Konuralp Journal of Mathematics
Volume 2 No. 2 Pp. 22-34 (2014) ©KJM

APPROXIMATING THE RIEMANN-STIELTJES INTEGRAL BY A THREE-POINT QUADRATURE RULE AND APPLICATIONS

MOHAMMAD W. ALOMARI

Abstract

In this paper, a three-point quadrature rule for the RiemannStieltjes integral is introduced. As application; an error estimate for the obtained quadrature rule is provided as well.

1. Introduction

The Riemann-Stieltjes integral $\int_{a}^{b} f(t) d g(t)$ is an important concept in Mathematics with multiple applications in several subfields including Probability Theory \& Statistics, Complex Analysis, Functional Analysis, Operator Theory and others.

In 2008, Mercer [27] has introduced new midpoint and trapezoid type rules for the Riemann-Stieltjes integral which engender a natural generalization of Hadamard's integral inequality, as follows:

Theorem 1.1. Let g be continuous and increasing on $[a, b]$, let $c \in[a, b]$ which satisfies

$$
\int_{a}^{b} g(t) d t=(c-a) g(a)+(b-c) g(b) .
$$

If $f^{\prime \prime} \geq 0$, then we have

$$
\begin{equation*}
f(c)[g(b)-g(a)] \leq \int_{a}^{b} f d g \leq[G-g(a)] f(a)+[g(b)-G] f(b) \tag{1.1}
\end{equation*}
$$

where, $G:=\frac{1}{b-a} \int_{a}^{b} g(t) d t$.
In fact, Mercer established the following quadrature rule for the RiemannStieltjes integral.

$$
\begin{equation*}
\int_{a}^{b} f d g \cong[G-g(a)] f(a)+[g(b)-G] f(b) \tag{1.2}
\end{equation*}
$$

and so that, he obtained the error as follows:

[^0]Theorem 1.2. Suppose that $f^{\prime \prime}$ and g^{\prime} are continuous on $[a, b]$ and that g is monotonic there. Let $G:=\frac{1}{b-a} \int_{a}^{b} g(t) d t$. Then there exist $\eta, \sigma \in(a, b)$ such that

$$
\begin{equation*}
\int_{a}^{b} f d g-[G-g(a)] f(a)-[g(b)-G] f(b)=-f^{\prime \prime}(\eta) g^{\prime}(\sigma) \frac{(b-a)^{3}}{12} \tag{1.3}
\end{equation*}
$$

Recently, Alomari and Dragomir [7], proved several new error bounds for the Mercer-Trapezoid quadrature rule (1.2) for the Riemann-Stieltjes integral under various assumptions for the integrand (and integrator) involved.

After that, and motivated by the method used in [27], Alomari and Dragomir [8] introduced the following quadrature formula:
Theorem 1.3. Suppose that $f^{\prime \prime}$ and g^{\prime} are continuous on $[a, b]$ and that g is monotonic on $[a, x]$ and $[x, b]$. Then there exist $\xi_{1}, \eta_{1} \in(a, x)$ and $\xi_{2}, \eta_{2} \in(x, b)$ such that

$$
\begin{align*}
\int_{a}^{b} f(t) g^{\prime}(t) d t & =[G(a, x)-g(a)] f(a)+[G(x, b)-G(a, x)] f(x) \\
& +[g(b)-G(x, b)] f(b) \\
& -\frac{1}{12}\left[f^{\prime \prime}\left(\xi_{1}\right) g^{\prime}\left(\eta_{1}\right)(x-a)^{3}+f^{\prime \prime}\left(\xi_{2}\right) g^{\prime}\left(\eta_{2}\right)(b-x)^{3}\right] \tag{1.4}
\end{align*}
$$

for all $a<x<b$, where $G(\alpha, \beta):=\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} g(t) d t$.
For other quadrature rules for Riemann-Stieltjes integral under various assumptions to the function involved the reader may refer to [1]-[6], [9]-[26] and [28].

In this work, we study the quadrature rule

$$
\begin{aligned}
& \int_{a}^{b} f(t) d g(t) \cong[G(a, x)-g(a)] f(a)+[G(x, b)-G(a, x)] f(x) \\
&+[g(b)-G(x, b)] f(b)
\end{aligned}
$$

for all $x \in(a, b)$, by relaxing the conditions in Theorem 1.3. Various error estimates for the above quadrature rule are proved. As application an error estimate for the new three-point quadrature rule for Riemann-Stieltjes integral is given.

2. The case when f is of bounded variation

Theorem 2.1. Fix $x \in(a, b)$. Let $f, g:[a, b] \rightarrow \mathbb{R}$ be such that f is of bounded variation on $[a, b]$ and g is continuous. If g is increasing on the both intervals $[a, x]$ and $[x, b]$, then

$$
\begin{equation*}
|\mathcal{R}(f, g ; x)| \leq\left[\frac{g(b)-g(a)}{2}+\left|g(x)-\frac{g(a)+g(b)}{2}\right|\right] \cdot \bigvee_{a}^{b}(f) \tag{2.1}
\end{equation*}
$$

for all $a<x<b$, where $G(\alpha, \beta):=\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} g(t) d t$.
Proof. It is easy to observe that

$$
\begin{equation*}
\mathcal{R}(f, g ; x)=\int_{a}^{x}[g(t)-G(a, x)] d f(t)+\int_{x}^{b}[g(t)-G(x, b)] d f(t) \tag{2.2}
\end{equation*}
$$

