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APPROXIMATING THE RIEMANN-STIELTJES INTEGRAL BY
A THREE-POINT QUADRATURE RULE AND APPLICATIONS

MOHAMMAD W. ALOMARI

ABSTRACT. In this paper, a three—point quadrature rule for the Riemann—
Stieltjes integral is introduced. As application; an error estimate for the ob-
tained quadrature rule is provided as well.

1. INTRODUCTION

The Riemann—Stieltjes integral f; f(t)dg (t) is an important concept in Mathe-
matics with multiple applications in several subfields including Probability Theory
& Statistics, Complex Analysis, Functional Analysis, Operator Theory and others.

In 2008, Mercer [27] has introduced new midpoint and trapezoid type rules for the
Riemann—Stieltjes integral which engender a natural generalization of Hadamard’s
integral inequality, as follows:

Theorem 1.1. Let g be continuous and increasing on [a,b], let ¢ € [a,b] which
satisfies

b
[ oit=tc-a)g@+@®-090).
If f” > 0, then we have
b
(1.1) f(e) g (b) —g(a)] S/ fdg <G —g(a)] f(a)+[g(b) =Gl f(b)

where, G := ;1 ffg(t) dt.

In fact, Mercer established the following quadrature rule for the Riemann-—
Stieltjes integral.

b
12) [ g=16- 9@ @)+ o (8) - G (0.
and so that, he obtained the error as follows:
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Theorem 1.2. Suppose that f"” and g' are continuous on [a,b] and that g is mono-
tonic there. Let G := - fabg (t)dt. Then there exist n,o € (a,b) such that

(b—a)’
12

b
(1.3) / fdg =G —g(a)] f(a) = [g(b) = G f (b) = =" (n) g (o)

Recently, Alomari and Dragomir [7], proved several new error bounds for the
Mercer-Trapezoid quadrature rule (1.2) for the Riemann-Stieltjes integral under
various assumptions for the integrand (and integrator) involved.

After that, and motivated by the method used in [27], Alomari and Dragomir
[8] introduced the following quadrature formula:

Theorem 1.3. Suppose that f and g’ are continuous on [a,b] and that g is mono-
tonic on [a,xz] and [x,b]. Then there exist &,m € (a,z) and &a,m2 € (x,b) such
that

/bf(t) ¢ () dt = G (a,2) — g (a)] £ (a) + [ (2,b) — G (a,2)] f (x)

' +lg(8) — G (2.0)] £ ()
(14) - e @ -0 + @) o ) - 27
for alla <z <b, where G (o, B) = g2 [ g (1) dt.

For other quadrature rules for Riemann—Stieltjes integral under various assump-
tions to the function involved the reader may refer to [1]-[6], [9]-[26] and [28].

In this work, we study the quadrature rule

b
/ £ (0 dg () = (G (a,2) — g (@) f (a) + [G (,0) — G (a,2)] f ()
+ o)~ G (xb)] f ()

for all € (a,b), by relaxing the conditions in Theorem 1.3. Various error estimates
for the above quadrature rule are proved. As application an error estimate for the
new three—point quadrature rule for Riemann—Stieltjes integral is given.

2. THE CASE WHEN f IS OF BOUNDED VARIATION

Theorem 2.1. Fiz x € (a,b). Let f,g : [a,b] = R be such that [ is of bounded
variation on [a,b] and g is continuous. If g is increasing on the both intervals |a, x]
and [z,b], then

b
(2.1) |R(f7g;x)<{g(b)—g(a)+’g(m)_g(a)2-l-g(b)u.\/(f)

for alla <z < b, where G (a, B) := 525 ffg (t)dt.

Proof. Tt is easy to observe that

x b
(22)  R(f.giz) = / l9(t) - G (a,2)] df () + / 9 (t) — G (. b)] df (1)
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Using the fact that for a continuous function p : [¢,d] — R and a function v :

[c,d] — R of bounded variation, then the Riemann—Stieltjes integral fcd p(t)dv (t)
exists and one has the inequality

d
(2.3) < sup [p®)\/ (v).

t€e,d]

[ roao

As f is of bounded variation on [a,b], by (2.3) we have

T b
R (f,g;2)] < / lg(t) = G (a,x)] df (t)‘ + / [9(t) — G (z,b)]df (t)
T b
(2.4) < sup |g(t) = G(a,2)- \/ (f) + sup |g(t) =G (z,b)|- \/ (),
tela,x] a te(x,b) z

but since g is increasing on [a, z] and [z, b], then

sup |g (t) — G (a,2)| = max{g (z) — G (a,2) ,G (a,7) — g (a)}

tela,x]
(25) = 2 19(@) ~ 9(a) + I (1) ~ 26 (a,2) + g (@],
and

5 19(0) =G b = max{g () =G @), G () ~ g (@)}
(26) = 219(6) ~ 9.(2) +lg (6) ~ 26 (2.) + 9 ()]
Also, since

