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SEMIRADICAL EQUALITY

SİBEL KILIÇARSLAN CANSU

Abstract. Semiprime radical of a module is defined and the relation between

the intersection of prime submodules and the intersection of semiprime sub-
modules is investigated. Semiradical formula is defined and it is shown that

cartesian product of M1 × M2 satisfies the semiradical formula if and only if

M1 and M2 satisfy the semiradical formula.

1. Introduction

Throughout all rings are commutative and all modules are unitary. Let R be a
ring and M be an R-module. A proper submodule N of M is prime if whenever
rm ∈ N , for some r ∈ R,m ∈ M then m ∈ N or rM ⊆ N . A proper submodule
N of an R-module M is semiprime, if whenever rkm ∈ N for some r ∈ R,m ∈ M
and k ∈ Z+, then rm ∈ N . Also, for any submodule N of M the envelope of N in
M is defined as the set

EM (N) = {rm : r ∈ R,m ∈M and rkm ∈ N for some k ∈ Z+}.

It is easy to show that a proper submodule N is semiprime if and only if
〈EM (N)〉 = N . Also, it is clear that every prime submodule is semiprime but
the converse is not true in general; to show this with an example let’s give the
following Theorem of Ylmaz and Klarslan Cansu.

Theorem 1.1. ([4], Theorem 2.5) Let N = Q1∩Q2∩ · · ·∩Qk be minimal primary
decomposition of N where

√
Qi : M = pi for all i = 1, 2, . . . , k and S = {1, 2, . . . , k}.

Then

〈EM (N)〉 = N + (

k⋂
i=1

pi)M +
∑
T⊂S

(
⋂
i∈T

pi)(
⋂

i∈S\T

Qi)

where the summation runs over each non-empty subset T of S.
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Now, we can give the example. The computer algebra system SINGULAR was
used during the computations.

If R = Q[x, y, z], M = R3 and N = 〈ze1, ye1, xye2, xye3, xze2 + x2ze3〉. Then
primary decompostion of N is N = Q1 ∩Q2 ∩Q3 where

Q1 = 〈e1, ye2, ye3, xe3 + e2〉 is 〈y〉 − primary,

Q2 = 〈ze1, ze2, ze3, ye1, ye2, ye3〉 is 〈z, y〉 − primary and

Q3 = 〈e1, xe2, xe3〉 is 〈x〉 − primary.

By Theorem 1.1,
〈EM (N)〉 = N + (p1 ∩ p2 ∩ p3)M + p1(Q2 ∩Q3) + p2(Q1 ∩Q3) + p3(Q1 ∩Q2)

+(p1 ∩ p2)Q3 + (p1 ∩ p3)Q2 + (p2 ∩ p3)Q1

= 〈ze1, ye1, xye2, xye3, xze2 + x2ze3〉 = N.

Hence, N is a semiprime submodule of M with N : M = 〈xy〉. On the
other hand N is not a prime submodule; since r = z and m = (0, x, x2) gives
rm = z(0, x, x2) = (0, xz, x2z) ∈ N but r = z /∈ N : M and m = (0, x, x2) /∈ N .

If N is a proper submodule of an R-module M , then the prime radical of N ,
radM (N), is the intersection of all prime submodules containing N . If it is necessary
to indicate the underlying ring, the prime radical of N is denoted by rad

RM (N).
The semiprime radical of N , denoted by sradM (N)(srad

RM (N)), is defined as
the intersection of all semiprime submodules of M containing N . If there is no
semiprime submodule containing N , then sradM (N) = M .

A module M satisfies the radical formula (s.t.r.f.) if for any submodule N of M ,
radM (N) = 〈EM (N)〉. In the same manner we define, an R-module M satisfies
the semiradical formula (s.t.s.r.f.) if for any submodule N of M , sradM (N) =
〈EM (N)〉. Since intersection of semiprime submodules is semiprime, sradM (N) is
the unique smallest semiprime submodule of M containing N .

We know that for an ideal I of R,
√√

I =
√
I; but the envelope of a submodule

does not satisfy an equation similiar to this one. If R = Q[x, y, z], M is an R-module
R⊕R and N = 〈z2e1, z

2e2, yze2, y
2e1 + ze2, y

2e2, ye1 + x3e2〉 is an R-submodule
of M . Since N is 〈z, y〉-primary,

〈EM (N)〉 = N + 〈z, y〉M = 〈ze1, ze2, ye1, ye2, x
3e2〉.