Using the fact that for a continuous function $p:[c, d] \rightarrow \mathbb{R}$ and a function ν : $[c, d] \rightarrow \mathbb{R}$ of bounded variation, then the Riemann-Stieltjes integral $\int_{c}^{d} p(t) d \nu(t)$ exists and one has the inequality

$$
\begin{equation*}
\left|\int_{c}^{d} p(t) d \nu(t)\right| \leq \sup _{t \in[c, d]}|p(t)| \bigvee_{c}^{d}(\nu) \tag{2.3}
\end{equation*}
$$

As f is of bounded variation on $[a, b]$, by (2.3) we have

$$
\begin{align*}
|\mathcal{R}(f, g ; x)| & \leq\left|\int_{a}^{x}[g(t)-G(a, x)] d f(t)\right|+\left|\int_{x}^{b}[g(t)-G(x, b)] d f(t)\right| \\
& \leq \sup _{t \in[a, x]}|g(t)-G(a, x)| \cdot \bigvee_{a}^{x}(f)+\sup _{t \in(x, b]}|g(t)-G(x, b)| \cdot \bigvee_{x}^{b}(f), \tag{2.4}
\end{align*}
$$

but since g is increasing on $[a, x]$ and $[x, b]$, then

$$
\begin{align*}
\sup _{t \in[a, x]}|g(t)-G(a, x)| & =\max \{g(x)-G(a, x), G(a, x)-g(a)\} \\
& =\frac{1}{2}[g(x)-g(a)+|g(x)-2 G(a, x)+g(a)|] \tag{2.5}
\end{align*}
$$

and

$$
\begin{align*}
\sup _{t \in(x, b]}|g(t)-G(x, b)| & =\max \{g(b)-G(x, b), G(x, b)-g(x)\} \\
& =\frac{1}{2}[g(b)-g(x)+|g(b)-2 G(x, b)+g(x)|] \tag{2.6}
\end{align*}
$$

Also, since

$$
g(a) \leq G(a, x) \leq g(x)
$$

and

$$
g(x) \leq G(x, b) \leq g(b)
$$

so that from (2.5) and (2.6), we have

$$
\sup _{t \in[a, x]}|g(t)-G(a, x)| \leq g(x)-g(a)
$$

and

$$
\sup _{t \in(x, b]}|g(t)-G(x, b)| \leq g(b)-g(x)
$$

which gives by (2.4) that

$$
\begin{aligned}
|\mathcal{R}(f, g ; x)| & \leq \sup _{t \in[a, x]}|g(t)-G(a, x)| \cdot \bigvee_{a}^{x}(f)+\sup _{t \in(x, b]}|g(t)-G(x, b)| \cdot \bigvee_{x}^{b}(f) \\
& \leq[g(x)-g(a)] \cdot \bigvee_{a}^{x}(f)+[g(b)-g(x)] \cdot \bigvee_{x}^{b}(f) \\
& \leq\left[\frac{g(b)-g(a)}{2}+\left|g(x)-\frac{g(a)+g(b)}{2}\right|\right] \cdot \bigvee_{a}^{b}(f),
\end{aligned}
$$

and thus the theorem is proved.

Corollary 2.1. In Theorem 2.1, choose $g(t)=t, t \in[a, b]$, then we have the inequality:

$$
\begin{align*}
\left\lvert\, \frac{1}{2}\left[f(x)+\frac{(x-a) f(a)+(b-x) f(b)}{b-a}\right.\right. & -\int_{a}^{b} f(t) d t \mid \tag{2.7}\\
& \leq\left[\frac{b-a}{2}+\left|x-\frac{a+b}{2}\right|\right] \cdot \bigvee_{a}^{b}(f)
\end{align*}
$$

for all $a<x<b$. Moreover, if we choose $x=\frac{a+b}{2}$, then we get

$$
\begin{equation*}
\left|\frac{1}{2}\left[f\left(\frac{a+b}{2}\right)+\frac{f(a)+f(b)}{2}\right]-\int_{a}^{b} f(t) d t\right| \leq \frac{1}{2}(b-a) \bigvee_{a}^{b}(f) \tag{2.8}
\end{equation*}
$$

Theorem 2.2. Fix $x \in(a, b)$. Let $f, g:[a, b] \rightarrow \mathbb{R}$ be such that f is of bounded variation on $[a, b]$ and g is continuous.
(1) If g is of bounded variation on $[a, b]$, then

$$
\begin{equation*}
|\mathcal{R}(f, g ; x)| \leq\left[\bigvee_{a}^{b}(g)+\left|\bigvee_{a}^{x}(g)-\bigvee_{x}^{b}(g)\right|\right] \cdot \bigvee_{a}^{b}(f) \tag{2.9}
\end{equation*}
$$

(2) If g is of L_{g}-Lipschitzian on $[a, b]$, then

$$
\begin{equation*}
|\mathcal{R}(f, g ; x)| \leq \frac{L_{g}}{2}\left[\frac{b-a}{2}+\left|x-\frac{a+b}{2}\right|\right] \cdot \bigvee_{a}^{b}(f) \tag{2.10}
\end{equation*}
$$

for all $a<x<b$.
Proof. (1) Since f is of bounded variation on $[a, b]$, then by (2.4) we have

$$
\begin{align*}
& |\mathcal{R}(f, g ; x)| \tag{2.11}\\
& \quad \leq \sup _{t \in[a, x]}|g(t)-G(a, x)| \cdot \bigvee_{a}^{x}(f)+\sup _{t \in(x, b]}|g(t)-G(x, b)| \cdot \bigvee_{x}^{b}(f)
\end{align*}
$$

