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MODULES WITH VALUES IN THE SPACE OF ALL

DERIVATIONS OF AN ALGEBRA

H. ABBASI AND GH. HAGHIGHATDOOST

Abstract. In this paper, we construct a groupoid associated to a module

with values in the space of all derivations of a unital algebra. More precisely,

for a pair (A,G) consisting of an algebra A with a unit, a module G over the
center Z(A) of A together with a homomorphism of Z(A)-modules from G to

the space of all derivations Der(A) of A, we associate a groupoid. We discuss

on the equivalence relation induced from this groupoid.

1. Introduction

The concept of a groupoid is a generalization of the concept of a group, the main
difference being that not any two elements of a groupoid are composable. Note that
groupoids generalize not only the notion of a group but also the notion of a group
action. A groupoid can be endowed with the algebraic, geometric or topological
structures and in this case we can study the compatibility among these structures
and groupoid.

Note that the theory of groupoids has developed in different fields of mathe-
matics. The algebraic, topological and differentiable groupoids play an important
role in algebra, measure theory, harmonic analysis, differential geometry and sym-
plectic geometry. This can also be seen from a look at the list of references (see
[3, 5, 6, 7, 8, 9]).

A set H(1) has the structure of a groupoid with the set of units H(0), if there
are defined maps ∆ : H(0) → H(1), an involution ı : H(1) → H(1) and denoted by
ı(α) = α−1, a map r : H(1) → H(0), a map s : H(1) → H(0) and an associative
multiplication (α, β) 7→ αβ defined on the set

H(2) = {(α, β) ∈ H(1) ×H(1)
∣∣ s(α) = r(β)},

satisfying the conditions
(i) s(α) = r(α−1), αα−1 = ∆(r(α)),
(ii) r(∆(t)) = t = s(∆(t)), α∆(s(α)) = α, ∆(r(α))α = α,
for all α ∈ H(1) and t ∈ H(0).
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It is known that for an arbitrary groupoid (H(1),H(0)) there is an equivalence
relation on the unit set H(0). Namely, for two elements x, y ∈ H(0) the relation
x ∼ y iff s−1(x) ∩ r−1(y) 6= ∅ is an equivalence relation on the unit set H(0).

In [1], a method of associating a groupoid to a smooth manifold was introduced.
In this paper, we use the same method to construct a groupoid associated to a
module with values in the space of all derivations of a unital algebra. The focus in
this paper is on the several examples.

Let A be an algebra with a unit. Let Der(A) denote the space of all derivations
of A, i.e., the space of all linear mappings X of A into itself satisfying the Leibniz
rule X(ab) = X(a)b+ aX(b). The space Der(A) is in a natural way a module over
the center Z(A) of A. Furthermore, the space Der(A) is also a Lie algebra with
Lie bracket [X,Y ] = XY − Y X.

Consider a pair (A,G) consisting of a module G over the center Z(A) of A
together with a linear map from G to Der(A), which is also a homomorphism of
Z(A)-modules. In this paper, such pairs are called A-pairs.

We now give a brief summary of how the paper is organized.
In Section 2, we begin with our basic construction. We construct a groupoid

associated to an A-pair and we shall discuss on the equivalence relation induced
from this groupoid. In the case when G is a Lie algebra, we will give the conditions
that the equivalence classes are abelian Lie subalgebras of the Lie algebra G.

In Section 3, we compute and investigate the equivalence classes for several
examples. This section is devoted to the central algebras, foliation manifolds and
the endomorphism algebra of a vector bundle.

Our basic reference for groupoids is [2], and for an extensive use of them one can
refer to [5].

Throughout this paper, all smooth manifolds are assumed to be real, Hausdorff,
and finite-dimensional. All vector fields on manifolds are assumed to be smooth. If
M is a smooth manifold, let =(M) be the Lie algebra of all vector fields on M and
let C∞(M) be the algebra of all smooth functions on M .

