p =1) 

Boundary 

Conditions 

Number of Elements 

4 8 10 12 14 16 18 20 

C-C 79.8756 79.4617 79.4440 79.4377 79.4345 79.4334 79.4327 79.4322 

S-S 24.5900 24.5792 24.5787 24.5786 24.5788 24.5785 24.5788 24.5785 

C-F 6.5350 6.5349 6.5349 6.5334 6.5347 6.5350 6.5357 6.5347 

Dimensionless critical buckling loads of the FG beam according to various boundary conditions 

and L/h are given in Tables 3 and 4. The results obtained were compared with the results of the 
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literature, and it was seen that the results were in good agreement. It was observed that the   

decreased as the p value increased. As p = 0, the FG beam material is completely composed of 

ceramic material. The maximum   is obtained when the beam is all-ceramic, as it has the 

largest elasticity modulus. As the value of p approaches infinity, the elasticity modulus 

decreases. When p = ∞ is reached, the FG beam consists entirely of metal material. (Looking 

at equation 2, p is seen as the power of the equation. Since this equation is a fractional 

expression, Vc becomes zero when its power goes to infinity. When we write the Vc in Equation 

1, Pm, that is, metal remains.) Therefore, the smallest critical buckling load is obtained when 

the FG beam consists entirely of metal material. The maximum   occurs at C-C. The minimum 

  occurs at C-F. In addition, the   increases with increasing slenderness L/h. 

 

The solution methods of the comparison sources in Tables 3 and 4 are as follows, respectively. 
(1) Finite element solution with the FSDT 
(2) Analytical solution with the FSDT 
(3) Analytical solution with the HSDT 
(4) FEM with the HSDT  
(5) FEM with the three-dimensional beam theory 

 

Table 3. Dimensionless critical buckling loads ( ) of FG beams (L/h = 5) 

Beam Theory p = 0 p = 0.5 p = 1 p = 2 p = 5 p = 10 p →  

C-C Present 152.1482 102.2666 79.4345 60.6789 46.7314 40.9609 28.0274 

 Turan [1]1) 151.9430 101.7439 79.3903 61.7449 49.5828 43.5014 27.9896 

 Turan [1](2) 151.9319 101.7354 79.3842 61.7402 49.5791 43.4982 27.9875 

 Nguyen et al. [2](3) 154.5610 103.7167 80.5940 61.7666 47.7174 41.7885 - 

 Vo et al. [12](4) 154.5500 103.7490 80.6087 61.7925 47.7562 41.8042 - 

 Vo et al. [13](5) 160.1070 107.6550 83.6958 64.1227 49.3856 43.1579 - 
         

S-S Present 48.5970 31.8657 24.5788 19.0487 15.6224 14.0464 8.9519 

 Turan [1]1) 48.5907 31.8238 24.5815 19.1617 15.9417 14.3445 8.9510 

 Turan [1](2) 48.5904 31.8231 24.5814 19.1616 15.9417 14.3445 8.9509 

 Nguyen et al. [2](3) 48.8406 32.0013 24.6894 19.1577 15.7355 14.1448 - 

 Vo et al. [12](4) 48.8401 32.0094 24.6911 19.1605 15.7400 14.1468 - 

 Vo et al. [13](5) 49.5901 32.5867 25.2116 19.6124 16.0842 14.4116 - 
         

C-F Present 13.0587 8.4943 6.5347 5.0899 4.2688 3.8742 2.4057 

 Turan [1]1) 13.0594 8.4899 6.5352 5.0981 4.2926 3.8970 2.4057 

 Turan [1](2) 13.0594 8.4889 6.5352 5.0981 4.2925 3.8970 2.4057 

 Nguyen et al. [2](3) 13.0771 8.5000 6.5427 5.0977 4.2772 3.8820 - 

 Vo et al. [12](4) 13.0771 8.5020 6.5428 5.0979 4.2776 3.8821 - 

 Vo et al. [13](5) 13.0993 8.5469 6.6067 5.1680 4.3290 3.9121 - 
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Table 4. Dimensionless critical buckling loads ( ) of FG beams (L/h = 20) 

Beam Theory p = 0 p = 0.5 p = 1 p = 2 p = 5 p = 10 p →  

C-C Present 208.9625 135.8767 104.5632 81.4435 68.3042 61.9945 43.0634 

 Turan [1]1) 208.9707 135.8362 104.5734 81.5783 68.6873 62.3580 43.0792 

 Turan [1](2) 208.9496 135.8224 104.5628 81.5700 68.6803 62.3517 43.0749 

 Nguyen et al. [2](3) 209.2330 136.0490 104.7160 81.6035 68.4689 62.1282 - 

 Vo et al. [12](4) 210.4890 137.3160 106.1200 82.9975 69.5392 62.8546 - 

 Vo et al. [13](5) 208.9707 135.8362 104.5734 81.5783 68.6873 62.3580 43.0792 

         

S-S Present 53.2375 34.5368 26.5622 20.7171 17.4827 15.9097 10.9890 

 Turan [1]1) 53.2369 34.5345 26.5622 20.7256 17.5075 15.9334 10.9899 

 Turan [1](2) 53.2363 34.5342 26.5620 20.7253 17.5073 15.9332 10.9898 

 Nguyen et al. [2](3) 53.2546 34.5488 26.5718 20.7275 17.4935 15.9185 - 

 Vo et al. [12](4) 53.3075 34.7084 26.8174 21.0066 17.7048 16.0416 - 

 Vo et al. [13](5) 53.2369 34.5345 26.5622 20.7256 17.5075 15.9334 10.9899 

         

C-F Present 13.3714 8.6714 6.6665 5.2029 4.3969 4.0040 2.7616 

 Turan [1]1) 13.3730 8.67045 6.6673 5.2025 4.3984 4.0055 2.7616 

 Turan [1](2) 13.3730 8.67046 6.6673 5.2026 4.3984 4.0055 2.7616 

 Nguyen et al. [2](3) 13.3742 8.6714 6.6680 5.2027 4.3976 4.0046 - 

 Vo et al. [12](4) 13.3896 8.7130 6.7307 5.2736 4.4512 4.0359 - 

 Vo et al. [13](5) 13.3730 8.67045 6.6673 5.2025 4.3984 4.0055 2.7616 

 

In Figures 3, 4, and 5, the   of the FG beam at different p values according to L/h are compared 

under different boundary conditions. According to the comparison results, as the L/h value 

increases, the   increases to a certain value and remains constant. According to the figures, 

the   decreases as p increases. 

 

 

Figure 3. Variation of the   of clamped-clamped FG beam with respect to L/h 

 

 

p = 0 

p = 2 

p = 10 
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Figure 4. Variation of the   of simply supported FG beam with respect to L/h 

 

 

Figure 5. Variation of the   of cantilever FG beam with respect to L/h 

 

4 Conclusion 

 

The buckling analysis of the FG beam was performed according to the finite element with 5 

nodes and 16 degrees of freedom, using the FEM according to the HSDT. The results obtained 

were verified with the literature. The   of FG beams under various boundary conditions have 

been accurately obtained with the proposed higher-order finite element model. In addition, the 

following conclusions were drawn from the study. The   decrease as the p-value increase. The 

maximum   occurs at C-C. The minimum   occurs at C-F. The   increases with increasing 

slenderness L/h. 
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