In [17], the author proved the following Ostrowski type inequality for functions of bounded variation

$$
|g(t)-G(a, x)|=\left|g(t)-\frac{1}{x-a} \int_{a}^{x} g(s) d s\right| \leq\left[\frac{1}{2}+\left|\frac{t-\frac{a+x}{2}}{x-a}\right|\right] \bigvee_{a}^{x}(g)
$$

it follows that,

$$
\sup _{t \in[a, x]}|g(t)-G(a, x)| \leq \sup _{t \in[a, x]}\left[\frac{1}{2}+\left|\frac{t-\frac{a+x}{2}}{x-a}\right|\right] \bigvee_{a}^{x}(g)=\bigvee_{a}^{x}(g)
$$

Similarly, one may observe that

$$
\sup _{t \in[x, b]}|g(t)-G(x, b)| \leq \sup _{t \in[x, b]}\left[\frac{1}{2}+\left|\frac{t-\frac{x+b}{2}}{b-x}\right|\right] \bigvee_{x}^{b}(g)=\bigvee_{x}^{b}(g) .
$$

Combining the above two inequalities with (2.11), we get

$$
\begin{aligned}
|\mathcal{R}(f, g ; x)| & \leq \bigvee_{a}^{x}(g) \cdot \bigvee_{a}^{x}(f)+\bigvee_{x}^{b}(g) \cdot \bigvee_{x}^{b}(f) \\
& \leq\left[\bigvee_{a}^{b}(g)+\left|\bigvee_{a}^{x}(g)-\bigvee_{x}^{b}(g)\right|\right] \cdot \bigvee_{a}^{b}(f)
\end{aligned}
$$

which proves (2.9).
(2) In [25], the author proved the following Ostrowski type inequality for Lipschitzian functions

$$
\begin{aligned}
|g(t)-G(a, x)| & =\left|g(t)-\frac{1}{x-a} \int_{a}^{x} g(s) d s\right| \\
& \leq L_{g}\left[\frac{1}{4}+\left(\frac{t-\frac{a+x}{2}}{x-a}\right)^{2}\right](x-a)
\end{aligned}
$$

it follows that,

$$
\begin{aligned}
\sup _{t \in[a, x]}|g(t)-G(a, x)| & \leq L_{g} \sup _{t \in[a, x]}\left|g(t)-\frac{1}{x-a} \int_{a}^{x} g(s) d s\right| \\
& \leq L_{g} \sup _{t \in[a, x]}\left[\frac{1}{4}+\left(\frac{t-\frac{a+x}{2}}{x-a}\right)^{2}\right](x-a)=\frac{1}{2} L_{g}(x-a) .
\end{aligned}
$$

Similarly, one may observe that

$$
\begin{aligned}
\sup _{t \in[x, b]}|g(t)-G(x, b)| & \leq L_{g} \sup _{t \in[x, b]}\left[\frac{1}{4}+\left(\frac{t-\frac{x+b}{2}}{b-x}\right)^{2}\right](b-x) \\
& =\frac{1}{2} L_{g}(b-x) .
\end{aligned}
$$

Combining the above two inequalities with (2.11), we get

$$
\begin{aligned}
|\mathcal{R}(f, g ; x)| & \leq \frac{1}{2} L_{g}(x-a) \cdot \bigvee_{a}^{x}(f)+\frac{1}{2} L_{g}(b-x) \cdot \bigvee_{x}^{b}(f) \\
& \leq \frac{L_{g}}{2}\left[\frac{b-a}{2}+\left|x-\frac{a+b}{2}\right|\right] \cdot \bigvee_{a}^{b}(f)
\end{aligned}
$$

which proves (2.10).
Thus the theorem is completely proved.

3. The case when f is of Lipschitz type

Theorem 3.1. Fix $x \in(a, b)$. Let $f, g:[a, b] \rightarrow \mathbb{R}$ be such that f is L_{f}-Lipschitzian on $[a, b]$ and g is a Riemann integrable on $[a, b]$. If there exists positive constants $\gamma, \Gamma, \phi, \Phi$ such that

$$
\gamma \leq g(t) \leq \Gamma, \quad \forall t \in[a, x]
$$

and

$$
\phi \leq g(t) \leq \Phi, \quad \forall t \in(x, b]
$$

for some $x \in(a, b)$. Then,

$$
\begin{equation*}
|\mathcal{R}(f, g ; x)| \leq \frac{1}{2} L[(x-a)(\Gamma-\gamma)+(b-x)(\Phi-\phi)] \tag{3.1}
\end{equation*}
$$

for all $a<x<b$.
Proof. Since

$$
\mathcal{R}(f, g ; x)=\int_{a}^{x}[g(t)-G(a, x)] d f(t)+\int_{x}^{b}[g(t)-G(x, b)] d f(t)
$$

using the fact that for a Riemann integrable function $p:[c, d] \rightarrow \mathbb{R}$ and L Lipschitzian function $\nu:[c, d] \rightarrow \mathbb{R}$, the inequality one has the inequality

$$
\begin{equation*}
\left|\int_{c}^{d} p(t) d \nu(t)\right| \leq L \int_{c}^{d}|p(t)| d t \tag{3.2}
\end{equation*}
$$