2. Groupoid associated to an A-pair

In this section, we will introduce and construct a groupoid associated to an
A-pair. Let A be an algebra with a unit.

Definition 2.1. By an A-pair we mean a pair (A,G), where G is a module over
the center Z(A) of A together with a homomorphism of Z(A)-modules T : G →
Der(A).

In this paper, X(a) denotes T (X)(a), for all X ∈ G and a ∈ A. Using Definition
2.1, for all X ∈ G and a ∈ Z(A) we have X(a) ∈ Z(A).

Example 2.1. The pair (A, Der(A)) is an A-pair.

Consider an A-pair (A,G). The set of all invertible elements in the algebra A is
denoted by Inv(A), that is, for all a ∈ Inv(A) there exists an element a−1 ∈ A
such that aa−1 = 1 = a−1a.

Let ΓA = (Z(A) ∩ Inv(A))× Z(A). Fix an element X ∈ G. Let

G(1)X (A) = {(Y, a, b)
∣∣ Y ∈ G, (a, b) ∈ ΓA, Y (a) = X(b) + b}.
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We have to show that the pair (G(1)X (A),G) has the structure of a groupoid. Define

the map ∆ : G → G(1)X (A) by

∆(Y ) := (Y, 1, 0).

Since Y (1) = X(0) + 0, it follows that ∆ is well-defined. Define r, s : G(1)X (A)→ G
by

r(Y, a, b) := Y, s(Y, a, b) := aY − bX.
Define the involution ı : G(1)X (A)→ G(1)X (A) by

ı(Y, a, b) = (Y, a, b)−1 := (aY − bX, a−1,−a−1b).
We have

(aY − bX)(a−1)−X(−a−1b) = aY (a−1) + a−1Y (a)− a−1b
= Y (1)− a−1b = −a−1b.

This shows that ı is well-defined. Define the multiplication by

(Y, a, b)(aY − bX, c, d) := (Y, ac, bc+ d).

We have

Y (ac)−X(bc+ d) = (Y (a)−X(b))c+ aY (c)− bX(c)−X(d)

= bc+ (aY − bX)(c)−X(d) = bc+ d.

It is straightforward to check the following axioms are true:

s(α) = r(α−1), r(∆(Y )) = Y = s(∆(Y )),

αα−1 = ∆(r(α)),

α∆(s(α)) = α, ∆(r(α))α = α,

for all α ∈ G(1)X (A) and Y ∈ G.
For any fixed X ∈ G, we obtain an equivalence relation on the module G (see

Section 1 above). We say that two elements Y and W of G are equivalent iff there
exists a pair (a, b) ∈ ΓA such that

aW = bX + Y, W (a) = X(b) + b.

Let [(X,Y )]A be the equivalence class of any Y ∈ G.
Let us give an example. In the following, we consider the case for (C∞(R2),=(R2))

(see Example 2.1 above).

Example 2.2. The vector field X on R2 defined in terms of the identity chart x
by

X = x1
∂

∂x1
+ x2

∂

∂x2

has integral curves γ(t) = (z1 exp t, z2 exp t) starting at the point (z1, z2). Let
ζ : C∞(R2) → C∞(R2) be the zero vector field, defined by ζ(f) = 0 for each
f ∈ C∞(R2). We have

[(X, ζ)]C∞(R2) = { g
f
X | (f, g) ∈ ΓC∞(R2), gX(f)− fX(g) = fg}.

Assume that W = g
fX ∈ [(X, ζ)]C∞(R2) such that g is a non-zero function. Since

d
dt (

g
f ◦ γ) = X( gf ) ◦ γ, it follows that

f(z1, z2)g(z1 exp t, z2 exp t) exp t = f(z1 exp t, z2 exp t)g(z1, z2),
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on R, for all (z1, z2) ∈ R2. Hence, we have

f(z1, z2)g(z1s, z2s)s = f(z1s, z2s)g(z1, z2),

for all (z1, z2) ∈ R2 and all s > 0. Since g
f 6= 0 we can choose z ∈ R2 such that

g(z)
f(z) 6= 0. Then lims→0 | g(sz)f(sz) | would be infinite and this would imply that g

f is not

continuous at 0 and this is a contradiction. Hence, we have [(X, ζ)]C∞(R2) = {ζ}.

