Konuralp Journal of Mathematics
Volume 1 No. 1 Pp. 34-39 (2013) ©KJM

SOME PROPERTIES OF FINITE $\{0,1\}$-GRAPHS

İ. GÜNALTILI^, A. ULUKAN AND Ş. OLGUN

Abstract

Let $G=(V, E)$ be a connected graph , X be a subset of V, A be a finite subset of non-negative integers and $n(x, y)$ be the total number of neighbours of any two vertices x, y of X. The set X is called A-semiset if $n(x, y) \in A$ for any two vertices x ande y of X. If X is a A-semiset, but not B-semiset for any subset B of A, the set X is called A-set. The graph $G=(V, E)$ is a A-semigraph and A-graph if V is the A-semiset and A set, respectively. Mulder [2] observed that $\{0, \lambda\}$-semigraphs(these graphs are called $(0, \lambda)$-graphs by Mulder $[2]),(\lambda \geq 2)$, are regular. Furthermore a lower bound for the degree of $\{0, \lambda\}$-semigraphs with diameter at least four was derived by Mulder [2].

In this paper, we determined basic properties of finite bigraphs with at least one $\{0,1\}$-part.

1. Introduction

Let us first recall some definitions and results. For more details, (see [1]). To facilitate the general definition of a graph, we first introduce the concept of the unordered product of a set V with itself. Recall that the ordered product or cartesian product of a set V with itself, denoted by $V \times V$, is defined to be the set of all ordered pairs (s, t), where $s \in V$ and $t \in V$. The symbol $\{s, t\}$ will denote an unordered pair.

A graph $G=(V, E)$ consists of a finite nonempty set V of v vertices together with a prescribed set E of e unordered pairs of distinct vertices of V. If a pair $u=\{x, y\}$ is an edge of G, u is said to joins x and y. We write $u=x y$ and say that vertices x and y are adjacent vertices; the vertex x and the edge u are incident with each other, If two distinct edges u and v are incident with a common vertex, then they are adjacent edges. A vertex z which adjacents to two distinct vertices x and y is called neighbour of x and y. The neighborhood of a vertex x is the set $N(x)$ consists of all vertices which are adjacent to x. The set $N_{i}(x)$ is the set of vertices at distance i from $x . G[W]$ is the subgraph of G induced by the vertex or edge set W. The degree of a vertex p is the number $d(p)$ of edges which are incident with

[^0]it. Let X be a subset of V. The integer n, where $n+1=\max \{d(p): p \in X\}$, is called the order of the set X. The minimum degree among the vertices of $G=(V, E)$ is denoted by $\delta(G)$. If $G=(V, E)$ contains a cycle, the girth of $G=(V, E)$ denoted $g(G)$ is the lenght of its shortest cycle.
Definition 1.1. Let $G=(V, E)$ be a connected graph, X be a subset of V, A be a finite subset of non-negative integers and $n(x, y)$ be the total number of neighbours of any two different x, y of X. The set X is called A-semiset if $n(x, y) \in A$ for any two vertices x ande y of X. If X is a A-semiset, but not B-semiset for any subset B of A, the set X is called A-set. The graph $G=(V, E)$ is a A-semigraph and A-graph if V is the A-semiset and A-set, respectively. If the set X does not contain edge will be called edge-free.

Mulder [2] observed that $\{0, \lambda\}$-semigraphs(these graphs are called ($0, \lambda$)-graphs by Mulder [2]), $(\lambda \geq 2)$, are regular. Furthermore a lower bound for the degree of $\{0, \lambda\}$-semigraphs with diameter at least four was derived by Mulder [2].

Definition 1.2. A bigraph (or bipartite graph) $G=(P \cup L, E)$ is a graph whose vertex set $P \cup L$ can be partitioned into subsets P and L in which a way that each edge of E joins a vertex in P to a vertex in L. Its clear that the parts P and L are edge-free.

