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ON TIMELIKE PARALLEL RULED SURFACES WITH
SPACELIKE RULING

YASIN ÜNLÜTÜRK? AND CUMALI EKICI

Abstract. In this paper, first, timelike parallel surfaces and their some basic
properties are presented in Minkowski 3-space. Then the main theorem for

timelike parallel ruled surface is given to understand how parallel surfaces of
a timelike ruled surface with spacelike ruling become again a timelike ruled

surface with spacelike ruling. Additionally, some basic properties of that kind

ruled surface are given in Minkowski 3-space.

1. Introduction

Parallel surfaces as a subject of differential geometry have been intriguing for
mathematicians throughout history and so it has been a research field. In theory
of surfaces, there are some special surfaces such as ruled surfaces, minimal surfaces
and surfaces of constant curvature in which differential geometers are interested.
Among these surfaces, parallel surfaces have been also studied in many papers
[2, 3, 6, 8, 12, 14]. Craig had studied to find parallel of ellipsoid in [3]. Eisenhart
gave a chapter for parallel surfaces in his famous A treatise of differential geometry
[5]. Nizamoğlu stated parallel ruled surface as a curve depending on one-parameter
and gave some geometric properties of such a surface [12].

A surface Mr whose points are at a constant distance along the normal from
another surface M is said to be parallel to M . So, there are infinite number of
surfaces because we choose the constant distance along the normal arbitrarily. From
the definition it follows that a parallel surface can be regarded as the locus of point
which are on the normals to M at a non-zero constant distance r from M [18].

In this paper, it has been shown that parallel surfaces of a non-developable
ruled surface are not ruled surfaces by using fundamental forms, however that
parallel surfaces of a timelike developable ruled surface are timelike developable
ruled surface. After construction of timelike parallel ruled surface, some properties
of that kind surface such as drall, striction curve and orthogonal trajectory have
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been given for timelike parallel ruled surfaces of timelike ruled surface with spacelike
ruling.

2. Preliminaries

Let E3
1 be the three-dimensional Minkowski space, that is, the three-dimensional

real vector space R3 with the metric

< dx,dx >=dx2
1 + dx2

2 − dx2
3

where (x1, x2, x3) denotes the canonical coordinates in R3. An arbitrary vector x
of E3

1 is said to be spacelike if < x,x >>0 or x = 0, timelike if < x,x ><0 and
lightlike or null if < x,x >=0 and x 6= 0. A timelike or lightlike vector in E3

1 is
said to be causal. For x ∈E3

1, the norm is defined by ‖x‖ =
√
|< x,x >|, then the

vector x is called a spacelike unit vector if < x,x >=1 and a timelike unit vector if
< x,x >= −1. Similarly, a regular curve in E3

1 can locally be spacelike, timelike or
null (lightlike), if all of its velocity vectors are spacelike, timelike or null (lightlike),
respectively [13]. For any two vectors x = (x1, x2, x3) and y = (y1, y2, y3) of E3

1,
the inner product is the real number < x,y >= x1y1 + x2y2 − x3y3 and the vector
product is defined by x× y = ((x2y3 − x3y2), (x3y1 − x1y3),−(x1y2 − x2y1)) [11].

A (differentiable) one-parameter family of (straight) lines {α (u) , X (u)} is a
correspondence that assigns each u ∈ I to a point α (u) ∈ R3

1 and a vector X (u) ∈
R3

1, X (u) 6= 0, so that both α (u) and X (u) can be differentiated in terms of the
variable u. For each u ∈ I, the line Lu which passes through α (u) and is parallel
to X (u) is called the line of the family at u.

Given a one-parameter family of lines {α (u) , X (u)}, the parametrized surface

(2.1) ϕ (u, v) = α (u) + vX (u) , u ∈ I, v ∈ R

is called the ruled surface generated by the family {α (u) , X (u)} . The lines Lu

are called the rulings and the curve α (u) is called a directrix of the surface ϕ. The
normal vector of surface is denoted by

−→
N . Let us take timelike ruled surface ϕ

with timelike directrix and spacelike ruling. So the system {T,X, N} establishes
an orthonormal frame such that T = α′ (u) . Therefore

(2.2) < T, T >= −1, < X, X >= 1, < N, N >= 1.