9(0) < G a,2) < g (@),

and

g(x) <G (x,b) <g(b),
so that from (2.5) and (2.6), we have

tesElp] lg(t) — G (a,2)] < g(z) —g(a)

and

teszpb] g (t) = G (2,b)| < g (b) — g(z)

which gives by (2.4) that

T b
IR (f,g:2)| < S 9 () = G (a,2)] - \/ (/) +t:}1pb] lg(t) = G (2,0)]- \/ (f)

and thus the theorem is proved. (I
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Corollary 2.1. In Theorem 2.1, choose g(t) = t, t € [a,b], then we have the
inequality:

@7) ;[WH (:v—a)f(ab):réb—w)f(b)] _/abf(t)dt
S[b;aJr‘:v—a;rbH-\?(f),

for all a < x < b. Moreover, if we choosemz‘%b, then we get

(2.8) ;{f<a;rb>+f(a);rf(b)} /abf(t)dt gé(ba)\b/(f).

Theorem 2.2. Fix x € (a,b). Let f,g : [a,b] = R be such that [ is of bounded
variation on [a,b] and g is continuous.

(1) If g is of bounded variation on [a,b], then

b @ b b
(2.9) IR (f,g;2)] < [\/ @+V©-V 1 ().
(2) If g is of Ly—Lipschitzian on [a,b], then
L,[b—a a+b[] \
(2.10) Rga 5[50 - 50 Vo

foralla < x <b.

Proof. (1) Since f is of bounded variation on [a, b], then by (2.4) we have

2.11)  [R(f,9;)]
T b

< sup |g(t) = G (a,2)] - \/ (/) + sup |g(t) = G (,b)] - \/ (/).

t€la,x] a te(x,b) z

In [17], the author proved the following Ostrowski type inequality for func-
tions of bounded variation

o) -Gl =[o0 - [Towa] < [3+| 2 V.

a

it follows that,

1 |-
sup |g(t) = G (a,x)| < sup |5+
tela,x] t€a,z]

Similarly, one may observe that

1 |t—z2]] b
sup |g(t) — G (z,b)| < sup |-+ 2 9)= 9
i l9(0) =G @0)| < s i ||[Vo -V
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Combining the above two inequalities with (2.11), we get
T T b

- b ’ z ’ b ’ b

[\/ v<g>—v<g>]-v<f>

a

which proves (2.9).
(2) In [25], the author proved the following Ostrowski type inequality for Lip-
schitzian functions

g(t)—a<a,x>|=\g<t>— = o

x—a
1 [t—atz\?
4+< x—z ) 1(3@—(1),

gty — /Ig<s>ds

it follows that,

sup g (t) — G (a,2)| < Ly sup

t€la,z] t€la,x] r—a
2
1 t— otz 1
<L - . —a) =Ly (r—a).
<1, s 4+<$_a)]<x W) = 1Ly (z—a)

Similarly, one may observe that

1 t— ztb
sup [g(t) — G (z,0)| < Ly sup | + 2 (b—z)
t€[z,b] Ttz |4 b—z
1

Combining the above two inequalities with (2.11), we get

T b
R (g < 3Lo (@ =)\ (D) + Lo (0—2)-\/ (F)

b
L, [b—a a+b
<= — . )
g5l ve
which proves (2.10).
Thus the theorem is completely proved. O

3. THE CASE WHEN f IS OF LIPSCHITZ TYPE

Theorem 3.1. Fizx € (a,b). Let f, g : [a,b] — R be such that f is Ly-Lipschitzian
on [a,bland g is a Riemann integrable on [a,b]. If there exists positive constants
v, Ty ¢, ® such that

v<gt)<T, Vte]la,z],
and

o <g(t)<d, Vte (zb,
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for some x € (a,b). Then,

(3.1) R (f,g9:2)] < %L[(af—a) =7+ b-2)(®—9)
foralla <z <b.

Proof. Since

x b
R(f.g:a) = / l9(t) — G (a, )] df (1) + / (9 (t) — G (x,b)] df (2),

using the fact that for a Riemann integrable function p : [¢,d] — R and L-
Lipschitzian function v : [¢,d] — R, the inequality one has the inequality

d d
/p(t)dl/(t) SL/ Ip (t)| dt.