In this paper, we determined basic properties of finite $(0,1)$-graphs.

2. Main Results

Corollary 2.1. Every subgraph of $a\{0,1\}$ - semigraph is a $\{0,1\}$ - semigraph.
Proof.Let $G=(V, E)$ be a $\{0,1\}$ - semigraph and let $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be subgraph of G. Since G is a $(0,1)-$ graph and $V^{\prime} \subset V$ for all $x, y \in V^{\prime},|N(x) \cap N(y)| \leq$ 1.Therefore G^{\prime} is a $(0,1)-$ graph.

Corollary 2.2. G is a $\{0,1\}$ - semigraph if and only if G is C_{4} - free.
Proof.Let G be a $(0,1)-$ graph. Suppose that, G isn't $C_{4}-$ free. Then, G contains at least one C_{4} in which $u_{1}-u_{2}-u_{3}-u_{4}-u_{1}$ for $u_{1}, u_{2}, u_{3}, u_{4} \in V$. Therefore, $N\left(u_{1}\right) \cap N\left(u_{3}\right)=\left\{u_{2}\right\}$ and $N\left(u_{1}\right) \cap N\left(u_{3}\right)=\left\{u_{4}\right\}$.In this case, $\mid N\left(u_{1}\right) \cap N\left(u_{3} \mid=2\right.$. This case contradicts with being a $(0,1)-$ graph of G. So, G is $C_{4}-f r e e$. Conversely, let G be C_{4}-free. If G isn't a $(0,1)-$ graph, then there are at least two different $u_{1}, u_{2} \in V$ such that $\mid N\left(u_{1}\right) \cap N\left(u_{2} \mid \geq 2\right.$. Let v_{1} and v_{2} be two different vertices in the set $N\left(u_{1}\right) \cap N\left(u_{2}\right)$. Then $u_{1}-v_{2}-u_{1}-v_{1}-u_{1}$ is cycle of four lenght in G. This contradicts with being $C_{4}-$ free of G. So, G is a $(0,1)-$ graph.

Theorem 2.1. Let $G=(V, E)$ be a $\{0,1\}$ - semigraph, $\operatorname{gird}(G) \geq 8$ and $v \in V$. If $P=N_{0}(v) \cup N_{2}(v)$ and $L=N_{1}(v) \cup N_{3}(v)$, then $G^{\prime}=[(P \cup L)]$ is bipartite subgraph of G.
Proof. Let G be a $\{0,1\}$ - semigraph. Since G^{\prime} is subgraph of G, G^{\prime} is a is a $(0,1)-$ graph by proposition 2.1. By the definition of P and $L, P \cap L=$ nothing. In this case, we show that $G^{\prime}=[(P \cup L)]$ is a bipartite $\{0,1\}-$ semigraph with parts P and L.
(i)Suppose, there are at least two vertices x and y in P such that $\{x, y\} \in E$. If $x=v$, then $y \in N_{2}(v)$. Thus, there is a u vertex in L which $N(x) \cap N(y)=$ $N(v) \cap N(y)=\{u\}$. Then,$x-u-y-x$ is cycle of three-lenght which contradicts $g(G) \geq 8$. The same contradict occurs for $y=v$, thus $x \neq v \neq y$ and $x, y \in N_{2}(v)$.

Let $P_{1}: x-u-v$ and $P_{2}: v-t-y$ be two paths. In this case, if $u \neq t, P_{1} \cup P_{2}$ is a cycle of lenght 5. This contradicts $g(G) \geq 8$. Therefore $u=t$. In this case, P contains a cycle of lenght 3, contradict $g(G) \geq 8$. So, P is edge-free.
(ii)Suppose, there are at least two different x and y in L for which $\{x, y\} \in E$. There are three cases for x and y.
Case 1: If $x, y \in N_{1}(v)$ then, $x-y-v-x$ is a cycle of lenght 3. This contradicts with $g(G) \geq 8$.
Case 2: If $x, y \in N_{3}(v)$, let us consider minumum paths