Derivative equations of the frame {T, X, N} are

(2.3) DT T = aX + bN, DT X = aT + cN, DT N = bT − cX.

Also the reciprocal cross products of the vectors T, X, N are

(2.4) T ∧X = N, T ∧N = −X, X ∧N = −T.

The parameter of distribution is expressed as follows

(2.5) λ =
det(α′, X,X ′)

|X ′|2

where, as usual, (α′, X,X ′) is a short for 〈α′ ∧X, X ′〉 [16].

Theorem 2.1. A surface in Minkowski 3-space is called a timelike surface if the
induced metric on the surface is a Lorentzian metric, i.e., the normal on the surface
is a spacelike vector [1].
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Theorem 2.2. Using standard parameters, a ruled surface is up to Lorentzian
motions, uniquely determined by the following quantities:

(2.6) Q = 〈α′, X ∧X ′〉 , J = 〈X, X ′′ ∧X ′〉 , F = 〈α′, X〉

each of which is a function of u. Conversely, every choice of these three quantities
uniquely determines a ruled surface [10].

Theorem 2.3. The Gaussian K and mean H curvatures of the timelike ruled
surface ϕ in terms of the parameters Q, J, F,D in E3

1 are obtained as follows:

(2.7) K = −Q2

D4
and H =

1
2D3

(−QF + Q2J + vQ′ + v2J),

where D =
√
−Q2 − v2, respectively [4].

Theorem 2.4. Parameter curves are lines of curvature if and only if F = f = 0
in E3

1 [11].

Theorem 2.5. Let ϕ(u, v) be a surface in E3
1 with the normal vector field of N .

Then the shape operator S of ϕ is given in terms of the base {ϕu, ϕv} by

(2.8)

−S(ϕu) = Nu =
mF − lG

EG− F 2
ϕu +

lF −mE

EG− F 2
ϕv

−S(ϕv) = Nv =
nF −mG

EG− F 2
ϕu +

mF − nE

EG− F 2
ϕv

[15].

The parallel surface of the timelike surface ϕ(u, v), is denoted by ϕr(u, v), is
defined in E3

1 as follows:

(2.9) ϕr(u, v) = ϕ(u, v) + rN(u, v),

where N is the unit normal vector of ϕ(u, v) such that 〈N,N〉 = 1 and r ∈ R.
The coefficients of the first and second fundamental forms Ir and IIr of timelike
parallel surfaces can be given in terms of the coefficients of the timelike surface’s
fundamental forms:

(2.10)
Er = E − 2rl + r2 〈Nu, Nu〉 , lr = l − r 〈Nu, Nu〉
F r = F − 2rm + r2 〈Nu, Nv〉 , mr = m− r 〈Nu, Nv〉
Gr = G− 2rn + r2 〈Nv, Nv〉 , nr = n− r 〈Nv, Nv〉 ,

where E, F, G are the coefficients of the first fundamental form for the surface ϕ
and l, m, n are the coefficients of the second fundamental form for the surface ϕ
and Er, F r, Gr are the coefficients of the first fundamental form for the parallel
surface ϕr and lr, mr, nr are the coefficients of the second fundamental form for
the parallel surface ϕr [17].

Definition 2.1. Let M and Mr be two surfaces in Minkowski 3-space. The function

f : M −→ Mr

p −→ f(p) = p + rNp

is called the parallellization function between M and Mr and furthermore Mr is
called parallel surface to M in E3

1 where r is a given positive real number and N is
the unit normal vector field on M [6].
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Theorem 2.6. Let M be a surface and Mr be a parallel surface of M in Minkowski
3-space. Let f : M → Mr be the parallelization function. Then for X ∈ χ(M),

1. f∗(X) = X + rS(X),
2. Sr(f∗(X)) = S(X),
3. f preserves principal directions of curvature, that is

Sr(f∗(X)) =
k

1 + rk
f∗(X)

where Sr is the shape operator on Mr, and k is a principal curvature of M at p in
direction X [6].