As f is L_{f}-Lipschitzian on $[a, b]$, by (3.2) we have

$$
\begin{align*}
|\mathcal{R}(f, g ; x)| & \leq\left|\int_{a}^{x}[g(t)-G(a, x)] d f(t)\right|+\left|\int_{x}^{b}[g(t)-G(x, b)] d f(t)\right| \\
& \leq L_{f}\left[\int_{a}^{x}|g(t)-G(a, x)| d t+\int_{x}^{b}|g(t)-G(x, b)| d t\right] \tag{3.3}
\end{align*}
$$

Now, using the same techniques applied in [26], we define

$$
I_{1}(g):=\frac{1}{x-a} \int_{a}^{x}\left(g(t)-\frac{1}{x-a} \int_{a}^{x} g(s) d s\right)^{2} d t
$$

Then, we have

$$
\begin{aligned}
I_{1}(g): & =\frac{1}{x-a} \int_{a}^{x}\left[g^{2}(t)-2 g(t) \frac{1}{x-a} \int_{a}^{x} g(s) d s+\left(\frac{1}{x-a} \int_{a}^{x} g(s) d s\right)^{2}\right] d t \\
& =\frac{1}{x-a} \int_{a}^{x} g^{2}(t) d t-\left(\frac{1}{x-a} \int_{a}^{x} g(s) d s\right)^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
I_{1}(g):= & \left(\Gamma-\frac{1}{x-a} \int_{a}^{x} g(s) d s\right)\left(\frac{1}{x-a} \int_{a}^{x} g(s) d s-\gamma\right) \\
& -\frac{1}{x-a} \int_{a}^{x}(\Gamma-g(t))(g(t)-\gamma) d t
\end{aligned}
$$

As $\gamma \leq g(t) \leq \Gamma$, for all $t \in[a, b]$, then

$$
\int_{a}^{x}(\Gamma-g(t))(g(t)-\gamma) d t \geq 0
$$

which implies

$$
\begin{align*}
I_{1}(g) & \leq\left(\Gamma-\frac{1}{x-a} \int_{a}^{x} g(s) d s\right)\left(\frac{1}{x-a} \int_{a}^{x} g(s) d s-\gamma\right) \\
& \leq \frac{1}{4}\left[\left(\Gamma-\frac{1}{x-a} \int_{a}^{x} g(s) d s\right)+\left(\frac{1}{x-a} \int_{a}^{x} g(s) d s-\gamma\right)\right]^{2} \\
& =\frac{1}{4}(\Gamma-\gamma)^{2} \tag{3.4}
\end{align*}
$$

Using Cauchy-Buniakowski-Schwarz's integral inequality we have

$$
I_{1}(g) \geq\left[\frac{1}{x-a} \int_{a}^{x}\left|g(t)-\frac{1}{x-a} \int_{a}^{x} g(s) d s\right| d t\right]^{2}
$$

and thus by (3.4) we get

$$
\begin{equation*}
\int_{a}^{x}\left|g(t)-\frac{1}{x-a} \int_{a}^{x} g(s) d s\right| d t \leq \frac{1}{2}(\Gamma-\gamma)(x-a) \tag{3.5}
\end{equation*}
$$

Similarly, define

$$
I_{2}(g):=\frac{1}{b-x} \int_{x}^{b}\left(g(t)-\frac{1}{b-x} \int_{x}^{b} g(s) d s\right)^{2} d t
$$

then one can observe that

$$
\begin{equation*}
\int_{x}^{b}\left|g(t)-\frac{1}{b-x} \int_{x}^{b} g(s) d s\right| d t \leq \frac{1}{2}(\Phi-\phi)(b-x) . \tag{3.6}
\end{equation*}
$$

Therefore, from (3.3) we have

$$
\begin{aligned}
|\mathcal{R}(f, g ; x)| & \leq L_{f}\left[\int_{a}^{x}|g(t)-G(a, x)| d t+\int_{x}^{b}|g(t)-G(x, b)| d t\right] \\
& \leq \frac{1}{2} L_{f}[(x-a)(\Gamma-\gamma)+(b-x)(\Phi-\phi)]
\end{aligned}
$$

which gives the inequality (3.1).
Remark 3.1. In Theorem 3.1, if $\gamma \leq g(t) \leq \Gamma$ for all $t \in[a, b]$, then we have

$$
\begin{equation*}
|\mathcal{R}(f, g ; x)| \leq \frac{1}{2} L_{f}(b-a)(\Gamma-\gamma) \tag{3.7}
\end{equation*}
$$

for all $x \in(a, b)$.
Corollary 3.1. In Theorem 3.1, choose $g(t)=t, t \in[a, b]$, then we have the inequality:

$$
\begin{equation*}
\left|\frac{1}{2}\left[f(x)+\frac{(x-a) f(a)+(b-x) f(b)}{b-a}\right]-\int_{a}^{b} f(t) d t\right| \leq \frac{1}{2} L_{f}(b-a)^{2} \tag{3.8}
\end{equation*}
$$

for all $x \in(a, b)$. Moreover, if we choose $x=\frac{a+b}{2}$, then we get

$$
\begin{equation*}
\left|\frac{1}{2}\left[f\left(\frac{a+b}{2}\right)+\frac{f(a)+f(b)}{2}\right]-\int_{a}^{b} f(t) d t\right| \leq \frac{1}{2} L_{f}(b-a)^{2} \tag{3.9}
\end{equation*}
$$