$$
P_{1}: v-x_{1}-x_{2}-x \text { and } P_{2}: v-y_{1}-y_{2}-y
$$

For $\forall i, j: 1,2$, if $x_{i} \neq y_{j}$, then seven lenght $v-x_{1}-x_{2}-x-y-y_{2}-y_{1}-v$ cycle is obtained. This contradicts $g(G) \geq 8$. Then, there is at least one pair (i, j) for which $x_{i}=y_{j}$. Thus G contains cycle of lenght 5 or 3 .
If $x_{i}=y_{j}$, then G consist at least one $x-x_{2}-x_{1}-y_{2}-y-x$ five-lenght cycle, contradicts $g(G) \geq 8$. Similar contradiction is obtained an all other cases.
Case 3: Let $x \in N_{1}(v)$ and $y \in N_{3}(v)$. Suppose $P_{1}: v-y_{1}-y_{2}-y$ is three lenght path. If $x \in P$, then $x-y_{2}-y-x$ is a cycle of three-lenght in G, contradiction. Therefore, $x \notin P_{1}, x \neq y_{1}$ and $x \neq y_{2}$. Thus $v-x-y-y_{2}-y_{1}-v$ is a cycle of lenght 5 in G. This contradicts with $g(G) \geq 8$. So, L is edge-free.

Theorem 2.2. Let $G=(P \cup L, E)$ be a connected bigraph with parts P and L. If the part P is a $\{0,1\}$-semiset, the part L is $\{0,1\}$-semiset and $G=(P \cup L, E)$ is $\{0,1\}$-semibigraph.
Proof. Let $G=(P \cup L, E)$ be a bigraph with parts P and L and let the part P be $a\{0,1\}$-semiset. Assume that the part L does not $\{0,1\}$-semiset. Then the part L has at least two distinct vertices u and w having at least two distinct common neighbours x and y in the part P. This contradict to choosen of the part P. Thus the part L is $\{0,1\}$-semiset and $G=(P \cup L, E)$ is $\{0,1\}$-semibigraph.

Let $G=(P \cup L, E)$ be a $\{0,1\}$-semibigraph with parts P and L. and $|P|=v$, $|L|=b$, the vertices of P will be labelled $p_{1}, p_{2}, \ldots, p_{v}$ Similary, the vertices of L will be labelled $l_{1}, l_{2}, \ldots, l_{b}$. To make our notation even more concise we define,
we see that the $(i, j) t h$ entry of the matrix $A=\left[r_{i j}\right]_{n \times m}$ is just the number $r_{i j}$. The matrix A is called incidence matrix of G. Where, $n=|V(G)|, m=|E|$. The matrix. $A^{\prime}=\left[r_{i j}\right]_{v x b}$ is called blok matrix of G

Theorem 2.3. Let $A=\left[r_{i j}\right]_{v x b}$ be the blok matrix of a $\{0,1\}$-semibigraph G, then the following equations valid.
(i) ${ }_{i=1}^{v} r_{i j}=v_{j},{ }_{j=1}^{v} r_{i j}=b_{i}$ and
(ii) ${ }_{j=1}^{b} v_{j}={ }_{j=1}^{b}\left(\begin{array}{l}v=1 \\ i=1\end{array} r_{i j}\right)={ }_{i=1}^{v}\left(\begin{array}{l}b=1 \\ j=1\end{array} r_{i j}\right)={ }_{i=1}^{v} b_{i}$.

