

SOME PROPERTIES OF FINITE {0,1}-GRAPHS

İ. GÜNALTILI^{*}, A. ULUKAN AND Ş. OLGUN

ABSTRACT. Let $G{=}(V,E)$ be a connected graph , X be a subset of V, A be a finite subset of non-negative integers and n(x,y) be the total number of neighbours of any two vertices x,y of X. The set X is called A-semiset if $n(x,y) \in A$ for any two vertices x and y of X. If X is a A-semiset, but not B-semiset for any subset B of A ,the set X is called A-set. The graph $G{=}(V,E)$ is a A-semigraph and A-graph if V is the A-semiset and A-set, respectively. Mulder [2] observed that $\{0,\lambda\}$ -semigraphs(these graphs are called $(0,\lambda)$ -graphs by Mulder [2]), $(\lambda \geq 2)$, are regular. Furthermore a lower bound for the degree of $\{0,\lambda\}$ -semigraphs with diameter at least four was derived by Mulder [2].

In this paper, we determined basic properties of finite bigraphs with at least one $\{0,1\}$ -part.

1. INTRODUCTION

Let us first recall some definitions and results. For more details, (see [1]). To facilitate the general definition of a graph, we first introduce the concept of the unordered product of a set V with itself. Recall that the ordered product or cartesian product of a set V with itself, denoted by $V \times V$, is defined to be the set of all ordered pairs (s,t), where $s \in V$ and $t \in V$. The symbol $\{s,t\}$ will denote an unordered pair.

A graph G=(V,E) consists of a finite nonempty set V of v vertices together with a prescribed set E of e unordered pairs of distinct vertices of V. If a pair $u=\{x, y\}$ is an edge of G, u is said to joins x and y. We write u = xy and say that vertices x and y are adjacent vertices; the vertex x and the edge u are incident with each other, If two distinct edges u and v are incident with a common vertex, then they are adjacent edges. A vertex z which adjacents to two distinct vertices x and y is called neighbour of x and y. The neighborhood of a vertex x is the set N(x)consists of all vertices which are adjacent to x. The set $N_i(x)$ is the set of vertices at distance i from x.G[W] is the subgraph of G induced by the vertex or edge set W. The degree of a vertex p is the number d(p) of edges which are incident with

²⁰⁰⁰ Mathematics Subject Classification. 53D10, 53C15, 53C25, 53C35.

Key words and phrases. graph, bipartite graph, A-semiset, convex graph.

^{*}corresponding author.

it. Let X be a subset of V. The integer n, where $n + 1 = \max \{d(p) : p \in X\}$, is called the order of the set X. The minimum degree among the vertices of G=(V,E) is denoted by $\delta(G)$. If G=(V,E) contains a cycle, the girth of G=(V,E) denoted g(G) is the length of its shortest cycle.

Definition 1.1. Let G=(V,E) be a connected graph, X be a subset of V, A be a finite subset of non-negative integers and n(x, y) be the total number of neighbours of any two different x, y of X. The set X is called A-semiset if $n(x, y) \in A$ for any two vertices x and y of X. If X is a A-semiset, but not B-semiset for any subset B of A, the set X is called A-set. The graph G=(V,E) is a A-semigraph and A-graph if V is the A-semiset and A-set, respectively. If the set X does not contain edge will be called edge-free.

Mulder [2] observed that $\{0, \lambda\}$ -semigraphs(these graphs are called $(0, \lambda)$ -graphs by Mulder [2]), $(\lambda \ge 2)$, are regular. Furthermore a lower bound for the degree of $\{0, \lambda\}$ -semigraphs with diameter at least four was derived by Mulder [2].

Definition 1.2. A bigraph (or bipartite graph) $G=(P \cup L, E)$ is a graph whose vertex set $P \cup L$ can be partitioned into subsets P and L in which a way that each edge of E joins a vertex in P to a vertex in L. Its clear that the parts P and L are edge-free.