Definition 2.2. Let M be a hypersurface of M - manifold and Mr be parallel
hypersurface of M in E3

1. If σ is a curve passing through p on M and T is the
tangent vector field of σ on M , then σr = f ◦ σ is a curve passing through a point
f(p) on Mr and f∗(T ) ∈ Tf(p)M

r is a tangent of σr at f(p). The connection Dr

belongs to the parallel surface Mr of M and the vector Nr is the unit normal vector
of Mr, where 〈Nr, Nr〉 = ε = ±1, therefore the Gauss equation is as follows:

(2.11) Df∗(T )f∗(T ) = Dr
f∗(T )f∗(T )− ε 〈Sr(f∗(T )), f∗(T )〉Nr

[8, 13].

Definition 2.3. Let M be a timelike surface and Mr be a parallel surface of M
in E3

1. Let Nr and Sr be, respectively, the unit normal vector field and the shape
operator of Mr. The Gaussian and mean curvature functions are defined as follows:

(2.12)

Kr : Mr → R
f(P ) → Kr(f(P )) = det Sr

f(P )

Hr : Mr → R
f(P ) → Hr(f(P )) = 1

2 izSr
f(P ),

where P ∈ M , f(P ) ∈ Mr and 〈N,N〉 = 1, respectively [17].

Theorem 2.7. Let M be a timelike surface and Mr be a parallel surface of M in
E3

1. Let Nr and Sr be the unit normal vector field and the shape operator of Mr,
respectively. The Gaussian and mean curvatures are given in terms of coefficients
of fundamental forms Ir and IIr as follows:

(2.13) Kr =
ergr − fr2

ErGr − F r2
and Hr =

erGr − 2frF r + grEr

2(ErGr − F r2)
,

respectively [17].

Lemma 2.1. Let M be a timelike surface and Mr be a parallel surface of M in
E3

1. The surface M is timelike one if and only if the surface Mr is timelike parallel
surface [17].

Theorem 2.8. Let M be a timelike surface and Mr be a parallel surface of M in
E3

1. Then we have

(2.14) Kr =
K

1 + 2rH + r2K
and Hr =

H + rK

1 + 2rH + r2K

where Gaussian and mean curvatures of M and Mr be denoted by K, H and Kr,
Hr, respectively [17].
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Corollary 2.1. Let M be a timelike surface and Mr be a parallel surface of M in
E3

1. Then we have

(2.15) K =
Kr

1− 2rHr + r2Kr
and H =

Hr − rKr

1− 2rHr + r2Kr

where Gaussian and mean curvatures of M and Mr be denoted by K, H and Kr,
Hr, respectively [17].

Theorem 2.9. Let M be a timelike surface and Mr be a parallel surface of M
in E3

1. Curves on the timelike parallel surface Mr which correspond to lines of
curvature on the timelike surface M are also the lines of curvature [17].

3. Timelike parallel ruled surfaces with spacelike ruling

The timelike ruled surface M with spacelike ruling, is parameterized as

(3.1) ϕ(u, v) = α(u) + vX(u), 〈α′, α′〉 = −1, 〈X, X〉 = 1, 〈X ′, X ′〉 = −1.

The normal vector of the surface M is as follows:

(3.2) N = α′ ∧X + vX ′ ∧X.

For the normal vector of a developable ruled surface which is constant along its
ruling and is independent from the parameter v, the expressions α′∧X and X ′∧X
in (3.2) are linearly dependent, that is, the following equation is obtained

α′ ∧X = λX ′ ∧X,

where λ ∈ R. Also, from the equation (3.2), the normal vector of the surface M
can be obtained as

(3.3) N = (λ + v)X ′ ∧X.

The unit normal vector of the surface becomes as follows

(3.4) N = X ′ ∧X.

We get parallel surface of the ruled surface parameterized as ϕ(u, v) = α(u) + vX(u)
as

(3.5) ϕr(u, v) = α(u) + rX ′(u) ∧X(u) + vX(u).