Proof. If we add the 1 's in each column, column by column, we get ${ }_{i=1}^{b} v_{i}$. If we add the 1 's in each row, row by row, we get ${ }_{i=1}^{v} b_{i}$. But obviously we are just counting the same number of 1's in two different ways so we have the equations
$(i)_{i=1}^{v} r_{i j}=v_{j},{ }_{j=1}^{v} r_{i j}=b_{i}$ and
$(i i)_{j=1}^{b} v_{j}={ }_{j=1}^{b}\left(\begin{array}{l}v=1 \\ i=1\end{array} r_{i j}\right)={ }_{i=1}^{v}\left(\begin{array}{l}b=1 \\ j=1\end{array} r_{i j}\right)={ }_{i=1}^{v} b_{i}$

Theorem 2.4. If $r_{i j}=0$ then the number adjacent vertices to p_{i} and dont have common neihbour to l_{j} is $d\left(p_{i}\right)-p_{i j}$.

Proof. Since $d\left(p_{i}\right)$ is the total number of vertices which are adjacent with p_{i} and by definition $p_{i j}$ the result is immediate.

Theorem 2.5. If $G=(P \cup L, E)$ be a $\{0,1\}$-semibigraph with parts P and L and the part P be a $\{0,1\}$-semiset and $p_{i j}=d\left(l_{j}\right)$ for every vertex p_{i} of P and vertex l_{j} of L such that $r_{i j}=0$ then P is $a\{1\}$-set.

Proof. Since $|L|=b \geq 1$, there is a vertex l_{k} of L, say. We must show that the set P is $\{1\}$-set, that is, for any distinct two vertices p_{i} and p_{j} of $P, n\left(p_{i}, p_{j}\right)=1$. Let p_{i}, p_{j} be two distinct vertices of P. If $r_{i k}=r_{j k}=1, n\left(p_{i}, p_{j}\right)=1$. If $r_{i k}=0$ and $r_{j k}=1$ then by assumption $p_{i k}=d\left(l_{k}\right)$ so that p_{i} has a common neighbour with vertex which is adjacent to l_{k}. In particular, p_{i} and p_{j} have common neighbour. Thus $n\left(p_{i}, p_{j}\right)=1$. Finally, if $r_{i k}=r_{j k}=0$, using the hypothesis once again, for a vertex q which is adjacent with $l_{k} n\left(p_{i}, q\right)=1$. If the vertex p_{j} is adjacent with common neighbour of vertices p_{i} and $q, n\left(p_{i}, p_{j}\right)=1$ and otherwise, by the hypothesis one last time to get a common neighbour of vertices p_{i} and p_{j}. Therefore $n\left(p_{i}, p_{j}\right)=1$, that is, P is $\{1\}$-set.

Theorem 2.6. Let $G=(P \cup L, E)$ be a $\{0,1\}$-semibigraph and let $|P|=v,|L|=b$, $\delta(L) \geq 2$. P is a\{1\}-set if and only if

$$
{ }_{j=1}^{b} d\left(l_{j}\right)\left(d\left(l_{j}\right)-1\right) \geq v(v-1)
$$

Proof. Suppose that P is $\{1\}$ - set.Counting the number of pairs of vertices of P in two different ways. First of all, there are $\binom{v}{2}$ pairs of vertices of P (counting $\left\{p_{i}, p_{j}\right\}$ to be same pair as $\left.\left\{p_{j}, p_{i}\right\}\right)$. Second way, since P is $\{1\}-$ set, there is a uniqe l vertex of L which $l \in N\left(p_{i}\right) \cap N\left(p_{j}\right)$. Thus, the total number of pairs of vertices of P is the total number of pairs of vertices of $N(l)$, for each $l \in L$. Summed over all vertices of L, that is ${ }_{s} u m j=1^{b} d\left(l_{j}\right)\left(d\left(l_{j}\right)-1\right) / 2$.
So,

$$
{ }_{j=1}^{b} d\left(l_{j}\right)\left(d\left(l_{j}\right)-1\right)=v(v-1)
$$

Suppose, convercely, that

$$
{ }_{j=1}^{b} d\left(l_{j}\right)\left(d\left(l_{j}\right)-1\right) \geq v(v-1) \ldots \ldots *
$$