In this paper, we determined basic properties of finite (0,1)-graphs.

2. Main Results

Corollary 2.1. Every subgraph of a $\{0,1\}$ – semigraph is a $\{0,1\}$ – semigraph. **Proof.**Let G = (V, E) be a $\{0,1\}$ – semigraph and let G' = (V', E') be subgraph of G. Since G is a (0,1) – graph and $V' \subset V$ for all $x, y \in V', |N(x) \cap N(y)| \leq 1$. Therefore G' is a (0,1) – graph.

Corollary 2.2. G is a $\{0,1\}$ – semigraph if and only if G is C_4 – free. **Proof.**Let G be a (0,1) – graph. Suppose that, G isn't C_4 – free. Then, G contains at least one C_4 in which $u_1 - u_2 - u_3 - u_4 - u_1$ for $u_1, u_2, u_3, u_4 \in V$. Therefore, $N(u_1) \cap N(u_3) = \{u_2\}$ and $N(u_1) \cap N(u_3) = \{u_4\}$. In this case, $|N(u_1) \cap N(u_3) = 2$. This case contradicts with being a (0,1) – graph of G. So, G is C_4 – free.

Conversely, let G be $C_4 - free$. If G isn't a(0,1) - graph, then there are at least two different $u_1, u_2 \in V$ such that $|N(u_1) \cap N(u_2)| \ge 2$. Let v_1 and v_2 be two different vertices in the set $N(u_1) \cap N(u_2)$. Then $u_1 - v_2 - u_1 - v_1 - u_1$ is cycle of four lenght in G. This contradicts with being $C_4 - free$ of G. So, G is a (0,1) - graph.

Theorem 2.1. Let G = (V, E) be a $\{0, 1\}$ – semigraph, gird $(G) \ge 8$ and $v \in V$. If $P = N_0(v) \cup N_2(v)$ and $L = N_1(v) \cup N_3(v)$, then $G' = [(P \cup L)]$ is bipartite subgraph of G.

Proof. Let G be a $\{0,1\}$ – semigraph. Since G' is subgraph of G, G' is a is a (0,1) – graph by proposition 2.1. By the definition of P and L, $P \cap L$ = nothing. In this case, we show that $G' = [(P \cup L)]$ is a bipartite $\{0,1\}$ – semigraph with parts P and L.

(i)Suppose, there are at least two vertices x and y in P such that $\{x, y\} \in E$. If x = v, then $y \in N_2(v)$. Thus, there is a u vertex in L which $N(x) \cap N(y) = N(v) \cap N(y) = \{u\}$. Then, x - u - y - x is cycle of three-length which contradicts $g(G) \geq 8$. The same contradict occurs for y = v, thus $x \neq v \neq y$ and $x, y \in N_2(v)$. Let $P_1: x - u - v$ and $P_2: v - t - y$ be two paths. In this case, if $u \neq t$, $P_1 \cup P_2$ is a cycle of lenght 5. This contradicts $g(G) \geq 8$. Therefore u = t. In this case, P contains a cycle of lenght 3, contradict $g(G) \ge 8$. So, P is edge-free.

(ii)Suppose, there are at least two different x and y in L for which $\{x, y\} \in E$. There are three cases for x and y.

Case 1: If $x, y \in N_1(v)$ then, x - y - v - x is a cycle of lenght 3. This contradicts with $g(G) \ge 8$.

Case 2: If $x, y \in N_3(v)$, let us consider minumum paths

 $P_1: v - x_1 - x_2 - x \text{ and } P_2: v - y_1 - y_2 - y$

For $\forall i, j : 1, 2$, if $x_i \neq y_j$, then seven lenght $v - x_1 - x_2 - x - y - y_2 - y_1 - v$ cycle is obtained. This contradicts $g(G) \geq 8$. Then, there is at least one pair (i, j) for which $x_i = y_i$. Thus G contains cycle of lenght 5 or 3.

