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φ−CONFORMALLY FLAT C−MANIFOLDS

ERDAL ÖZÜSAĞLAM

Abstract. In this paper, we have studied φ−conformally flat, φ−conharmonically
flat and φ−projectively flat C−manifolds.

1. Preliminaries

Let (Mn,g), n = dimM , n ≥ 3, be a connected Riemannian manifold of class C∞

and ∇ be its Riemannian connection. The Riemannian-Christoffel curvature tensor
R, the Weyl conformal curvature tensor C (see [8]), the conharmonic curvature
tensor K (see [13]) and the projective curvature tensor P (see [8]) of (Mn,g) are
defined by

(1.1) R(X, Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

C(X, Y )Z = R(X, Y )Z − 1
n− 2

[S(Y,Z)X − S(X, Z)Y

+g(Y, Z)SX − g(X, Z)SY ] +(1.2)
τ

(n− 1)(n− 2)
[g(Y, Z)X − g(X, Z)Y ]

K(X, Y )Z = R(X, Y )Z − 1
n− 2

[S(Y, Z)X − S(X, Z)Y

+g(Y,Z)SX − g(X, Z)SY ](1.3)

(1.4) P (X, Y )Z = R(X, Y )Z − 1
n− 1

[g(Y,Z)SX − g(X, Z)SY ]

respectively, where S is the Ricci operator, defined by S(X, Y ) = g(SX, Y ), S is
the Ricci tensor, τ = tr(S) is the scalar curvature and X, Y, Z ∈ χ(M), χ(M) being
the vector fields of M .
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In this paper, we have studied φ−conformally flat C− manifolds. We show that
there are no exist φ−conformally flat and φ−projectively flat C−manifolds unless
the dimension of structure vector field s is 1. Similarly, we obtain that there is no
exist φ−conharmonically flat C−manifolds unless s = 4.

2. C−manifolds

We need the following definition which is given in [4].
Let (M, g) be a Riemannian manifold with dim(M) = 2m + s. Then M is said

to be an C−manifold if there exist on M an φ−structure φ [16] of rank 2m and s
global vector fields ξ1, ..., ξs (structure vector fields) such that [4]

(i) If η1 , ..., ηs are dual 1−forms of ξ1, ..., ξs, then:

(2.1) φξi = 0, ηi ◦ φ = 0, ηi(ξi) = 1, φ2 = −I +
s∑

i=1

ξi ⊗ ηi

g(X, Y ) = g(φX, φY ) +
s∑

i=1

ηi (X) ηi (Y )(2.2)

g(ξi, X) = ηi(X)(2.3)

for any X, Y ∈ χ(M) and i = 1, ..., s.
(ii) The φ−structure φ is normal, that is

[φ, φ] + 2
s∑

i=1

ξi ⊗ dηi = 0

where [φ, φ] is the Nijenhuis torsion of φ.
(iii) η1 ∧ ... ∧ ηs ∧ (dηi)n 6= 0 and dηi = 0, for any i. Examples of C−manifolds

are given in [4].
In a C−manifold M , besides the relations (1.1) and (1.2) the following also hold

[9] :

(∇Xφ) Y = 0

∇Xξi = 0

(2.4)
R(ξi, X)Y = 0
R(ξi, X)ξβ = 0

(2.5) S(ξi, X) = 2m
s∑

β=1

ηβ(X)

(2.6) S(φX, φY ) = S(X, Y )

An C−manifold M is said to be η−Einstein if its Ricci tensor S is of the form

(2.7) S(X, Y ) = ag(X, Y ) + b
s∑

i=1

ηi(X)ηi(Y )

for any vector fields X and Y , where, a, b are functions on Mn
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3. Main Results

In this section we consider φ−conformally flat, φ−conharmonically flat and
φ−projectively flat C− manifolds.

Let C be the Weyl conformal curvature tensor of Mn. Since at each point p ∈
Mn the tangent space TP (Mn) can be decomposed into the direct sum Tp(Mn) =
φ(Tp(Mn)) ⊕ L(ξp), where L(ξp) is a 1−dimensional linear subspace of Tp(Mn)
generated by ξp, we have a map:

C : Tp(Mn)× Tp(Mn)× Tp(Mn) → φ(Tp(Mn))⊕ L(ξp).