We call the surface obtained in (3.5) as the parallel ruled surface. The ruling of
parallel ruled surface is

(3.6) f∗(X) = f∗(T ) ∧Nr = (T + rbT ) ∧N = −(1 + rb)X.

And we also get

(3.7) f ◦ α(u) = α(u) + rN(u) = α(u) + rX ′(u) ∧X(u).

The coefficient gr of the second fundamental form IIr of the parallel surface Mr is

gr = −〈ϕr
v,Nv〉 = −〈X, 0〉 = 0.

The drall of parallel ruled surface is obtained from the following formula

(3.8) P r =<
df ◦ α

du
, f ′

∗(X) ∧ f∗(X) > .

From (3.8), the value of drall is found as follows:

(3.9) P r =
〈
α′ + rX ′′ ∧X, (1 + rb)2X ′ ∧X

〉
= 0



ON TIMELIKE PARALLEL RULED SURFACES WITH SPACELIKE RULING 29

Finally, the parallel ruled surface given in (3.5) is a developable ruled surface.
Therefore, we can give the following theorem:

Theorem 3.1. Let M be a timelike ruled surface with spacelike ruling and Mr be a
parallel surface of M in E3

1. Parallel surface of a timelike developable ruled surface
is again a timelike ruled surface.

The coefficients of the first and second fundamental forms Ir and IIr for the
parallel surfaces of timelike ruled surface parameterized in (3.5) are as such:

(3.10)
Er = 〈α′, α′〉+ 2r 〈α′, X ′′ ∧X〉+ 2v 〈α′, X ′〉+ r2 〈X ′′ ∧X, X ′′ ∧X〉

+2rv 〈X ′, X ′′ ∧X〉+ v2 〈X ′, X ′〉 .

Since 〈X ′, X ′〉 = −1 and 〈X ′′, X ′〉 = 0, X ′′ lies in the plane spanned by the vectors
X and X ′ ∧X. Therefore

(3.11) X ′′ = mX + nX ′ ∧X,

where m,n ∈ R. By using (3.11), we have

(3.12) X ′′ ∧X = (mX + nX ′ ∧X) ∧X = (nX ′ ∧X) ∧X = nX ′.

Substituting (3.12) into (3.10), the coefficients Er, F r and Gr of the first funda-
mental form Ir for the parallel surface Mr are found as

Er = −1− (rn− v)2

F r = 〈ϕr
u, ϕr

v〉 = 〈α′ + rX ′′ ∧X + vX ′, X〉 = 〈α′, X〉

Gr = 〈ϕr
v, ϕr

v〉 = 〈X, X〉 = 1.

Also, the normal vector of the surface is

Nr = N = ϕu ∧ ϕv = α′ ∧X + vX ′ ∧X.

Let us find the coefficients of the second fundamental form IIr. The coefficients
lr, mr and nr of the second fundamental form IIr for the parallel surface Mrare
computed as follows:

lr = −〈ϕr
u, Nr

u〉 = −〈α′, α′′ ∧X〉 − 〈X ′, α′′ ∧X〉 (rn + v) + v2n + rvn2

mr = 〈−ϕr
u, Nr

v 〉 = −〈α′, X ′ ∧X〉

nr = −〈ϕr
v, Nr

v 〉 = −〈X, X ′ ∧X〉 = 0.

Corollary 3.1. Let Mr be a timelike parallel ruled surface of a timelike ruled
surface with spacelike ruling in E3

1. Then the directrix and the ruling of the time-
like parallel ruled surface are a timelike curve and its ruling is a timelike vector,
respectively.

Proof. The ruling of timelike parallel ruled surface Mr given in (3.5) is a spacelike
vector since 〈X, X〉 = 1. The causal character of the directrix is seen by the
following computations:

(3.13)

〈
df ◦ α(u)

du
,
df ◦ α(u)

du

〉
= 〈α′ + rX ′′ ∧X, α′ + rX ′′ ∧X〉

= 1-2rn 〈α′, X ′〉+r2n2 〈X ′, X ′〉 〈X, X〉 .
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By using 〈X ′, X ′〉 = −1 and 〈X ′, X ′′〉 = 0 in (3.13), it becomes

(3.14)
〈

df ◦ α(u)
du

,
df ◦ α(u)

du

〉
= −1− r2n2 < 0.

