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SOME PROPERTIES OF FINITE {0,1}-GRAPHS

İ. GÜNALTILI?, A. ULUKAN AND Ş. OLGUN

Abstract. Let G=(V ,E) be a connected graph , X be a subset of V , A

be a finite subset of non-negative integers and n (x, y) be the total number
of neighbours of any two vertices x, y of X. The set X is called A-semiset

if n (x, y) ∈ A for any two vertices x ande y of X. If X is a A-semiset,
but not B-semiset for any subset B of A ,the set X is called A-set. The

graph G=(V ,E) is a A-semigraph and A-graph if V is the A-semiset and A-

set, respectively. Mulder [2] observed that {0, λ}-semigraphs(these graphs are
called (0, λ)-graphs by Mulder [2]), (λ ≥ 2) , are regular. Furthermore a lower

bound for the degree of {0, λ}-semigraphs with diameter at least four was

derived by Mulder [2].
In this paper, we determined basic properties of finite bigraphs with at

least one {0,1}-part.

1. Introduction

Let us first recall some definitions and results. For more details, (see [1]). To
facilitate the general definition of a graph, we first introduce the concept of the
unordered product of a set V with itself. Recall that the ordered product or carte-
sian product of a set V with itself,denoted by V × V , is defined to be the set of
all ordered pairs (s, t), where s ∈ V and t ∈ V . The symbol {s, t} will denote an
unordered pair.

A graph G=(V ,E) consists of a finite nonempty set V of v vertices together with
a prescribed set E of e unordered pairs of distinct vertices of V . If a pair u={x, y}
is an edge of G, u is said to joins x and y. We write u = xy and say that vertices
x and y are adjacent vertices; the vertex x and the edge u are incident with each
other, If two distinct edges u and v are incident with a common vertex, then they
are adjacent edges. A vertex z which adjacents to two distinct vertices x and y
is called neighbour of x and y. The neighborhood of a vertex x is the set N(x)
consists of all vertices which are adjacent to x. The set Ni(x) is the set of vertices
at distance i from x.G [W ] is the subgraph of G induced by the vertex or edge set
W. The degree of a vertex p is the number d (p) of edges which are incident with
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it. Let X be a subset of V . The integer n , where n + 1 = max {d(p) : p ∈ X}, is
called the order of the set X. The minimum degree among the vertices of G=(V ,E)
is denoted by δ(G). If G=(V ,E) contains a cycle, the girth of G=(V ,E) denoted
g(G) is the lenght of its shortest cycle.

Definition 1.1. Let G=(V ,E) be a connected graph , X be a subset of V , A be a
finite subset of non-negative integers and n (x, y) be the total number of neighbours
of any two different x, y of X. The set X is called A-semiset if n (x, y) ∈ A for any
two vertices x ande y of X. If X is a A-semiset, but not B-semiset for any subset B
of A ,the set X is called A-set. The graph G=(V ,E) is a A-semigraph and A-graph
if V is the A-semiset and A-set, respectively. If the set X does not contain edge
will be called edge-free.

Mulder [2] observed that {0, λ}-semigraphs(these graphs are called (0, λ)-graphs
by Mulder [2]), (λ ≥ 2) , are regular. Furthermore a lower bound for the degree of
{0, λ}-semigraphs with diameter at least four was derived by Mulder [2].

Definition 1.2. A bigraph (or bipartite graph) G=(P ∪ L,E) is a graph whose
vertex set P ∪L can be partitioned into subsets P and L in which a way that each
edge of E joins a vertex in P to a vertex in L. Its clear that the parts P and L are
edge-free.

In this paper, we determined basic properties of finite (0,1)-graphs.

2. Main Results

Corollary 2.1. Every subgraph of a {0, 1}− semigraph is a {0, 1}− semigraph.
Proof.Let G = (V,E) be a {0, 1}− semigraph and let G′ = (V ′, E′) be subgraph
of G. Since G is a (0, 1)− graph and V ′ ⊂ V for all x, y ∈ V ′, |N(x) ∩N(y)| ≤
1.Therefore G′ is a (0, 1)− graph.