Since 〈EM (N)〉 = Q1 ∩Q2, where

Q1 = 〈e2, ze1, ye1〉 is 〈z, y〉 − primary,

Q2 = 〈ze1, ze2, ze3, ye1, ye2, x
3e1, x

3e2〉 is 〈x, y, z〉 − primary,

Theorem 1.1 implies that 〈EM (〈EM (N)〉)〉 = 〈ze1, ze2, ye1, ye2, xe2〉 6= 〈EM (N)〉.

In [2], Azizi and Nikseresht defined the kth envelope of N recursively by E0(N) =
N,E1(N) = EM (N), E2(N) = EM (〈EM (N)〉) and Ek(N) = EM (〈Ek−1(N))〉 for
every submodule N of M . It is easy to show that

N = 〈E0(N)〉 ⊆ 〈E1(N)〉 ⊆ 〈E2(N)〉 ⊆ · · · · · · ⊆ 〈E∞(N)〉 ⊆ sradM (N) ⊆ radM (N)
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where 〈E∞(N)〉 =
∞⋃
k=0

〈Ek(N)〉. It is clear that 〈E∞(N)〉 is semiprime and thus

〈E∞(N)〉 = sradM (N).

When we consider the chain

N = 〈E0(N)〉 ⊆ 〈E1(N)〉 ⊆ 〈E2(N)〉 ⊆ · · · · · · ⊆ 〈E∞(N)〉 = sradM (N) ⊆ radM (N),

it seems meaningfull to focus on the submodules sradM (N) and radM (N) and in-
vestigate the conditions where the equality sradM (N) = radM (N) occurs.

Here, semiradical equality is defined and some equivalent conditions for a ring
to satisfy the semiradical equality are stated.

2. Semiradical Equality

It is clear that intersection of prime submodules is semiprime, but the converse
is not true in general, see [1].

Lemma 2.1. Let M be an R-module. Then every semiprime submodule is an
intersection of prime submodules if and only if sradM (N) = radM (N) for any
submodule N of M .

Proof. (⇒) Since intersection of semiprime submodules is semiprime , sradM (N)
is a semiprime submodule. Hence it is obvious.

(⇐) Let K be a semiprime submodule of M . Then K = sradM (K) = radM (K).
Hence K is an intersection of prime submodules. �

Lemma 2.2. Let N be a submodule of an R-module M such that M/N is projective.
Then sradM (N) = radM (N).

Proof. Since M/N is projective, radM/N (0) = 〈EM/N (0)〉 by [1] Lemma 8. Then
we have,radM (N) = 〈EM (N)〉 which implies that sradM (N) = radM (N). �

Corollary 2.1. Let N be a submodule of an R-module M such that M/N is pro-
jective. Then sradM (N) = radRM + N .

Proof. Clear by [5] Theorem 2.7 and the above lemma. �

We say that a module M satisfies the semiradical equality if for every submodule
N of M , sradM (N) = radM (N). It is said that a ring R satisfies the semiradical
equality if every R-module satisfies the semiradical equality. Since arithmetical
rings satisfy the radical formula [3], an arithmetical ring satisfies the semiradical
equality.

Proposition 2.1. The followings are equivalent.

(i) The ring R satisfies the semiradical equality.
(ii) for any ideal I of R, the ring R/I satisfies the semiradical equality.
(iii) for any non-maximal semiprime ideal P of R, the ring R/P satisfies the

semiradical equality.

Proof. (i⇒ ii) Let M be an R/I-module. By Lemma 2.1, it is enough to show that
every semiprime R/I-module is an intersection of prime submodules. Let K be a
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semiprime submodule of an R/I-module M . Then K is a semiprime submodule of
M as an R-module. So, K = srad

RM (K) = rad
RM (K).

It is easy to see that every submodule of M is a prime R-submodule if and
only if it is a prime R/I-submodule. Hence rad

RM (K) = rad
R/IM (K) and thus

K = rad
R/IM (K).

(iii ⇒ i) Let N be a semiprime submodule of an R-module M with N :
M = P where P is a non-maximal semiprime ideal. Consider M/N as an R/P -
module. Then by our assumption, sradM/N (0) = radM/N (0). Hence sradM (N) =
radM (N).