That the causal character of the directrix is timelike is seen from �

Theorem 3.2. Let M be a developable timelike ruled surface and Mr be a parallel
surface of M in E3

1. Let f∗(T ), f∗(X) and Nr be, the directrix, the ruling and the
normal vector of the parallel surface Mr, respectively. Hence the reciprocal cross
products of these three vectors are as follows:

f∗(T ) ∧Nr = f∗(X)

f∗(T ) ∧ f∗(X) = −(1 + rb)2Nr

f∗(X) ∧Nr = −f∗(T ).

Proof. Frenet equations for the timelike developable ruled surface M are obtained
in (2.3) by taking c = 0. And also the unit vectors T , X, N for the timelike
developable ruled surface M are as in (2.4). By means of these information, we
have the following results:

f∗(T ) ∧Nr=(T+rS(T )) ∧N=(T+rbT ) ∧N=-(1+rb)X = f∗(X),

f∗(T ) ∧ f∗(X)=(T+rS(T )) ∧ f∗(X)=(T+rbT ) ∧ (-1-rb)X=-(1+rb)2N = -(1+rb)2Nr,

f∗(X) ∧Nr = −(1+rb)X ∧N = −(1 + rb)T = −f∗(T ).

�

Theorem 3.3. The vectors f∗(T ), f∗(X), Nr for the timelike parallel ruled surface
Mr are timelike, spacelike and spacelike vectors, respectively, while the unit vectors
T , X, N for the timelike developable ruled surface with spacelike ruling M are
timelike, spacelike and spacelike vectors, respectively.

Proof. The normal vector of the timelike parallel ruled surface Mr is a spacelike
vector because

〈Nr, Nr〉 = 〈N,N〉 = 1.

The tangent vector field of the directrix is a timelike vector because

〈f∗(T ), f∗(T )〉 = −(1− rb)2 < 0.

From (3.6), the vector f∗(X) is a spacelike vector because

〈f∗(X), f∗(X)〉 = 〈−(1 + rb)X,−(1 + rb)X〉 = (1 + rb)2 > 0.

�

Position vector of striction curve on the timelike parallel ruled surface Mr is
written as

(3.15)
−→
Oγ =

−−−−→
Of ◦ α +

−−−−→
θf∗(X).

By using f∗(X) = Xr in (3.15), we get

(3.16) γ(u) = f ◦ α(u) + θXr(u) and θ = θ(u).
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After making the required computations in (3.16), we get the function θ = θ(u) as
follows:

(3.17)
θ = −

〈
df ◦ α

du
,
dXr

du

〉
〈

dXr

du
,
dXr

du

〉
=
〈α′, X ′〉+ r 〈X ′′ ∧X, X ′〉

(1 + rb) 〈X ′, X ′〉
.

Hence using (3.16) and (3.17), the striction curve is given as follows:

(3.18) γ(u) = α(u) + rX ′(u) ∧X(u) +
〈α′, X ′〉+ r 〈X ′′ ∧X, X ′〉

〈X ′, X ′〉
X.

After some calculations, the equation (3.18) becomes

(3.19) γ(u) = α(u) + rX ′(u) ∧X(u) +
1 + rna

a
X.

Corollary 3.2. Striction curve of the timelike parallel ruled surface is also a di-
rectrix provided that 〈α′, X ′〉 = 0 and 〈X ′′ ∧X, X ′〉 = 0.

Proof. Straightforward calculation by using (3.18). �

Corollary 3.3. Striction curve of the timelike parallel ruled surface is also a di-
rectrix provided that 1 + rna = 0.

Proof. Straightforward calculation by using (3.19). �

Theorem 3.4. The striction curve γ of the timelike parallel ruled surface Mr is a
timelike curve.

Proof. The normal vector field of the timelike parallel ruled surface Mr is

Nr = N = ϕu ∧ ϕv = α′ ∧X + vX ′ ∧X.