Corollary 2.2. G is a {0, 1}− semigraph if and only if G is C4 − free.
Proof.Let G be a (0, 1)− graph. Suppose that, G isn’t C4−free. Then, G contains
at least one C4 in which u1 − u2 − u3 − u4 − u1 for u1, u2, u3, u4 ∈ V . Therefore,
N(u1)∩N(u3) = {u2} and N(u1)∩N(u3) = {u4} .In this case, |N(u1) ∩N(u3| = 2.
This case contradicts with being a (0, 1)− graph of G. So, G is C4 − free.
Conversely, let G be C4−free. If G isn’t a (0, 1)− graph, then there are at least two
different u1, u2 ∈ V such that |N(u1) ∩N(u2| ≥ 2. Let v1 and v2 be two different
vertices in the set N(u1)∩N(u2). Then u1−v2−u1−v1−u1 is cycle of four lenght
in G. This contradicts with being C4 − free of G. So, G is a (0, 1)− graph.

Theorem 2.1. Let G = (V,E) be a {0, 1}− semigraph, gird (G) ≥ 8 and v ∈ V.
If P = N0(v) ∪ N2(v) and L = N1(v) ∪ N3(v) , then G′ = [(P ∪ L)] is bipartite
subgraph of G.
Proof. Let G be a {0, 1}− semigraph. Since G′ is subgraph of G, G′ is a is a
(0, 1)− graph by proposition 2.1. By the definition of P and L,P ∩ L = nothing.
In this case, we show that G′ = [(P ∪ L)] is a bipartite {0, 1}− semigraph with
parts P and L.
(i)Suppose, there are at least two vertices x and y in P such that {x, y} ∈ E.
If x = v, then y ∈ N2(v). Thus, there is a u vertex in L which N(x) ∩ N(y) =
N(v)∩N(y) = {u} . Then , x− u− y− x is cycle of three-lenght which contradicts
g(G) ≥ 8. The same contradict occurs for y = v, thus x 6= v 6= y and x, y ∈ N2(v).
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Let P1 : x − u − v and P2 : v − t − y be two paths. In this case, if u 6= t, P1∪ P2

is a cycle of lenght 5. This contradicts g(G) ≥ 8. Therefore u = t. In this case, P
contains a cycle of lenght 3, contradict g(G) ≥ 8. So, P is edge-free.
(ii)Suppose, there are at least two different x and y in L for which {x, y} ∈ E.
There are three cases for x and y.
Case 1: If x, y ∈ N1(v) then, x− y− v− x is a cycle of lenght 3. This contradicts
with g(G) ≥ 8.
Case 2: If x, y ∈ N3(v) , let us consider minumum paths

P1 : v − x1 − x2 − x and P2 : v − y1 − y2 − y

For ∀ i, j : 1, 2, if xi 6= yj , then seven lenght v− x1 − x2 − x− y− y2 − y1 − v cycle
is obtained. This contradicts g(G) ≥ 8. Then, there is at least one pair (i, j) for
which xi = yj . Thus G contains cycle of lenght 5 or 3.
If xi = yj , then G consist at least one x− x2 − x1 − y2 − y − x five-lenght cycle,
contradicts g(G) ≥ 8. Similar contradiction is obtained an all other cases.
Case 3: Let x ∈ N1(v) and y ∈ N3(v). Suppose P1 : v− y1 − y2 − y is three lenght
path. If x ∈ P , then x − y2 − y − x is a cycle of three-lenght in G, contradiction.
Therefore, x /∈ P1, x 6= y1 and x 6= y2. Thus v − x − y − y2 − y1 − v is a cycle of
lenght 5 in G. This contradicts with g(G) ≥ 8. So, L is edge-free.

Theorem 2.2. Let G=(P ∪ L,E) be a connected bigraph with parts P and L. If
the part P is a {0,1}-semiset, the part L is {0,1}-semiset and G=(P ∪ L,E) is
{0,1}-semibigraph.
Proof. Let G=(P ∪ L,E) be a bigraph with parts P and L and let the part P be
a {0,1}-semiset. Assume that the part L does not {0,1}-semiset. Then the part
L has at least two distinct vertices u and w having at least two distinct common
neighbours x and y in the part P . This contradict to choosen of the part P . Thus
the part L is {0,1}-semiset and G=(P ∪ L,E) is {0,1}-semibigraph.