Theorem 3.2. Let $f, g:[a, b] \rightarrow \mathbb{R}$ be such that f is $L_{f}-$ Lipschitzian on $[a, b]$ and g is of $r-H_{g}-H o ̈ l d e r ~ t y p e ~ o n ~[a, b], ~ w h e r e ~ r \in(0,1] ~ a n d ~ H g>0 ~ a r e ~ g i v e n . ~ T h e n, ~$

$$
\begin{equation*}
|\mathcal{R}(f, g ; x)| \leq \frac{2 L_{f} H_{g}}{(r+1)(r+2)}\left[(x-a)^{r+1}+(b-x)^{r+1}\right] \tag{3.10}
\end{equation*}
$$

for all $x \in(a, b)$.

Proof. Since f is L_{f}-Lipschitzian on $[a, b]$, then (3.3) holds; that is,

$$
\begin{aligned}
|\mathcal{R}(f, g ; x)| & \leq\left|\int_{a}^{x}[g(t)-G(a, x)] d f(t)\right|+\left|\int_{x}^{b}[g(t)-G(x, b)] d f(t)\right| \\
& \leq L_{f}\left[\int_{a}^{x}|g(t)-G(a, x)| d t+\int_{x}^{b}|g(t)-G(x, b)| d t\right]
\end{aligned}
$$

Also, since g is of r - H_{g}-Hölder type on $[a, b]$, then we have

$$
\begin{aligned}
|g(t)-G(a, x)| & =\left|g(t)-\frac{1}{x-a} \int_{a}^{x} g(s) d s\right| \\
& \leq \frac{1}{x-a} \int_{a}^{x}|g(t)-g(s)| d s \\
& \leq \frac{H_{g}}{x-a} \int_{a}^{x}|t-s|^{r} d s=\frac{H_{g}}{x-a} \cdot \frac{(t-a)^{r+1}+(x-t)^{r+1}}{r+1}
\end{aligned}
$$

and

$$
\begin{aligned}
|g(t)-G(x, b)| & =\left|g(t)-\frac{1}{b-x} \int_{x}^{b} g(s) d s\right| \\
& \leq \frac{1}{b-x} \int_{x}^{b}|g(t)-g(s)| d s \\
& \leq \frac{H_{g}}{b-x} \int_{x}^{b}|t-s|^{r} d s=\frac{H_{g}}{b-x} \cdot \frac{(t-x)^{r+1}+(b-t)^{r+1}}{r+1}
\end{aligned}
$$

which gives by (3.3), we have

$$
\begin{aligned}
|\mathcal{R}(f, g ; x)| \leq & \frac{L_{f} H_{g}}{x-a} \cdot \int_{a}^{x} \frac{(t-a)^{r+1}+(x-t)^{r+1}}{r+1} d t \\
& +\frac{L_{f} H_{g}}{b-x} \cdot \int_{x}^{b} \frac{(t-x)^{r+1}+(b-t)^{r+1}}{r+1} d t \\
= & \frac{2 L_{f} H_{g}}{(r+1)(r+2)}\left[(x-a)^{r+1}+(b-x)^{r+1}\right]
\end{aligned}
$$

and thus the proof is completed.

Corollary 3.2. In Theorem 3.2, if g is L_{g}-Lipschitzian on $[a, b]$, then we have

$$
\begin{equation*}
|\mathcal{R}(f, g ; x)| \leq \frac{1}{3} L_{f} L_{g}\left[(x-a)^{2}+(b-x)^{2}\right] \tag{3.11}
\end{equation*}
$$

for all $x \in(a, b)$. Moreover, if we choose $x=\frac{a+b}{2}$, then

$$
\begin{equation*}
\left|\mathcal{R}\left(f, g ; \frac{a+b}{2}\right)\right| \leq \frac{1}{6} L_{f} L_{g}(b-a)^{2} . \tag{3.12}
\end{equation*}
$$

Corollary 3.3. In Theorem 3.2, choose $g(t)=t, t \in[a, b]$, then we have the inequality:

$$
\begin{array}{r}
\left|\frac{1}{2}\left[f(x)+\frac{(x-a) f(a)+(b-x) f(b)}{b-a}\right]-\int_{a}^{b} f(t) d t\right| \tag{3.13}\\
\leq \frac{2 L_{f}}{(r+1)(r+2)}\left[(x-a)^{r+1}+(b-x)^{r+1}\right]
\end{array}
$$

for all $a<x<b$. Moreover, if we choose $x=\frac{a+b}{2}$, then we get

$$
\begin{equation*}
\left|\frac{1}{2}\left[f\left(\frac{a+b}{2}\right)+\frac{f(a)+f(b)}{2}\right]-\int_{a}^{b} f(t) d t\right| \leq \frac{1}{6} L_{f}(b-a)^{2} . \tag{3.14}
\end{equation*}
$$