If $x_i = y_i$, then G consist at least one $x - x_2 - x_1 - y_2 - y - x$ five-length cycle, contradicts $q(G) \geq 8$. Similar contradiction is obtained an all other cases.

Case 3: Let $x \in N_1(v)$ and $y \in N_3(v)$. Suppose $P_1: v - y_1 - y_2 - y$ is three lenght path. If $x \in P$, then $x - y_2 - y - x$ is a cycle of three-lenght in G, contradiction. Therefore, $x \notin P_1$, $x \neq y_1$ and $x \neq y_2$. Thus $v - x - y - y_2 - y_1 - v$ is a cycle of lenght 5 in G. This contradicts with $g(G) \ge 8$. So, L is edge-free.

Theorem 2.2. Let $G = (P \cup L, E)$ be a connected bigraph with parts P and L. If the part P is a $\{0,1\}$ -semiset, the part L is $\{0,1\}$ -semiset and $G=(P \cup L,E)$ is $\{0,1\}$ -semibigraph.

Proof. Let $G = (P \cup L, E)$ be a bigraph with parts P and L and let the part P be a $\{0,1\}$ -semiset. Assume that the part L does not $\{0,1\}$ -semiset. Then the part L has at least two distinct vertices u and w having at least two distinct common neighbours x and y in the part P. This contradict to choosen of the part P. Thus the part L is $\{0,1\}$ -semiset and $G = (P \cup L, E)$ is $\{0,1\}$ -semibigraph.

Let $G = (P \cup L, E)$ be a $\{0,1\}$ -semibigraph with parts P and L. and |P| = v, |L| = b, the vertices of P will be labelled $p_1, p_2, ..., p_v$ Similarly, the vertices of L will be labelled $l_1, l_2, ..., l_b$. To make our notation even more concise we define,

$$r_{ij} = \begin{cases} 0, \ If \ p_i l_j \notin E \\ 1, \ If \ p_i l_j \in E \end{cases}$$

we see that the (i, j)th entry of the matrix $A = [r_{ij}]_{n \times m}$ is just the number r_{ij} . The matrix A is called incidence matrix of G. Where, n = |V(G)|, m = |E|. The matrix. $A' = [r_{ij}]_{vxb}$ is called blok matrix of G

Theorem 2.3. Let $A = [r_{ij}]_{vxb}$ be the blok matrix of a $\{0,1\}$ -semibigraph G, then the following equations valid.

(i) $_{i=1}^{v} r_{ij} = v_j, \, _{j=1}^{v} r_{ij} = b_i$ and

we add the 1's in each row, row by row, we get $\frac{v}{i=1}b_i$. But obviously we are just counting the same number of 1's in two different ways so we have the equations

- $(i)_{i=1}^{v}r_{ij} = v_j, _{j=1}^{v}r_{ij} = b_i$ and
- $(ii)_{j=1}^{b}v_{j} = \sum_{j=1}^{b} \left(\sum_{i=1}^{v} r_{ij} \right) = \sum_{i=1}^{v} \left(\sum_{j=1}^{b} r_{ij} \right) = \sum_{i=1}^{v} b_{i}$

Theorem 2.4. If $r_{ij} = 0$ then the number adjacent vertices to p_i and dont have common neihbour to l_j is $d(p_i) - p_{ij}$.

Proof. Since $d(p_i)$ is the total number of vertices which are adjacent with p_i and by definition p_{ij} the result is immediate.

Theorem 2.5. If $G = (P \cup L, E)$ be a $\{0,1\}$ -semibigraph with parts P and L and the part P be a $\{0,1\}$ -semiset and $p_{ij} = d(l_j)$ for every vertex p_i of P and vertex l_j of L such that $r_{ij} = 0$ then P is a $\{1\}$ -set.