Let G=(P ∪ L,E) be a {0,1}-semibigraph with parts P and L. and |P | = v ,
|L| = b, the vertices of P will be labelled p1, p2, ..., pv Similary, the vertices of L
will be labelled l1, l2, ..., lb. To make our notation even more concise we define,

rij =
{

0, If pilj /∈ E
1, If pilj ∈ E

we see that the (i, j)th entry of the matrix A = [rij ]n×m is just the number rij .
The matrix A is called incidence matrix of G. Where, n = |V (G)|, m = |E| . The
matrix.A′ = [rij ]vxbis called blok matrix of G

Theorem 2.3. Let A = [rij ]vxb be the blok matrix of a {0,1}-semibigraph G, then
the following equations valid.

(i) v
i=1rij = vj , v

j=1rij = bi and
(ii) b

j=1vj =b
j=1 (v

i=1rij) =v
i=1

(
b
j=1rij

)
=v

i=1 bi.

Proof. If we add the 1’s in each column, column by column, we get b
i=1vi . If

we add the 1’s in each row, row by row, we get v
i=1bi . But obviously we are just

counting the same number of 1’s in two different ways so we have the equations
(i)v

i=1rij = vj ,
v
j=1 rij = bi and

(ii)b
j=1vj =b

j=1 (v
i=1rij) =v

i=1

(
b
j=1rij

)
=v

i=1 bi
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Theorem 2.4. If rij = 0 then the number adjacent vertices to pi and dont have
common neihbour to lj is d(pi)− pij.

Proof. Since d(pi) is the total number of vertices which are adjacent with pi

and by definition pijthe result is immediate.

Theorem 2.5. If G=(P ∪ L,E) be a {0,1}-semibigraph with parts P and L and
the part P be a {0,1}-semiset and pij = d(lj) for every vertex pi of P and vertex lj
of L such that rij = 0 then P is a{1}-set.

Proof. Since |L| = b ≥ 1, there is a vertex lk of L, say. We must show that the
set P is {1}-set, that is, for any distinct two vertices pi and pj of P , n(pi, pj) = 1.
Let pi, pj be two distinct vertices of P . If rik = rjk = 1, n(pi, pj) = 1. If rik = 0
and rjk = 1 then by assumption pik = d(lk) so that pi has a common neighbour with
vertex which is adjacent to lk. In particular, pi and pj have common neighbour.
Thus n(pi, pj) = 1. Finally, if rik = rjk = 0, using the hypothesis once again,
for a vertex q which is adjacent with lk n(pi, q) = 1. If the vertex pj is adjacent
with common neighbour of vertices pi and q, n(pi, pj) = 1 and otherwise, by the
hypothesis one last time to get a common neighbour of vertices pi and pj. Therefore
n(pi, pj) = 1, that is, P is {1}-set.

Theorem 2.6. Let G=(P ∪ L,E) be a {0,1}-semibigraph and let |P | = v, |L| = b,
δ (L) ≥ 2. P is a{1}−set if and only if

b
j=1d(lj)(d(lj)− 1) ≥ v(v − 1)

Proof. Suppose that P is {1} − set.Counting the number of pairs of vertices of P

in two different ways. First of all, there are
(

v
2

)
pairs of vertices of P (counting

{pi, pj} to be same pair as {pj , pi}). Second way, since P is {1} − set, there is a
uniqe l vertex of L which l ∈ N(pi) ∩ N(pj). Thus, the total number of pairs of
vertices of P is the total number of pairs of vertices of N(l), for each l ∈ L. Summed
over all vertices of L, that is sumj = 1bd(lj)(d(lj)− 1)/2 .
So,

b
j=1d(lj)(d(lj)− 1) = v(v − 1)