As f is Ly—Lipschitzian on [a,b], by (3.2) we have

(3.2)

b

g (8) = G (x,0)] df (¢)

x

90— G (a, >]df<>|

/:g(t) ax|dt+/ 9 (¢ xb)|dt1

Now, using the same techniques applied in [26], we define

I = - .
= [ (05 [owas) a
Then, we have

- [ [f(t)—zg(t)xia/;g(s)czw (xia/jms)dsﬂ at
- [rwa (G5 [ s
I (g) = (F—Ila/:g(S)dS> (xla/;g(é‘)ds—7>

! /m<r—g<t>><g<t>—v>dt.

r—a
As v < g(t) <T, for all ¢t € [a,b], then

/z<r—g<t>><g<t>—v>dtzo,

IR (f,g;2) <

(3.3) < Lf

and

which implies

(3.4)
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Using Cauchy-Buniakowski-Schwarz’s integral inequality we have

Li(g) = [xia/: g(t)—mia/azg(s)ds dtr
and thus by (3.4) we get
(3.5) [lar-2 [ a@asla< 5w -n@e-a

Similarly, define

b b 2
Iz(g)izbix/ <g(t)—b1x/ g(s)ds) dt,

then one can observe that

(3.6) / '

Therefore, from (3.3) we have

IR (f,g:2)] < Ly l/gclg(t) ax\dtJr/ lg (¢ xb)ldt]

;Lf[<x_a><r_7>+<b—x><<1>—¢>]7

which gives the inequality (3.1). O

1 b

g(t)—m ()det<2(‘I’ ¢) (b— ).

Remark 3.1. In Theorem 3.1, if v < g(t) <T for all ¢ € [a, b], then we have

(37) R(fg:0) < 315 (b= a) (D =7).
for all z € (a,b).

Corollary 3.1. In Theorem 3.1, choose g(t) = t, t € [a,b], then we have the

inequality:
1 (x—a)f(a)+(b—x)f 1
(38) |3 {f(x)—l— P— ] / f(t)ydt| < 5Ly L;(b—a)?
for all x € (a,b). Moreover, if we choose x = ‘IT“’, then we get
1 a+b fla 1 2
(3.9) 2{f( 5 )—i— } /f t)dt 5 f(b—a)”.

Theorem 3.2. Let f, g : [a,b] = R be such that f is Ly-Lipschitzian on [a,b] and
g is of r-Hy~Holder type on [a,b], where r € (0,1] and Hy > 0 are given. Then,

2Ly H, ) [(x C a4 (b x)r+1] ’

(3.10) IR (f,g;2)| < G+ 42

for all x € (a,b).
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Proof. Since f is Ly—Lipschitzian on [a, b], then (3.3) holds; that is,

x

9 ()~ G a, >]df<>|

b

g (t) = G (z,0)] df (¢)

/:g(t) ax|dt+/ 19 () xb)|dt1

Also, since g is of r-H,-Holder type on [a,b], then we have

IR (f,g;2)] <

<Ly

9(1)— G (a.2)| = \g@) "y as
S s)|ds
H H _ r+1 _ o\l
S 9 / |t_8"f'ds: g .(t a) +(J: t) ,
—a r—a r+1
and
1 b
l9(t) — G (a,0)] = g<t>—b_m/ g (5)ds
< s)| ds
H H t— r4+1 _tr—i-l
< / it —s|"ds = —~ ) Il () 7
b—=x b—=x r+1
which gives by (3.3), we have
Lng T (t_a)r+1+(x_t)r+1
cx)| < . dt
R(fgsa)| < 22 0
b _ r+1 _ r+1
L P A Gt I 2 Ul )
b—z J, r+1
2Lng r+1 r+1
= — - J — b_
e | CRUARI A

and thus the proof is completed.

Corollary 3.2. In Theorem 3.2, if g is Ly—Lipschitzian on [a,b], then we have
1

(3.11) R (f.9:2)| < 5LsLq |(@— ) + (b —2)*]

: _ atb
for all x € (a,b). Moreover, if we choose x = %32, then

(3.12) ’ (f,g,a+b)‘ 6L,cL (b—a)?.
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Corollary 3.3. In Theorem 3.2, choose g(t) = t, t € [a,b], then we have the
inequality:

z—a)f(a —x b
(3.13) ;[f(x)'i‘( )f(b)jéb )f(b)}—/af(t)dt
= (r+12)L(];+2) (=™ )™
for all a < x < b. Moreover, if we choose x = “7“’, then we get
b
(3.14) % [f (a;b) + f(a);f(b)} —/a ft)dt] < éLf(b—a)Q.