Proof. Since $|L| = b \ge 1$, there is a vertex l_k of L, say. We must show that the set P is $\{1\}$ -set, that is, for any distinct two vertices p_i and p_j of P, $n(p_i, p_j) = 1$. Let p_i, p_j be two distinct vertices of P. If $r_{ik} = r_{jk} = 1, n(p_i, p_j) = 1$. If $r_{ik} = 0$ and $r_{jk} = 1$ then by assumption $p_{ik} = d(l_k)$ so that p_i has a common neighbour with vertex which is adjacent to l_k . In particular, p_i and p_j have common neighbour. Thus $n(p_i, p_j) = 1$. Finally, if $r_{ik} = r_{jk} = 0$, using the hypothesis once again, for a vertex q which is adjacent with l_k $n(p_i, q) = 1$. If the vertex p_j is adjacent with common neighbour of vertices p_i and q, $n(p_i, p_j) = 1$ and otherwise, by the hypothesis one last time to get a common neighbour of vertices p_i and p_j . Therefore $n(p_i, p_j) = 1$, that is, P is $\{1\}$ -set.

Theorem 2.6. Let $G = (P \cup L, E)$ be a $\{0,1\}$ -semibigraph and let |P| = v, |L| = b, $\delta(L) \ge 2$. P is a $\{1\}$ -set if and only if

$$_{j=1}^{b} d(l_j)(d(l_j) - 1) \ge v(v - 1)$$

Proof. Suppose that P is $\{1\}$ – set. Counting the number of pairs of vertices of P in two different ways. First of all, there are $\begin{pmatrix} v \\ 2 \end{pmatrix}$ pairs of vertices of P (counting $\{p_i, p_j\}$ to be same pair as $\{p_j, p_i\}$). Second way, since P is $\{1\}$ – set, there is a uniqe l vertex of L which $l \in N(p_i) \cap N(p_j)$. Thus, the total number of pairs of vertices of P is the total number of pairs of vertices of N(l), for each $l \in L$. Summed over all vertices of L, that is ${}_{s}umj = 1^{b}d(l_{j})(d(l_{j}) - 1)/2$.

$$_{j=1}^{b} d(l_j)(d(l_j) - 1) = v(v - 1)$$

Suppose, convercely, that

$$_{j=1}^{b} d(l_j)(d(l_j) - 1) \ge v(v - 1)....*$$

We prove that P is $\{1\}$ – set by induction on v.Since $\delta(L) \ge 2$, v is at least two and b = 1. In the case, P is $\{1\}$ – set. If v = 3 there are exactly three possibilities, for b = 1, 2 or 3. Of these, only the case b = 1, $p_1 = v = 3$ and b = 3, $p_1 = p_2 = p_3 = 2$ satisfy inequality. In both of these case, P is $\{1\}$ – set.

Suppose then that if the inequality holds for a partial adjacent bigraph G' with part P' and L' which P' is a part with fewer than v vertices then P' is $\{1\}$ – set. We may assume ${}_{j=1}^{b}d(l_{j})(d(l_{j})-1) \ge v(v-1)$ in G, where $v \ge 4$. Let $p \in P$ be and consider the partial adjacent bigraph G' with part P' and L' which is the restriction of G to $P \setminus \{p\}$. So $P' = P - \{p\}$ and $L' = \{l \in L \mid \{p,l\} \notin E \text{ and } d(l) \ge 3\}$. As |P'| = v - 1, we attempt to prove that P is $\{1\}$ – set by showing that approprite inequality above holds. Its right hand side becomes (v - 1)(v - 2).

$$\begin{split} \sum_{l'_j} d(l'_j)(d(l'_j) - 1) &= \sum_{l_j \notin N(p)} d(l_j)(d(l_j) - 1) + \sum_{l_j \in N(p), d(l_j) \ge 3} d(l'_j)(d(l'_j) - 1) \\ &= \sum_{l_j \notin N(p)} d(l_j)(d(l_j) - 1) + \sum_{l_j \in N(p), d(l_j) \ge 3} (d(l_j) - 1)(d(l_j) - 2) \\ &= \sum_{l_j \notin N(p)} d(l_j)(d(l_j) - 1) + \sum_{l_j \in N(p), d(l_j) \ge 3} d(l_j)(d(l_j) - 1) \\ &- 2 \left(\sum_{l_j \in N(p), d(l_j) \ge 3} (d(l_j) - 1) \right) \end{split}$$