For v = 0, we get

(3.20) Nr(u, 0) = α′(u) ∧X(u).

From (3.20), we have

(3.21)
〈Nr(u, 0),Nr(u, 0)〉= 〈α′(u) ∧X(u),α′(u) ∧X(u)〉

=F 2+1 > 0.

The result obtained in (3.21) means that the striction curve is timelike because the
vector which is normal to it is spacelike vector. �

Theorem 3.5. Striction curve of the timelike parallel ruled surface Mr does not
depend on the choice of the base curve f ◦ α.

Proof. Let f ◦ α and ρ be two different directrices of the timelike parallel ruled
surface. Then the timelike parallel ruled surface is

(3.22) ϕr(u, v) = f ◦ α(u) + vXr(u) = ρ(u) + sXr(u)

for some function s = s(v). Assume that the curves γ(u) and γ(u) are the striction
curves of the surfaces given in (3.22). Then as analogous to (3.18) by (3.22) we get

(3.23) γ(u)− γ(u) = (v − s)Xr − 〈(v − s)Xr′, X ′〉
〈X ′, X ′〉

X(u) = 0.
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The proof is completed by the result obtained in (3.23). �

Theorem 3.6. Given a timelike parallel ruled surface Mr which is parallel to
developable timelike ruled surface M with spacelike ruling. There exists a unique
orthogonal trajectory of Mr through each point of M . This orthogonal trajectory in
terms of magnitudes of the timelike ruled surface M is as follows:

β(s) = α(s) + rX ′(s) ∧X(s) + g(s)X(s).

Here, the function g(s) has been taken instead of −v(1 + rb).

Proof. Let

(3.24)
ϕr : I × J −→ E3

1

(u, v) −→ ϕr(u, v)=f ◦ α(u)+vXr(u)
=α(u)+rX ′(u) ∧X(u)-v(1 + rb)X.

An orthogonal trajectory of Mr is given by

(3.25) β : Ĩ −→ Mr

s −→ β(s) = f ◦ α(s) + g(s)Xr(s).

We may assume Ĩ ⊂ I. Since

(3.26) 〈β′(s), Xr(s)〉= 〈α′(s),X(s)〉+g′(s)=0,

we obtain
g(s) = −

∫
〈α′(s), X(s)〉 ds + h,

where h is a real constant. Hence h = g(s0)− F (s0), where

−
∫
〈α′(s), X(s)〉 ds = F (s).

Therefore the orthogonal trajectory of Mr through the point P0 is unique. Thus,
we have Ĩ = I since the orthogonal trajectory of the surface Mr meets each one
of the rulings of Mr. �

Corollary 3.4. Let M be a timelike ruled surface with spacelike ruling and Mr be
a timelike parallel surface of M in E3

1. The Gaussian and mean curvatures Kr and
Hr in terms of the parameters Q, J, F,D are as follows:

(3.27)

Kr =
−Q2

D4 − rQFD + rQ2JD + rvQ′D + rv2JD − r2Q2

Hr =
−QFD + Q2JD + vQ′D + v2JD − 2rQ2

2D4 − 2rQFD + 2rQ2JD + 2rvQ′D + 2rv2JD − 2r2Q2
,

respectively.

Proof. Using (2.7) in (2.14), the values of Gaussian Kr and mean curvatures Hr

are obtained in (3.27). �

4. Conclusion

In this study, timelike parallel ruled surfaces have been introduced in Minkowski
3-space. Additionally timelike parallel ruled surface have been constructed by using
basic features of timelike ruled surfaces with spacelike ruling. Also some properties
of timelike parallel ruled surface have been given in Minkowski 3-space.
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37-48.
[13] B. O’Neill, Semi Riemannian Geometry with Applications to Relativity, Academic Press, Inc.

New York, 1983.

[14] K. R. Park and G. I. Kim, Offsets of Ruled Surfaces, J. Korean Computer Graphics Society,
4(1998), 69-75.

[15] W. Sodsiri, Ruled Surfaces of Weingarten Type in Minkowski 3-Space, PhD. thesis,

Katholieke Universiteit Leuven, Belgium, 2005.
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