Theorem 3.3. Let f,g: [a,b] — R be such that f is Ly-Lipschitzian on [a,b] and
g 1s of bounded variation on [a,b]. Then,

(3.15) R (f.:0) < 21, [b2“+|z“§bu\?<g>,

for all z € (a,b).
Proof. Since f is Ly—Lipschitzian on [a, b], then (3.3) holds; that is,

b
R (f9:2)] < / 9 (t) — G (2, b)) df (t)

[ 90 -G ) df<t>| "

< Ly

x b
/Mﬂ—waNﬁ+/|ﬂﬂ—G@mmﬁ.

Using the Ostrowski integral inequality for the bounded variation function g we

have
/m@—am@mz/ dt

g - [ g)ds

} #\/ )

_ atx
t 2

similarly, we observe

which gives by (3.3), we have

T b

R (f.g:0)| < Ly <x—a>\/<g>+<b—z>\/<g>]
3 [b—a a+b[1\

<21 Ve

for all z € (a,b), and thus the proof is completed. O
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Remark 3.2. Let f be a monotonic nondecreasing in the theorems above. By
applying the same techniques used in the corresponding proofs of each theorem,
we may obtain several inequalities for monotonic non-decreasing integrator f using
the fact that for a monotonic non-decreasing function v : [a, b] — R and continuous
function p : [a,b] — R, one has the inequality

b b
/ p(t)dv (1)) < / Ip (8)] do (t)

We leave the details to the interested reader.

4. APPLICATIONS TO A THREE-POINT QUADRATURE RULE
Consider I, : a = g < 71 < T2 < ... < Tp_1 < T, = b, be a division
of the interval [a,b], L; := g(zit1) — g(x;), (i = 0,1,...n — 1) and v (L) :=
max {L;[i =0,1,...n —1}. Counsider the following Three—point quadrature rule
as

(4.1)

n

S(f,9:1n,6) = D [G (w0, &) — g (@) f (2:) + [G (& i) = G (23, 6)] f (&)

1=0
+ 19 (@iy1) — G (&, wip1)] f (Tig1)

for all &; € (z;,%;41), where G (a, B) := B - fﬁ t) dt.

In the following, we establish an upper bound for the error approximation of the
Riemann—Stieltjes integral f; f(t)dg (t) by its Riemann sum S (f,g,1,,£). As a
sample we consider (2.1).

Theorem 4.1. Under the assumptions of Theorem 2.1, we have

b
/ F(8)dg (1) = S (f.9.Tn &) + R (f, g, I, €)

where, S (f,g,In,€) is given in (4.1) and the remainder R (f,g,In,&) satisfies the
bound

g(é—L)_g( )+g xl"rl

RE

R (f,9.1.6)| < B”(L) © max
0,n—1

b
(4.2) <v(L)-\/(f)

Proof. Fix & € (z;,x;4+1). Applying Theorem 2.1 on the intervals [z;, z;11], we
may state that

G (z5,&) — g (@)] f () + [G (&, i) — G (24, )] f (&)
o)~ GG mn f ) — [ F(6)dg (t)\

i

< |9 ($i+1)2— g(i) ‘g(&) g (xi) +29 (Zit1)
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foralli € {0,1,2,--- ,n — 1}. Summing the above inequality over ¢ from 0 to n—1,
we deduce

IR (f,9,In, )

|
—

=D G (%i,&) — g (@) f (w:) + [G (& wigr) — G (26, 6)] [ (&)

}

]<7u>

[}

Tit+1

+wuﬁn—c@wHMf@Ho—/ £ (t)dg (t)

X4

”Tgwwn—gun+P@”_gm»+waﬂ>

2 2
=0 T
< gfrlla_xl {g(mi+1)2_g($i) I ‘g(&) g (i) +29 (zit1) } i \/ (f)

1=0 X

since
- [g(ﬂfiﬂ) UGN ‘g(&) ~g(@i) +g (i) }
0,n—1 2 2
1 i i
< Lo(0) + max |g(6) - L@ 9 @)
2 O,n—1 2
and
n—1Ti41 b
>V Wn=Vw.
1=0 x; a
For the second inequality, we observe that
i i 1 1
max |g (&) — 9() 9(@ir1) < -max L; = —v(L)
0,n—1 2 2001 2
which completes the proof. [

Remark 4.1. Several error estimations for the quadrature S (f,g,1I,,&) (4.1) by
using the results in section 2, we shall omit the details.
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