In G,

$$\sum_{l_j} d(l_j)(d(l_j) - 1) = \sum_{l_j \notin N(p)} d(l_j)(d(l_j) - 1) + \sum_{l_j \in N(p), d(l_j) \ge 3} d(l_j)(d(l_j) - 1) + \sum_{l_j \in N(p), d(l_j) = 2} d(l_j)(d(l_j) - 1) \sum_{l_j \notin N(p)} d(l_j)(d(l_j) - 1) = \sum_{l_j} d(l_j)(d(l_j) - 1) - \sum_{l_j \in N(p), d(l_j) \ge 3} d(l_j)(d(l_j) - 1) - \sum_{l_j \in N(p), d(l_j) = 2} d(l_j)(d(l_j) - 1)$$

Substituting in the above, we get

$$\sum_{l'_j} d(l'_j)(d(l'_j) - 1) = \sum_{l_j} d(l_j)(d(l_j) - 1) - 2 \sum_{l_j \in N(p), d(l_j) \ge 3} (d(l_j) - 1)$$
$$- \sum_{l_j \in N(p), d(l_j) = 2} d(l_j)(d(l_j) - 1)$$
$$= \sum_{l_j} d(l_j)(d(l_j) - 1) - 2 \left(\sum_{l_j \in N(p)} (d(l_j) - 1) \right)$$

By hypohesis, $\sum_{l_j} d(l_j)(d(l_j)-1) \ge v(v-1)$. By counting total degree of the vertices of L which adjacent to p, it becomes evident that $\sum_{l_j \in N(p)} (d(l_j)-1) \le v-1$ and so $-2\left(\sum_{l_j \in N(p)} (d(l_j)-1)\right) \ge -2(v-1)$. Therefore,

$$\sum_{l'_j} d(l'_j)(d(l'_j) - 1) \ge v(v - 1) - 2(v - 1) = (v - 1)(v - 2)$$

as desired. By our induction hypothesis, $P' = P - \{p\}$ is $\{1\}$ – set in G'. In the case, show that, for each p' of P', there is a exactly one common vertex of p and p'. Let p'' be arbitrarily vertex of P which $p'' \neq p$ and $p'' \neq p'$. $P'' = P - \{p''\}$ is a restriction of P with v - 1 vertices and the and the argument used above shows that $P'' = P - \{p''\}$ is $\{1\}$ – set. Hence there is exactly one common vertex of p and p'.

In G',

3. References

- [1] A.S. Asratian, T.M.J. Denley and R. Höggkvist, Bipartite graphs and their applications, Cambridge Uni. Press, United Kingdom, (1998).
- [2] M. Mulder, (0, λ)-graph and n-cubes, Discrete mathematics 28 (1979) 179-188.
- [3] P. Hall, On Reprensentation of Subset, J. Londan Mth. Soc. 10 (1935) 26-30
- [4] J. Plesnik, A note on the complexcity of finding reguler subgraphs, Discrete Math., 49 (1984),16167
- [5] F. Harary, D. Hsu and Z. Miller, The biparticity of a graph, J. Graph Theory 1 (1977) 131-133.
- [6] A. Ulukan, On the Finite Adjacent Bipartite Graphs, PHD thesis.
- [7] İ. Günaltılı, Finite regular bigraphs with at least one {1}-part, (preprint).

ESKIŞEHIR OSMANGAZI UNIVERSITY DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCES, ESKIŞEHIR-TURKEY

E-mail address: igunalti@ogu.edu.tr E-mail address: aulukan@anadolu.edu.tr E-mail address: solgun@ogu.edu.tr