Theorem 3.3. Let $f, g:[a, b] \rightarrow \mathbb{R}$ be such that f is $L_{f}-$ Lipschitzian on $[a, b]$ and g is of bounded variation on $[a, b]$. Then,

$$
\begin{equation*}
|\mathcal{R}(f, g ; x)| \leq \frac{3}{4} L_{f}\left[\frac{b-a}{2}+\left|x-\frac{a+b}{2}\right|\right] \bigvee_{a}^{b}(g) \tag{3.15}
\end{equation*}
$$

for all $x \in(a, b)$.
Proof. Since f is L_{f}-Lipschitzian on $[a, b]$, then (3.3) holds; that is,

$$
\begin{aligned}
|\mathcal{R}(f, g ; x)| & \leq\left|\int_{a}^{x}[g(t)-G(a, x)] d f(t)\right|+\left|\int_{x}^{b}[g(t)-G(x, b)] d f(t)\right| \\
& \leq L_{f}\left[\int_{a}^{x}|g(t)-G(a, x)| d t+\int_{x}^{b}|g(t)-G(x, b)| d t\right]
\end{aligned}
$$

Using the Ostrowski integral inequality for the bounded variation function g we have

$$
\begin{aligned}
\int_{a}^{x}|g(t)-G(a, x)| d t & =\int_{a}^{x}\left|g(t)-\frac{1}{x-a} \int_{a}^{x} g(s) d s\right| d t \\
& \leq \int_{a}^{x}\left[\frac{1}{2}+\left|\frac{t-\frac{a+x}{2}}{x-a}\right|\right] d t \bigvee_{a}^{x}(g) \\
& \leq \frac{3}{4}(x-a) \bigvee_{a}^{x}(g)
\end{aligned}
$$

similarly, we observe

$$
\int_{x}^{b}|g(t)-G(x, b)| d t \leq \frac{3}{4}(b-x) \bigvee_{x}^{b}(g),
$$

which gives by (3.3), we have

$$
\begin{aligned}
|\mathcal{R}(f, g ; x)| & \leq \frac{3}{4} L_{f}\left[(x-a) \bigvee_{a}^{x}(g)+(b-x) \bigvee_{x}^{b}(g)\right] \\
& \leq \frac{3}{4} L_{f}\left[\frac{b-a}{2}+\left|x-\frac{a+b}{2}\right|\right] \bigvee_{a}^{b}(g),
\end{aligned}
$$

for all $x \in(a, b)$, and thus the proof is completed.

Remark 3.2. Let f be a monotonic nondecreasing in the theorems above. By applying the same techniques used in the corresponding proofs of each theorem, we may obtain several inequalities for monotonic non-decreasing integrator f using the fact that for a monotonic non-decreasing function $\nu:[a, b] \rightarrow \mathbb{R}$ and continuous function $p:[a, b] \rightarrow \mathbb{R}$, one has the inequality

$$
\left|\int_{a}^{b} p(t) d \nu(t)\right| \leq \int_{a}^{b}|p(t)| d \nu(t) .
$$

We leave the details to the interested reader.

4. Applications to A Three-point Quadrature rule

Consider I_{n} : $a=x_{0}<x_{1}<x_{2}<\ldots<x_{n-1}<x_{n}=b$, be a division of the interval $[a, b], L_{i}:=g\left(x_{i+1}\right)-g\left(x_{i}\right),(i=0,1, \ldots n-1)$ and $\nu(L):=$ $\max \left\{L_{i} \mid i=0,1, \ldots n-1\right\}$. Consider the following Three-point quadrature rule as

$$
\begin{align*}
S\left(f, g, I_{n}, \xi\right)=\sum_{i=0}^{n}\left[G\left(x_{i}, \xi_{i}\right)-g\left(x_{i}\right)\right] f\left(x_{i}\right) & +\left[G\left(\xi_{i}, x_{i+1}\right)-G\left(x_{i}, \xi_{i}\right)\right] f\left(\xi_{i}\right) \tag{4.1}\\
& +\left[g\left(x_{i+1}\right)-G\left(\xi_{i}, x_{i+1}\right)\right] f\left(x_{i+1}\right)
\end{align*}
$$

for all $\xi_{i} \in\left(x_{i}, x_{i+1}\right)$, where $G(\alpha, \beta):=\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} g(t) d t$.
In the following, we establish an upper bound for the error approximation of the Riemann-Stieltjes integral $\int_{a}^{b} f(t) d g(t)$ by its Riemann $\operatorname{sum} S\left(f, g, I_{n}, \xi\right)$. As a sample we consider (2.1).

Theorem 4.1. Under the assumptions of Theorem 2.1, we have

$$
\int_{a}^{b} f(t) d g(t)=S\left(f, g, I_{n}, \xi\right)+R\left(f, g, I_{n}, \xi\right)
$$

where, $S\left(f, g, I_{n}, \xi\right)$ is given in (4.1) and the remainder $R\left(f, g, I_{n}, \xi\right)$ satisfies the bound

$$
\begin{align*}
\left|R\left(f, g, I_{n}, \xi\right)\right| & \leq\left[\frac{1}{2} \nu(L)+\frac{\max }{0, n-1}\left|g\left(\xi_{i}\right)-\frac{g\left(x_{i}\right)+g\left(x_{i+1}\right)}{2}\right|\right] \cdot \bigvee_{a}^{b}(f) \\
& \leq \nu(L) \cdot \bigvee_{a}^{b}(f) \tag{4.2}
\end{align*}
$$