�

Corollary 2.2. If for any non-maximal semiprime ideal P of R; R/P is a Prüfer
domain, then R satisfies the semiradical equality.

Lemma 2.3. A ring R satisfies the semiradical equality if and only if every free
R-module satisfies the semiradical equality.

Proof. Let M be an R-module. Then there exists a free R-module F such that
M ∼= F/K. By our assumption, for any submodule N of M

sradF/K(N/K) = sradF (N)/K

= radF (N)/K

= radF/K(N/K).

Hence M satisfies the semiradical equality. �

3. Semiprime Submodules of Cartesian Product of Modules

Let R = R1 × R2 where each Ri is a commutative ring with nonzero identity.
Let Mi be an Ri-module for i = 1, 2 and M = M1 ×M2 be the R-module with
action (r1, r2)(m1,m2) = (r1m1, r2m2) where ri ∈ Ri,mi ∈ Mi. These notations
are fixed for this section.

Note that since our action is (r1, r2)(m1,m2) = (r1m1, r2m2) where ri ∈ Ri,mi ∈
Mi, every submodule of M1 ×M2 is of the form N1 ×N2 with N1 is a submodule
of M1 and N2 is a submodule of M2.

Proposition 3.1. Let R and M be as above. Then

(i) If N1 is semiprime submodule of M1, then N1×M2 is semiprime submodule
of M1 ×M2.

(ii) If N2 is semiprime submodule of M2, then M1×N2 is semiprime submodule
of M1 ×M2.

Proof. (i) Let r = (r1, r2) ∈ R, m = (m1,m2) ∈ M and rkm ∈ N1 ×M2 for some
k ∈ Z+. Since N1 is semiprime submodule of M1, r1m1 ∈ N1. Then (r1m1, r2m2) =
rm ∈ N1 ×M2 which implies that N1 ×M2 is semiprime submodule of M .

(ii) Similiar to case (i). �

Lemma 3.1. Let R and M be as above. Then Q1 ×Q2 is a semiprime submodule
of M if and only if Qi is semiprime submodule of Mi for all i = 1, 2.
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Proof. Let (r1, r2)k(m1,m2) ∈ Q1 × Q2 where mi ∈ Mi, ri ∈ Ri and k ∈ Z+ and
Q1 and Q2 be semiprime submodules of M1 and M2 respectively. Since Q1 and Q2

are semiprime, rimi ∈ Qi for i = 1, 2 which implies that Q1 ×Q2 is semiprime.
Now assume that Q1 × Q2 is semiprime submodule of M1 × M2. Let r1 ∈ R1,
m1 ∈ M1 with rk1m1 ∈ Q1. Then (r1, 1)k(m1, 0) ∈ Q1 × Q2. Since Q1 × Q2

is semiprime, (r1, 1)(m1, 0) = (r1m1, 0) ∈ Q1 × Q2 implies that Q1 is semiprime
submodule of M1. Similarly it can be shown that Q2 is semiprime submodule of
M2. �

Lemma 3.2. Let N = N1 ×N2 be a submodule of M where Ni is a submodule of
Mi for i = 1, 2. Then N : M = (N1 : M1)× (N2 : M2)

Proof. Let x = (x1, x2) ∈ (N : M). Then xM ⊆ N which means that

(x1, x2)(m1,m2) = (x1m1, x2m2) ∈ N1 ×N2

for all m1 ∈M1 and m2 ∈M2. So, x1m1 ∈ N1 and x2m2 ∈ N2. Hence

x1 ∈ (N1 : M1), x2 ∈ (N2 : M2)

and thus x = (x1, x2) ∈ (N1 : M1)× (N2 : M2).
Conversely, let y = (y1, y2) ∈ (N1 : M1) × (N2 : M2). Then y1M1 ⊆ N1 and

y2M2 ⊆ N2. Hence for all m1 ∈M1,m2 ∈M2,

(y1, y2)(m1,m2) = (y1m1, y2m2) ∈ N1 ×N2.

This implies that y ∈ (N1 ×N2) : (M1 ×M2) = (N : M). �

Let N be a semiprime submodule of an R-module M . If p =
√
N : M is a prime

ideal, then N is called p -semiprime submodule.