We prove that P is $\{1\}$ - set by induction on v.Since $\delta(L) \geq 2$, v is at least two and $b=1$. In the case, P is $\{1\}-$ set. If $v=3$ there are exactly three possibilities, for $b=1,2$ or 3 . Of these, only the case $b=1, p_{1}=v=3$ and $b=3, p_{1}=p_{2}=p_{3}=2$ satisfy inequality. In both of these case, P is $\{1\}-$ set.
Suppose then that if the inequality holds for a partial adjacent bigraph G^{\prime} with part P^{\prime} and L^{\prime} which P^{\prime} is a part with fewer than v vertices then P^{\prime} is $\{1\}-$ set. We may assume ${ }_{j=1}^{b} d\left(l_{j}\right)\left(d\left(l_{j}\right)-1\right) \geq v(v-1)$ in G, where $v \geq 4$. Let $p \in P$ be and consider the partial adjacent bigraph G^{\prime} with part P^{\prime} and L^{\prime} which is the restiriction of G to $P \backslash\{p\}$. So $P^{\prime}=P-\{p\}$ and $L^{\prime}=\{l \in L \mid\{p, l\} \notin E$ and $d(l) \geq 3\}$. As $\left|P^{\prime}\right|=v-1$, we attempt to prove that P is $\{1\}-$ set by showing that approprite inequality above holds. Its right hand side becomes $(v-1)(v-2)$.

In G^{\prime},

$$
\begin{aligned}
\sum_{l_{j}^{\prime}} d\left(l_{j}^{\prime}\right)\left(d\left(l_{j}^{\prime}\right)-1\right)= & \sum_{l_{j} \notin N(p)} d\left(l_{j}\right)\left(d\left(l_{j}\right)-1\right)+\sum_{l_{j} \in N(p), d\left(l_{j}\right) \geq 3} d\left(l_{j}^{\prime}\right)\left(d\left(l_{j}^{\prime}\right)-1\right) \\
= & \sum_{l_{j} \notin N(p)} d\left(l_{j}\right)\left(d\left(l_{j}\right)-1\right)+\sum_{l_{j} \in N(p), d\left(l_{j}\right) \geq 3}\left(d\left(l_{j}\right)-1\right)\left(d\left(l_{j}\right)-2\right) \\
= & \sum_{l_{j} \notin N(p)} d\left(l_{j}\right)\left(d\left(l_{j}\right)-1\right)+\sum_{l_{j} \in N(p), d\left(l_{j}\right) \geq 3} d\left(l_{j}\right)\left(d\left(l_{j}\right)-1\right) \\
& -2\left(\sum_{l_{j} \in N(p), d\left(l_{j}\right) \geq 3}\left(d\left(l_{j}\right)-1\right)\right)
\end{aligned}
$$

In G,

$$
\begin{aligned}
\sum_{l_{j}} d\left(l_{j}\right)\left(d\left(l_{j}\right)-1\right)= & \sum_{l_{j} \notin N(p)} d\left(l_{j}\right)\left(d\left(l_{j}\right)-1\right)+\sum_{l_{j} \in N(p), d\left(l_{j}\right) \geq 3} d\left(l_{j}\right)\left(d\left(l_{j}\right)-1\right) \\
& +\sum_{l_{j} \in N(p), d\left(l_{j}\right)=2} d\left(l_{j}\right)\left(d\left(l_{j}\right)-1\right) \\
\sum_{l_{j} \notin N(p)} d\left(l_{j}\right)\left(d\left(l_{j}\right)-1\right)= & \sum_{l_{j}} d\left(l_{j}\right)\left(d\left(l_{j}\right)-1\right)-\sum_{l_{j} \in N(p), d\left(l_{j}\right) \geq 3} d\left(l_{j}\right)\left(d\left(l_{j}\right)-1\right) \\
& -\sum_{l_{j} \in N(p), d\left(l_{j}\right)=2} d\left(l_{j}\right)\left(d\left(l_{j}\right)-1\right)
\end{aligned}
$$