In addition, in the case when G is a Lie algebra we will give the conditions that
the equivalence classes are Lie subalgebras of the Lie algebra G.

The following theorem is the main result of this paper.

Theorem 2.1. Consider an A-pair (A,G), where G is also a Lie algebra with a
Lie bracket [, ]. Moreover, assume that for all a ∈ Z(A) and X,Y ∈ G we have
[X, aY ] = X(a)Y + a[X,Y ]. Let X,Y ∈ G. Then the following properties are
equivalent:

(i) [(X,Y )]A is an abelian Lie subalgebra of the Lie algebra G,
(ii) [(X,Y )]A = {aX | a ∈ Z(A), X(a) = −a},
(iii) there is an element t ∈ Z(A) such that Y = −tX and X(t) = −t.

Proof. It is easy to check that (i) =⇒ (ii) and (ii) =⇒ (iii). It suffices to prove
that (iii) =⇒ (i). Let t ∈ Z(A) such that Y = −tX and X(t) = −t. Assume that
W,Z ∈ [(X,Y )]A and λ ∈ C. We have to show that W + Z ∈ [(X,Y )]A, λW ∈
[(X,Y )]A and [W,Z] = 0. Choose (a, b) and (c, d) in ΓA such that

cZ = (d− t)X, aW = (b− t)X,

and

Z(c) = X(d) + d, W (a) = X(b) + b.

Let (s, h) = (ac, ad+ bc+ t(1− c− a)). It follows that

s(W + Z)− hX = Y.

Also, we have

(W + Z)(s)−X(h) = X(b)c+ cb+ (b− t)X(c) + (d− t)X(a)

+ aX(d) + ad−X(a)d− aX(d)−X(b)c

− bX(c)−X(t) +X(t)c+ tX(c) +X(t)a

+ tX(a)

= ad+ bc−X(t) +X(t)c+X(t)a = h.

So, we have W + Z ∈ [(X,Y )]A. On the other hand, it is simple to see that
λW ∈ [(X,Y )]A. Also, we have

ac[W,Z] = (b− t)X(d− t)X − (b− t)X(c)c−1(d− t)︸ ︷︷ ︸
X(d)+d

X

− (d− t)X(b− t)X + (d− t)X(a)a−1(b− t)︸ ︷︷ ︸
X(b)+b

X

= (b− t)X(d− t)X − (b− t)(X(d) + d)X

− (d− t)X(b− t)X + (d− t)(X(b) + b)X = 0.

Since ac ∈ Inv(A), it follows that [W,Z] = 0. �
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Let M be a smooth manifold and X a vector field on it. A non-zero function
h ∈ C∞(M) such that X(h) = λh, for some real number λ, is said to be an
eigenfunction of the vector field X and λ is called the corresponding eigenvalue.
Note that a non-zero function h ∈ C∞(M) is an eigenfunction of a vector field X
corresponding to a zero eigenvalue if and only if it is constant on the range of every
integral curve.

Example 2.3. (i) Any vector field X on a compact manifold M has all its eigen-
values zero. Let ζ : C∞(M) → C∞(M) be the zero vector field. Using Theorem
2.1, one gets [(X, ζ)]C∞(M) = {ζ}.

(ii) The vector field X on R2 defined in terms of the identity chart x by

X = x2
∂

∂x1
− x1 ∂

∂x2

has every eigenvalue zero, since its integral curves

γ(t) = (a sin(t+ b), a cos(t+ b)), γ(0) = (a sin(b), a cos(b)),

are all periodic, that is, there exists r > 0 such that γ(t1) = γ(t2) if and only if
t1 − t2 = kr, for some k ∈ Z. Let ζ be the zero vector field on R2. Hence, using
Theorem 2.1, we have [(X, ζ)]C∞(R2) = {ζ}.