It may be natural to consider the following particular cases:
(1) C : Tp(Mn)×Tp(Mn)×Tp(Mn) → L(ξp), that is, the projection of the image

of C in φ(Tp(Mn)) is zero.
(2) C : Tp(Mn) × Tp(Mn) × Tp(Mn) → φ(Tp(Mn)) , that is, the projection of

the image of C in L(ξp) is zero.
(3) C : φ(Tp(Mn)) × φ(Tp(Mn)) × φ(Tp(Mn)) → L(ξp), that is, when C is

restricted to (Tp(Mn)) × φ(Tp(Mn)) × φ(Tp(Mn)), the projection of the image of
in φ(Tp(Mn)) is zero. This condition is equivalent to

(3.1) φ2C(φX, φY )φZ = 0

(see [8]).

Definition 3.1. A differentiable manifold (Mn, g), n > 3, satisfying the condition
(3.1) is called φ−conformally flat.

The cases (1) and (2) were considered in ([18]) and ([19]) respectively. The case
(3) was considered in ([8]) for the case Mn is a K−contact manifold.

Furthermore in [1], the authors studied (k, µ)−contact metric manifolds satisfy-
ing (3.1). Now our aim is to find the characterization of C−manifolds satisfying
the condition (3.1).

Theorem 3.1. Let M be an 2m + s−dimensional, (s > 1), C−manifold. Then
There is no exist φ−conformally flat C−manifolds.

Proof. Suppose that (M, g), (s > 1), is a φ−conformally flat C−manifold. It is
easy to see that φ2C(φX, φY )φZ = 0 holds if and only if

g(C(φX, φY )φZ, φW ) = 0,

for any X, Y, Z,W ∈ χ(M). So by the use of (1.2) φ−conformally flat means

g(R(φX, φY )φZ, φW ) =
1

2m + s− 2
[g(φY, φZ)S(φX, φW )

−g(φX, φZ)S(φY, φW ) + g(φX, φW )S(φY, φZ)
−g(φY, φW )S(φX, φZ)](3.2)

− τ

(2m + s− 1)(2m + s− 2)
[g(φY, φZ)g(φX, φW )

−g(φX, φZ)g(φY, φW )]

Let {w1, ..., w2m, ξ1, ..., ξs} be a local orthonormal basis of vector fields in M . Using
that {φw1, ..., φw2m, ξ1, ..., ξs} is also a local orthonormal basis, if we put X = W =
wi in (3.2) and sum up with respect to i, then
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2m∑
i=1

g(R(φwi, φY )φZ, φwi) =
1

2m + s− 2

2m∑
i=1

[g(φY, φZ)S(φwi, φwi)

−g(φwi, φZ)S(φY, φwi) + g(φwi, φwi)S(φY, φZ)
−g(φY, φwi)S(φwi, φZ)](3.3)

− τ

(2m + s− 1)(2m + s− 2)

2m∑
i=1

[g(φY, φZ)g(φwi, φwi)

−g(φwi, φZ)g(φY, φwi)]

It can be easily verify that

(3.4)
2m∑
i=1

g(R(φwi, φY )φZ, φwi) = S(φY, φZ),

(3.5)
2m∑
i=1

S(φwi, φwi) = τ

(3.6)
2m∑
i=1

g(φwi, φZ)S(φY, φwi) = S(φY, φZ)

(3.7)
2m∑
i=1

g(φwi, φwi) = 2m

and

(3.8)
2m∑
i=1

g(φwi, φZ)g(φY, φwi) = g(φY, φZ)

So by virtue of (3.4)–(3.8) the equation (3.3) can be written as

S(φY, φZ) =
1

2m + s− 2
[τg(φY, φZ)− 2S(φY, φZ) + 2mS(φY, φZ)]

− τ

(2m + s− 1)(2m + s− 2)
[2mg(φY, φZ)− g(φY, φZ)]

(3.9) S(φY, φZ) =
τ

2m + s− 1
g(φY, φZ).

Then by making use of (2.2) and (2.6), the equation (3.9) takes the form

(3.10) S(Y, Z) =
τ

2m + s− 1
g(Y, Z)− τ

2m + s− 1

s∑
i=1

ηi (Y ) ηi (Z) .

Therefore from (3.10), by contraction, we obtain s = 1 which is a contradiction.
This completes the proof of the theorem. �

From Theorem 3.1, we have following corollary.

Corollary 3.1. Let M be an (2m + 1)−dimensional φ−conformally flat C−manifold.
Then M is an η−Einstein manifold.
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Definition 3.2. A differentiable manifold (Mn, g), n > 3, satisfying the condition

(3.11) φ2K(φX, φY )φZ = 0

is called φ−conharmonically flat.