Substituting in the above, we get

$$
\begin{aligned}
\sum_{l_{j}^{\prime}} d\left(l_{j}^{\prime}\right)\left(d\left(l_{j}^{\prime}\right)-1\right)= & \sum_{l_{j}} d\left(l_{j}\right)\left(d\left(l_{j}\right)-1\right)-2 \sum_{l_{j} \in N(p), d\left(l_{j}\right) \geq 3}\left(d\left(l_{j}\right)-1\right) \\
& -\sum_{l_{j} \in N(p), d\left(l_{j}\right)=2} d\left(l_{j}\right)\left(d\left(l_{j}\right)-1\right) \\
= & \sum_{l_{j}} d\left(l_{j}\right)\left(d\left(l_{j}\right)-1\right)-2\left(\sum_{l_{j} \in N(p)}\left(d\left(l_{j}\right)-1\right)\right)
\end{aligned}
$$

By hypohesis, $\sum_{l_{j}} d\left(l_{j}\right)\left(d\left(l_{j}\right)-1\right) \geq v(v-1)$. By counting total degree of the vertices of L which adjacent to p, it becomes evident that $\sum_{l_{j} \in N(p)}\left(d\left(l_{j}\right)-1\right) \leq v-1$ and so $-2\left(\sum_{l_{j} \in N(p)}\left(d\left(l_{j}\right)-1\right)\right) \geq-2(v-1)$. Therefore,

$$
\sum_{l_{j}^{\prime}} d\left(l_{j}^{\prime}\right)\left(d\left(l_{j}^{\prime}\right)-1\right) \geq v(v-1)-2(v-1)=(v-1)(v-2)
$$

as desired. By our induction hypothesis, $P^{\prime}=P-\{p\}$ is $\{1\}-$ set in G^{\prime}. In the case, show that, for each p^{\prime} of P^{\prime},there is a exactly one common vertex of p and p^{\prime}. Let $p^{\prime \prime}$ be arbitrarily vertex of P which $p^{\prime \prime} \neq p$ and $p^{\prime \prime} \neq p^{\prime} . \quad P^{\prime \prime}=P-\left\{p^{\prime \prime}\right\}$ is a restriction of P with $v-1$ vertices and the and the argument used above shows that $P^{\prime \prime}=P-\left\{p^{\prime \prime}\right\}$ is $\{1\}-$ set. Hence there is exactly one common vertex of p and p^{\prime}.

3. References

[1] A.S. Asratian,T.M.J. Denley and R. Höggkvist, Bipartite graphs and their applications, Cambridge Uni. Press, United Kingdom, (1998).
[2] M. Mulder, ($0, \lambda$)-graph and n-cubes, Discrete mathematics 28 (1979) 179188.
[3] P. Hall, On Reprensentation of Subset, J. Londan Mth. Soc. 10 (1935) 26-30
[4] J. Plesnik, A note on the complexcity of finding reguler subgraphs, Discrete Math., 49 (1984),16167
[5] F. Harary, D. Hsu and Z. Miller, The biparticity of a graph, J. Graph Theory 1 (1977) 131-133.
[6] A. Ulukan, On the Finite Adjacent Bipartite Graphs, PHD thesis.
[7] İ. Günaltılı, Finite regular bigraphs with at least one $\{1\}$-part, (preprint).
Eskişehir Osmangazi University Department of Mathematics and Computer Sciences, Eskişehir-TURKEY

E-mail address: igunalti@ogu.edu.tr
E-mail address: aulukan@anadolu.edu.tr
E-mail address: solgun@ogu.edu.tr

[^0]: 2000 Mathematics Subject Classification. 53D10, 53C15, 53C25, 53C35.
 Key words and phrases. graph, bipartite graph, A-semiset, convex graph.

 * corresponding author.