Proof. Fix $\xi_{i} \in\left(x_{i}, x_{i+1}\right)$. Applying Theorem 2.1 on the intervals $\left[x_{i}, x_{i+1}\right]$, we may state that

$$
\begin{aligned}
& \mid\left[G\left(x_{i}, \xi_{i}\right)-g\left(x_{i}\right)\right] f\left(x_{i}\right)+\left[G\left(\xi_{i}, x_{i+1}\right)-G\left(x_{i}, \xi_{i}\right)\right] f\left(\xi_{i}\right) \\
& +\left[g\left(x_{i+1}\right)-G\left(\xi_{i}, x_{i+1}\right)\right] f\left(x_{i+1}\right)-\int_{x_{i}}^{x_{i+1}} f(t) d g(t) \mid \\
& \quad \leq\left[\frac{g\left(x_{i+1}\right)-g\left(x_{i}\right)}{2}+\left|g\left(\xi_{i}\right)-\frac{g\left(x_{i}\right)+g\left(x_{i+1}\right)}{2}\right|\right] \cdot \bigvee_{x_{i}}^{x_{i+1}}(f),
\end{aligned}
$$

for all $i \in\{0,1,2, \cdots, n-1\}$. Summing the above inequality over i from 0 to $n-1$, we deduce

$$
\begin{aligned}
& \left|R\left(f, g, I_{n}, \xi\right)\right| \\
& =\sum_{i=0}^{n-1}\left\{\mid\left[G\left(x_{i}, \xi_{i}\right)-g\left(x_{i}\right)\right] f\left(x_{i}\right)+\left[G\left(\xi_{i}, x_{i+1}\right)-G\left(x_{i}, \xi_{i}\right)\right] f\left(\xi_{i}\right)\right. \\
& \left.\quad+\left[g\left(x_{i+1}\right)-G\left(\xi_{i}, x_{i+1}\right)\right] f\left(x_{i+1}\right)-\int_{x_{i}}^{x_{i+1}} f(t) d g(t) \mid\right\} \\
& \leq \leq \sum_{i=0}^{n-1}\left[\frac{g\left(x_{i+1}\right)-g\left(x_{i}\right)}{2}+\left|g\left(\xi_{i}\right)-\frac{g\left(x_{i}\right)+g\left(x_{i+1}\right)}{2}\right|\right] \cdot \bigvee_{x_{i}}^{x_{i+1}}(f) \\
& \leq \frac{\max }{0, n-1}\left[\frac{g\left(x_{i+1}\right)-g\left(x_{i}\right)}{2}+\left|g\left(\xi_{i}\right)-\frac{g\left(x_{i}\right)+g\left(x_{i+1}\right)}{2}\right|\right] \cdot \sum_{i=0}^{n-1} \bigvee_{x_{i}}^{x_{i+1}}(f) \\
& \leq[g(b)-g(a)] \cdot \bigvee_{a}^{b}(f),
\end{aligned}
$$

since

$$
\begin{aligned}
\frac{\max }{0, n-1}\left[\frac{g\left(x_{i+1}\right)-g\left(x_{i}\right)}{2}+\mid g\left(\xi_{i}\right)-\right. & \left.\left.\frac{g\left(x_{i}\right)+g\left(x_{i+1}\right)}{2} \right\rvert\,\right] \\
& \leq \frac{1}{2} \nu(L)+\frac{\max }{0, n-1}\left|g\left(\xi_{i}\right)-\frac{g\left(x_{i}\right)+g\left(x_{i+1}\right)}{2}\right|
\end{aligned}
$$

and

$$
\sum_{i=0}^{n-1} \bigvee_{x_{i}}^{x_{i+1}}(f)=\bigvee_{a}^{b}(f)
$$

For the second inequality, we observe that

$$
\frac{\max }{0, n-1}\left|g\left(\xi_{i}\right)-\frac{g\left(x_{i}\right)+g\left(x_{i+1}\right)}{2}\right| \leq \frac{1}{2} \frac{\max }{0, n-1} L_{i}=\frac{1}{2} \nu(L)
$$

which completes the proof.
Remark 4.1. Several error estimations for the quadrature $S\left(f, g, I_{n}, \xi\right)$ (4.1) by using the results in section 2 , we shall omit the details.