In [2], the authors considered (k, µ)−contact manifolds satisfying (3.11). Now
we will study the condition (3.11) on C− manifolds.

Theorem 3.2. Let M be an (2m + s)−dimensional, (s > 4), C−manifold There
is no exist φ−conharmonically flat C−manifold.

Proof. Assume that (M, g), (s > 4), is a φ−conharmonically flat C−manifold. It
can be easily seen that φ2K(φX, φY )φZ = 0 holds if and only if

g(K(φX, φY )φZ, φW ) = 0,

for any X, Y, Z,W ∈ χ(M). Using ( 1.3) φ−conformally flat means

g(R(φX, φY )φZ, φW ) =
1

2m + s− 2
[g(φY, φZ)S(φX, φW )− g(φX, φZ)S(φY, φW )

+g(φX, φW )S(φY, φZ)− g(φY, φW )S(φX, φZ)].(3.12)

Similar to the proof of Theorem 3.1, we can suppose that {w1, ..., w2m, ξ1, ..., ξs} is a
local orthonormal basis of vector fields in M . By using the fact that {φw1, ..., φw2m, ξ1, ..., ξs}
is also a local orthonormal basis, if we put X = W = wi in (3.12) and sum up with
respect to i, then
2m∑
i=1

g(R(φwi, φY )φZ, φwi) =
1

2m + s− 2

2m∑
i=1

[g(φY, φZ)S(φwi, φwi)− g(φwi, φZ)S(φY, φwi)

+g(φwi, φwi)S(φY, φZ)− g(φY, φwi)S(φwi, φZ)].(3.13)

So by the use of (3.4)-(3.7) the equation (3.13) turns into

(3.14) S(φY, φZ) =
τ

2m + s− 2
g(φY, φZ)− (2m− 2)

2m + s− 2
S(φY, φZ)

Thus applying (2.2) and (2.6) into (3.14) we get

(3.15) S(Y, Z) =
τ

4m + s− 4
g(Y, Z)− τ

4m + s− 4

s∑
i=1

ηi (Y ) ηi (Z)

from (3.10), by contraction, we obtain n = 4 which is a contradiction. �

From Theorem 3.2, we have following corollary.

Corollary 3.2. Let M be an (2m + 4)−dimensional φ−conharmonically flat C−manifold.
Then M is an η−Einstein manifold.

Similar to Definition 3.1 and Definition 3.2 we can state the following:

Definition 3.3. A differentiable manifold (Mn, g), n > 3, satisfying the condition

(3.16) φ2P (φX, φY )φZ = 0

is called φ−projectively flat.

Theorem 3.3. Let M be an 2m+ s dimensional, (s ≥ 2), C−manifold. There not
exist φ−projectively flat C−manifold.
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Proof. We assume that M be an 2m+s −dimensional, (s ≥ 2), φ−projectively flat
C−manifold. It can be easily seen that φ2P (φX, φY )φZ = 0 holds if and only if

g(R(φX, φY )φZ, φW ) = 0,

for any X, Y, Z,W ∈ χ(M). Using ((1.1) and (1.4) φ−projectively flat means
(3.17)

g(R(φX, φY )φZ, φW ) =
1

2m + s− 2
[g(φY, φZ)S(φX, φW )−g(φX, φZ)S(φY, φW ).

In a manner similar to the method in the proof of Theorem 2, choosing {w1, ..., w2m, ξ1, ..., ξs}
as a local orthonormal basis of vector fields in M and using the fact that {φw1, ..., φw2m, ξ1, ..., ξs}
is also a local orthonormal basis, putting X = W = wi in (3.17) and summing up
with respect to i, then we have
(3.18)
2m∑
i=1

g(R(φwi, φY )φZ, φwi) =
1

2m + s− 2

2m∑
i=1

[g(φY, φZ)S(φwi, φwi)−g(φwi, φZ)S(φY, φwi).

So applying (3.4)–(3.6) into (3.18) we get

S(φY, φZ) =
τ

2m + s− 1
g(φY, φZ)

Hence by virtue of (2.2) and (2.6) we obtain

(3.19) S(Y, Z) =
τ

2m + s− 1
g(Y, Z)− τ

2m + s− 1

s∑
i=1

ηi (Y ) ηi (Z)

Therefore from (3.19), by contraction, we obtain s = 1 which is a contraction.
Hence, the proof is completed. �

From Theorem 3.3, we have following corollary.

Corollary 3.3. Let M be an (2m + 1)−dimensional φ−projectively flat C−manifold.
Then M is an η−Einstein manifold.
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