Suppose, convercely, that

b
j=1d(lj)(d(lj)− 1) ≥ v(v − 1).....∗

We prove that P is {1}−set by induction on v.Since δ(L) ≥ 2, v is at least two and
b = 1. In the case, P is {1} − set. If v = 3 there are exactly three possibilities , for
b = 1, 2 or 3. Of these, only the case b = 1, p1 = v = 3 and b = 3, p1 = p2 = p3 = 2
satisfy inequality. In both of these case, P is {1} − set.
Suppose then that if the inequality holds for a partial adjacent bigraph G′ with part
P ′ and L′ which P ′ is a part with fewer than v vertices then P ′is {1} − set.We
may assume b

j=1d(lj)(d(lj) − 1) ≥ v(v − 1) in G, where v ≥ 4. Let p ∈ P be and
consider the partial adjacent bigraph G′ with part P ′ and L′ which is the restiriction
of G to P \ {p}. So P ′ = P − {p} and L′ = {l ∈ L | {p, l} /∈ E and d(l) ≥ 3} . As
|P ′| = v − 1, we attempt to prove that P is {1} − set by showing that approprite
inequality above holds. Its right hand side becomes (v − 1)(v − 2).



38 İ. GÜNALTILI?, A. ULUKAN AND Ş. OLGUN

In G′ ,∑
l′j

d(l′j)(d(l′j)− 1) =
∑

lj /∈N(p)

d(lj)(d(lj)− 1) +
∑

lj∈N(p),d(lj)≥3

d(l′j)(d(l′j)− 1)

=
∑

lj /∈N(p)

d(lj)(d(lj)− 1) +
∑

lj∈N(p),d(lj)≥3

(d(lj)− 1)(d(lj)− 2)

=
∑

lj /∈N(p)

d(lj)(d(lj)− 1) +
∑

lj∈N(p),d(lj)≥3

d(lj)(d(lj)− 1)

−2

 ∑
lj∈N(p),d(lj)≥3

(d(lj)− 1)


In G,∑

lj

d(lj)(d(lj)− 1) =
∑

lj /∈N(p)

d(lj)(d(lj)− 1) +
∑

lj∈N(p),d(lj)≥3

d(lj)(d(lj)− 1)

+
∑

lj∈N(p),d(lj)=2

d(lj)(d(lj)− 1)

∑
lj /∈N(p)

d(lj)(d(lj)− 1) =
∑
lj

d(lj)(d(lj)− 1)−
∑

lj∈N(p),d(lj)≥3

d(lj)(d(lj)− 1)

−
∑

lj∈N(p),d(lj)=2

d(lj)(d(lj)− 1)

Substituting in the above, we get∑
l′j

d(l′j)(d(l′j)− 1) =
∑
lj

d(lj)(d(lj)− 1)− 2
∑

lj∈N(p),d(lj)≥3

(d(lj)− 1)

−
∑

lj∈N(p),d(lj)=2

d(lj)(d(lj)− 1)

=
∑
lj

d(lj)(d(lj)− 1)− 2

 ∑
lj∈N(p)

(d(lj)− 1)


By hypohesis,

∑
lj

d(lj)(d(lj)−1) ≥ v(v−1) . By counting total degree of the vertices
of L which adjacent to p, it becomes evident that

∑
lj∈N(p)(d(lj) − 1) ≤ v − 1 and

so −2
(∑

lj∈N(p)(d(lj)− 1)
)
≥ −2(v − 1). Therefore,∑

l′j

d(l′j)(d(l′j)− 1) ≥ v(v − 1)− 2(v − 1) = (v − 1)(v − 2)

as desired. By our induction hypothesis, P ′ = P − {p} is {1} − set in G′. In the
case, show that , for each p′ of P ′,there is a exactly one common vertex of p and
p′. Let p′′ be arbitrarily vertex of P which p′′ 6= p and p′′ 6= p′. P ′′ = P − {p′′} is
a restriction of P with v − 1 vertices and the and the argument used above shows
that P ′′ = P − {p′′} is {1} − set. Hence there is exactly one common vertex of p
and p′.
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