3. Examples

Let us compute and investigate the equivalence classes for some examples. First,
we consider the case where the center of the algebra A is the set Z(A) = C1. For
example, consider the algebra of n× n complex matrices Mn(C).

Example 3.1. Consider an A-pair (A,G), assume that Z(A) = C1. We see that
X(Z(A)) = 0, for all X ∈ G. Let X,Y ∈ G and W ∈ [(X,Y )]A. It follows that

W (a) = X(b) + b, aW = bX + Y,

for a = α1, b = β1, where α, β ∈ C and α 6= 0. Therefore, we have b = 0 and
W = 1

αY. Thus [(X,Y )]A ⊂ (C − {0})Y . On the other hand, it is simple to see
that (C− {0})Y ⊂ [(X,Y )]A. Hence, we have

[(X,Y )]A = (C− {0})Y,
for all X,Y ∈ G.

Recall that a p-dimensional foliation F on a n-dimensional smooth manifold
M consists of the partition of M into maximal integral submanifolds (leaves) of
an integrable, p-dimensional subbundle F = TF of the tangent bundle TM . The
vector fields on M which are tangent to the leaves of F form a Lie subalgebra of
the Lie algebra =(M), which we denote by =(F). In other words, =(F) consists
of the sections of the tangent bundle TF of the foliation F . A smooth function ϕ
on M is called basic if it is constant along the leaves. Equivalently, a function ϕ is
basic if X(ϕ) = 0 whenever X ∈ =(F), briefly =(F)(ϕ) = 0. We refer to [4], for
details on foliations.

Example 3.2. Let (M,F) be a foliation manifold. The basic functions on (M,F)
form a subalgebra A of C∞(M):

A = {ϕ ∈ C∞(M)
∣∣ =(F)(ϕ) = 0}.
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In general, the Lie subalgebra =(F) is not a Lie ideal in =(M), but it is clearly a
Lie ideal in the Lie subalgebra

G = {Z ∈ =(M)
∣∣ [=(F), Z] ⊂ =(F)}.

Remark that G is a module over the algebra of basic functions. Also, the definition
of the Lie bracket implies that the derivative of a basic function in the direction of
a vector field in G is again basic. Therefore, we can define a linear map T : G →
Der(A) by T (Z)(ϕ) = Z(ϕ). We obtain that the pair (A,G) is an A-pair. Let
X ∈ =(F) ⊂ G and one gets

[(X,X)]A = {ϕX
∣∣ϕ ∈ Inv(A)}.

In the following, we consider the case for the pair

(End(E), Der(End(E))),

which End(E) is the algebra of the endomorphisms of a vector bundle E over a
smooth manifold M. We compute the equivalence class for X,Y ∈ Der(End(E))
which are also homomorphisms of C∞(M)-modules.

Example 3.3. Let E be a finite-dimensional complex (or real) vector bundle over
a smooth manifold M . We denote by End(E) the algebra of the endomorphisms of
this bundle. Any element ϕ ∈ End(E) can be considered as a section of the bundle
of endomorphisms. Therefore, for any element ϕ ∈ End(E) and any point p ∈ M
we have ϕp ∈ End(Ep). The center of the algebra End(E) is the set

C∞(M) · 1 = Z(End(E)).

Assume that derivations X,Y : End(E)→ End(E) are homomorphisms of C∞(M)-
modules, i.e., X(f · ϕ) = f ·X(ϕ) and Y (f · ϕ) = f · Y (ϕ), for all f ∈ C∞(M) and
ϕ ∈ End(E). Hence, we obtain

X(Z(End(E))) = 0 = Y (Z(End(E))).