Lemma 3.3. Let N = N1 ×N2 be a submodule of M . Then

(i) N is p × R2 semiprime submodule of M iff N1 is p-semiprime submodule
of M1 and N2 = M2.

(ii) N is R1 × p semiprime submodule of M iff N2 is p-semiprime submodule
of M2 and N1 = M1.

Proof. (i) Suppose N = N1 ×N2 is semiprime submodule of M1 ×M2. By Lemma
3.1, N1 is semiprime submodule of M1.

Since N : M = p × R2, N1 is p-semiprime and N2 : M2 = R2 implies that
N2 = M2.

Other side is clear by Proposition 3.1 and Lemma 3.2.
(ii) Similiar to case (i). �

If p1 and p2 are prime ideals of R1 and R2 respectively, it is not true in general
that p1×p2 is prime ideal of R1×R2, for example if we take R1 = R2 = Z, p1 = 2Z
and p2 = 3Z, then 2Z × 3Z is not a prime ideal of Z × Z since Z2 × Z3 is not an
integral domain. So, if we try to generalize Lemma 3.3, we only get the following
lemma.

Lemma 3.4. Let N = N1 × N2 be a submodule of M . If N1 × N2 is p1 × p2-
semiprime submodule, then Ni is pi-semiprime submodule of Mi for i = 1, 2.
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Proof. Assume that N1×N2 is p1×p2-semiprime submodule of M . By Lemma 3.1,
N1 and N2 are semiprime submodules of M1 and M2 respectively. Since p1 × p2 is
prime ideal, by Lemma 3.2

(N1 ×N2) : (M1 ×M2) =
√
N : M = p1 × p2

(N1 : M1)× (N2 : M2) = p1 × p2.

Hence, N1 : M1 = p1 and N2 : M2 = p2. Since p1 and p2 are prime ideals,

N1 : M1 =
√
N1 : M1 = p1 and

N2 : M2 =
√
N2 : M2 = p2.

Thus, Ni is pi-semiprime submodule of Mi for i = 1, 2. �

Proposition 3.2. Let N = N1 ×N2 be a submodule of M . Then

sradM (N) = sradM1
(N1)× sradM2

(N2)

Proof. Let Q1 × Q2 be a semiprime submodule of M containing N1 × N2. By
Lemma 3.1, Qi is semiprime submodule of Mi containing Ni for i = 1, 2. Then

sradM1
(N1)× sradM2

(N2) ⊆ sradM (N1 ×N2)

since sradM1(N1)× sradM2(N2) ⊆ Q1 ×Q2.

Since sradMi
(Ni) is the minimal semiprime submodule of Mi containing Ni,

Lemma 3.1 implies that sradM1
(N1) × sradM2

(N2) is a semiprime submodule of
M1 ×M2 which contains N1 ×N2. Hence

sradM (N) ⊆ sradM1
(N1)× sradM2

(N2)

�

Corollary 3.1. Let N = N1 ×N2 be a submodule of M . Then

(i) sradM (N1 ×M2) = sradM1(N1)×M2

(ii) sradM (M1 ×N2) = M1 × sradM2(N2)

Proof. Clear by Proposition 3.2.
�

Proposition 3.3. ([6], Proposition 2.12) Let N = N1 ×N2 be a submodule of M .
Then 〈EM (N)〉 = 〈EM1

(N1)〉 × 〈EM2
(N2)〉.

Theorem 3.1. M s.t.s.r.f. if and only if Mi s.t.s.r.f. for all i = 1, 2.

Proof. Assume M s.t.s.r.f.. Take a submodule N1 of M1. Then N1 ×M2 s.t.s.r.f.,
so that sradM1

(N1) ×M2 = 〈EM1
(N1)〉 × 〈EM2

(M2)〉. Now, let x ∈ sradM1
(N1).

Then (x,m) ∈ sradM1
(N1) ×M2 and hence x ∈ 〈EM1

(N1)〉. Similiarly it can be
shown that sradM2(N2) = 〈EM2(N2)〉.

Conversely assume that M1 and M2 s.t.s.r.f.. Take any submodule N1 × N2 of
M1 ×M2. Then

sradM (N1 ×N2) = sradM1(N1)× sradM2(N2)

= 〈EM1(N1)〉 × 〈EM2(N2)〉
= 〈EM (N1 ×N2)〉

Thus, M = M1 ×M2 s.t.s.r.f.. �
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