References

[1] M.W. Alomari, Some Grüss type inequalities for Riemann-Stieltjes integral and applications, Acta Mathematica Universitatis Comenianae, 81 (2) (2012), 211-220.
[2] M.W. Alomari, A companion of Dragomir's generalization of Ostrowski's inequality and applications in numerical integration, Ukrainian Math. J., 64(4) 2012, 491-510.
[3] M.W. Alomari, A companion of Ostrowski's inequality for the Riemann-Stieltjes integral $\int_{a}^{b} f(t) d u(t)$, where f is of bounded variation and u is of r - H-Hölder type and applications, Appl. Math. Comput., 219 (2013), 4792-4799.
[4] M.W. Alomari, A companion of Ostrowski's inequality for the Riemann-Stieltjes integral $\int_{a}^{b} f(t) d u(t)$, where f is of r - H-Hölder type and u is of bounded variation and applications, submitted. Avalibale at: http://ajmaa.org/RGMIA/papers/v14/v14a59.pdf.
[5] M.W. Alomari, A new generalization of Grüss type inequalities for the Stieltjes integral and Applications, submitted. Avaliable at: http://ajmaa.org/RGMIA/papers/v15/v15a36.pdf
[6] M.W. Alomari, New sharp inequalities of Ostrowski and generalized trapezoid type for the Riemann-Stieltjes integrals and applications, Ukrainian Mathematical Journal, 65 (7) 2013, 995-1018.
[7] M.W. Alomari and S.S. Dragomir, Mercer-Trapezoid rule for the Riemann-Stieltjes integral with applications, Journal of Advances in Mathematics, 2 (2) (2013), 67-85.
[8] M.W. Alomari and S.S. Dragomir, A three-point quadrature rule for the Riemann-Stieltjes integral, Southeast Bulletin Journal of Mathematics, accepted.
[9] N.S. Barnett, S.S. Dragomir and I. Gomma, A companion for the Ostrowski and the generalised trapezoid inequalities, Math. and Comp. Mode., 50 (2009), 179-187.
[10] N.S. Barnett, W.-S. Cheung, S.S. Dragomir, A. Sofo, Ostrowski and trapezoid type inequalities for the Stieltjes integral with Lipschitzian integrands or integrators, Comp. Math. Appl. , 57 (2009), 195-201.
[11] P. Cerone and S.S. Dragomir, Midpoint-type rules from an inequalities point of view, Handbook of Analytic-Computational Methods in Applied Mathematics, Editor: G.A. Anastassiou, CRC Press, N.Y. (2000), 135-200.
[12] P. Cerone, W.S. Cheung, S.S. Dragomir, On Ostrowski type inequalities for Stieltjes integrals with absolutely continuous integrands and integrators of bounded variation, Comp. Math. Appl., 54 (2007), 183-191.
[13] P. Cerone, S.S. Dragomir, New bounds for the three-point rule involving the RiemannStieltjes integrals, in: C. Gulati, et al. (Eds.), Advances in Statistics Combinatorics and Related Areas, World Science Publishing, 2002, pp. 53-62.
[14] P. Cerone, S.S. Dragomir, Approximating the Riemann-Stieltjes integral via some moments of the integrand, Mathematical and Computer Modelling, 49 (2009), 242-248.
[15] P. Cerone, S.S. Dragomir and C.E.M. Pearce, A generalized trapezoid inequality for functions of bounded variation, Turk. J. Math., 24 (2000), 147-163.
[16] W.-S. Cheung and S.S. Dragomir, Two Ostrowski type inequalities for the Stieltjes integral of monotonic functions, Bull. Austral. Math. Soc., 75 (2007), 299-311.
[17] S.S. Dragomir, On the Ostrowski's integral inequality for mappings with bounded variation and applications, Math. Ineq. \&s Appl., 4(1) (2001), 59-66.
[18] S.S. Dragomir, On the Ostrowski inequality for Riemann-Stieltjes integral $\int_{a}^{b} f(t) d u(t)$ where f is of Hölder type and u is of bounded variation and applications, J. KSIAM, 5 (2001), 35-45.
[19] S.S. Dragomir, On the Ostrowski's inequality for Riemann-Stieltes integral and applications, Korean J. Comput. \& Appl. Math., 7 (2000), 611-627.
[20] S.S. Dragomir, C. Buşe, M.V. Boldea and L. Braescu, A generalisation of the trapezoid rule for the Riemann-Stieltjes integral and applications, Nonlinear Anal. Forum, 6 (2) (2001) 337-351.
[21] S.S. Dragomir, Some inequalities of midpoint and trapezoid type for the Riemann-Stieltjes integral, Nonlinear Anal., 47 (4) (2001), 2333-2340.
[22] S.S. Dragomir, Refinements of the generalised trapezoid and Ostrowski inequalities for functions of bounded variation, Arch. Math., 91 (2008), 450-460
[23] S.S. Dragomir, Approximating the Riemann-Stieltjes integral in terms of generalised trapezoidal rules, Nonlinear Anal. TMA 71 (2009), e62-e72.
[24] S.S. Dragomir, Approximating the Riemann-Stieltjes integral by a trapezoidal quadrature rule with applications, Mathematical and Computer Modelling 54 (2011), 243-260.
[25] S.S. Dragomir, The Ostrowski's integral inequality for Lipschitzian mappings and applications, Comp. Math. Appl., 38 (1999), 33-37.
[26] S.S. Dragomir and I. Fedotov, An inequality of Gruss type for Riemann—Stieltjes integral and applications for special means, Tamkang J. Math., 29(4) (1998), 287-292.
[27] R.P. Mercer, Hadamard's inequality and trapezoid rules for the Riemann-Stieltjes integral, J. Math. Anal. Appl., (344) (2008), 921-927.
[28] M. Tortorella, Closed Newton-Cotes quadrature rules for Stieltjes integrals and numerical convolution of life distributions. SIAM J. Sci. Statist. Comput. 11 (1990), no. 4, 732-748.

Department of Mathematics, Faculty of Science and Technology, Irbid National University, Jordan.

E-mail address: mwomath@gmail.com

[^0]: Date: January 1, 2013 and, in revised form, February 2, 2013.
 2000 Mathematics Subject Classification. 26D10, 26D15.
 Key words and phrases. Riemann-Stieltjes integral, Quadrature rule.