Let W ∈ [(X,Y )]End(E). Hence, there exists a pair (a, b) such that

W (a) = X(b) + b, aW = bX + Y,

where a = f · 1, b = g · 1, f ∈ Inv(C∞(M)) and g ∈ C∞(M). Therefore, we have
W (Z(End(E))) = 0 and

W = (
1

f
· 1)Y ∈ (Inv(C∞(M)) · 1)Y.

Also, it is simple to see that (Inv(C∞(M))·1)Y ⊂ [(X,Y )]End(E). Hence, we obtain

[(X,Y )]End(E) = (Inv(C∞(M)) · 1)Y,

for all derivations X,Y : End(E) → End(E) that are homomorphisms of C∞(M)-
modules.

As another example we would like to investigate the equivalence classes for
derivations of the endomorphism algebra End(E) of a vector bundle E over a smooth
manifold M. In the following, we investigate the equivalence classes for a type of
derivations of the algebra End(E) that are not homomorphisms of C∞(M)-modules.

Recall that a Lie algebroid may be thought of as a generalization of the tangent
bundle of a manifold. Just as Lie algebras are in some sense the infinitesimal
versions of Lie groups, Lie algebroids are objects that play a similar role for Lie
groupoids. A Lie algebroid over the manifold M is the triple (K, [, ], µ) where K
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is a vector bundle over M , whose C∞(M)-module of sections Γ(K) is equipped
with a Lie algebra structure [, ] and µ : K → TM is a bundle map which induces
a Lie algebra homomorphism (also denoted µ) from Γ(K) to =(M), satisfying the
Leibnitz rule

[X, fY ] = µ(X)(f)Y + f [X,Y ],

for all f ∈ C∞(M) and X,Y ∈ Γ(K). Here, the map µ : K → TM is called an
anchor map (see [10, 11]).

Example 3.4. Let M be a smooth manifold and (K, [, ], µ) be a Lie algebroid over
M . Consider a K-connection on a vector bundle E over M . So, there exists a
R-bilinear map ∇ : Γ(K)× Γ(E)→ Γ(E) such that

∇fX(s) = f∇X(s), ∇X(fs) = µ(X)(f)s+ f∇X(s),

for all f ∈ C∞(M), X ∈ Γ(K) and s ∈ Γ(E). For any X ∈ Γ(K) define a derivation
DX : End(E)→ End(E) as

DX(ϕ)(s) = ∇X(ϕ(s))− ϕ(∇X(s)),

for all ϕ ∈ End(E) and s ∈ Γ(E). It is simple to see that

DX(f · ϕ) = µ(X)(f) · ϕ+ f ·DX(ϕ),

for all f ∈ C∞(M) and ϕ ∈ End(E). Thus, one gets

DX(f · 1) = µ(X)(f) · 1,

for all f ∈ C∞(M). Take X,Y ∈ Γ(K) and W ∈ [(X,Y )]C∞(M). There exists a
pair (f, g) ∈ ΓC∞(M) such that

fW = gX + Y, µ(W )(f) = µ(X)(g) + g.

We show that DW ∈ [(DX , DY )]End(E). For all ϕ ∈ End(E) and s ∈ Γ(E) we have

((f · 1)DW − (g · 1)DX)(ϕ)(s) = ∇fW−gX(ϕ(s))− ϕ(∇fW−gX(s))

= ∇Y (ϕ(s))− ϕ(∇Y (s))

= DY (ϕ)(s),

which implies that (f · 1)DW − (g · 1)DX = DY . Also, we have

DW (f · 1)−DX(g · 1) = µ(W )(f) · 1− µ(X)(g) · 1
= (µ(W )(f)− µ(X)(g)) · 1
= g · 1,

hence one gets DW ∈ [(DX , DY )]End(E). So, we can define the surjective map
F : [(X,Y )]C∞(M) → [(DX , DY )]End(E) by F (W ) = DW . Now, we can check that
if the anchor map µ is injective then

[(X,Y )]C∞(M) ' [(DX , DY )]End(E),

for all X,Y ∈ Γ(K).
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