Konuralp Journal of Mathematics
Volume 2 No. 2 pp. 35-41 (2014) ©KJM

SEMIRADICAL EQUALITY

SİBEL KILIÇARSLAN CANSU

Abstract

Semiprime radical of a module is defined and the relation between the intersection of prime submodules and the intersection of semiprime submodules is investigated. Semiradical formula is defined and it is shown that cartesian product of $M_{1} \times M_{2}$ satisfies the semiradical formula if and only if M_{1} and M_{2} satisfy the semiradical formula.

1. Introduction

Throughout all rings are commutative and all modules are unitary. Let R be a ring and M be an R-module. A proper submodule N of M is prime if whenever $r m \in N$, for some $r \in R, m \in M$ then $m \in N$ or $r M \subseteq N$. A proper submodule N of an R-module M is semiprime, if whenever $r^{k} m \in N$ for some $r \in R, m \in M$ and $k \in \mathbb{Z}^{+}$, then $r m \in N$. Also, for any submodule N of M the envelope of N in M is defined as the set

$$
E_{M}(N)=\left\{r m: r \in R, m \in M \quad \text { and } \quad r^{k} m \in N \quad \text { for } \quad \text { some } \quad k \in \mathbb{Z}^{+}\right\}
$$

It is easy to show that a proper submodule N is semiprime if and only if $\left\langle E_{M}(N)\right\rangle=N$. Also, it is clear that every prime submodule is semiprime but the converse is not true in general; to show this with an example let's give the following Theorem of Ylmaz and Klarslan Cansu.

Theorem 1.1. ([4], Theorem 2.5) Let $N=Q_{1} \cap Q_{2} \cap \cdots \cap Q_{k}$ be minimal primary decomposition of N where $\sqrt{Q_{i}: M}=p_{i}$ for all $i=1,2, \ldots, k$ and $S=\{1,2, \ldots, k\}$. Then

$$
\left\langle E_{M}(N)\right\rangle=N+\left(\bigcap_{i=1}^{k} p_{i}\right) M+\sum_{T \subset S}\left(\bigcap_{i \in T} p_{i}\right)\left(\bigcap_{i \in S \backslash T} Q_{i}\right)
$$

where the summation runs over each non-empty subset T of S.

[^0]Now, we can give the example. The computer algebra system SINGULAR was used during the computations.

If $R=\mathbb{Q}[x, y, z], M=R^{3}$ and $N=\left\langle z \mathbf{e}_{1}, y \mathbf{e}_{1}, x y \mathbf{e}_{2}, x y \mathbf{e}_{3}, x z \mathbf{e}_{2}+x^{2} z \mathbf{e}_{3}\right\rangle$. Then primary decompostion of N is $N=Q_{1} \cap Q_{2} \cap Q_{3}$ where

$$
\begin{aligned}
& Q_{1}=\left\langle\mathbf{e}_{1}, y \mathbf{e}_{2}, y \mathbf{e}_{3}, x \mathbf{e}_{3}+\mathbf{e}_{2}\right\rangle \text { is }\langle y\rangle-\text { primary } \\
& Q_{2}=\left\langle z \mathbf{e}_{1}, z \mathbf{e}_{2}, z \mathbf{e}_{3}, y \mathbf{e}_{1}, y \mathbf{e}_{2}, y \mathbf{e}_{3}\right\rangle \text { is }\langle z, y\rangle-\text { primary and } \\
& Q_{3}=\left\langle\mathbf{e}_{1}, x \mathbf{e}_{2}, x \mathbf{e}_{3}\right\rangle \text { is }\langle x\rangle-\text { primary. }
\end{aligned}
$$

By Theorem 1.1,

$$
\begin{aligned}
\left\langle E_{M}(N)\right\rangle=N+ & \left(p_{1} \cap p_{2} \cap p_{3}\right) M+p_{1}\left(Q_{2} \cap Q_{3}\right)+p_{2}\left(Q_{1} \cap Q_{3}\right)+p_{3}\left(Q_{1} \cap Q_{2}\right) \\
& +\left(p_{1} \cap p_{2}\right) Q_{3}+\left(p_{1} \cap p_{3}\right) Q_{2}+\left(p_{2} \cap p_{3}\right) Q_{1} \\
& =\left\langle z \mathbf{e}_{1}, y \mathbf{e}_{1}, x y \mathbf{e}_{2}, x y \mathbf{e}_{3}, x z \mathbf{e}_{2}+x^{2} z \mathbf{e}_{3}\right\rangle=N
\end{aligned}
$$

Hence, N is a semiprime submodule of M with $N: M=\langle x y\rangle$. On the other hand N is not a prime submodule; since $r=z$ and $m=\left(0, x, x^{2}\right)$ gives $r m=z\left(0, x, x^{2}\right)=\left(0, x z, x^{2} z\right) \in N$ but $r=z \notin N: M$ and $m=\left(0, x, x^{2}\right) \notin N$.

If N is a proper submodule of an R-module M, then the prime radical of N, $\operatorname{rad}_{M}(N)$, is the intersection of all prime submodules containing N. If it is necessary to indicate the underlying ring, the prime radical of N is denoted by $\operatorname{rad}_{R} M(N)$. The semiprime radical of N, denoted by $\operatorname{srad}_{M}(N)\left(\operatorname{srad}_{R} M(N)\right)$, is defined as the intersection of all semiprime submodules of M containing N. If there is no semiprime submodule containing N, then $\operatorname{srad}_{M}(N)=M$.

A module M satisfies the radical formula (s.t.r.f.) if for any submodule N of M, $\operatorname{rad}_{M}(N)=\left\langle E_{M}(N)\right\rangle$. In the same manner we define, an R-module M satisfies the semiradical formula (s.t.s.r.f.) if for any submodule N of $M, \operatorname{srad}_{M}(N)=$ $\left\langle E_{M}(N)\right\rangle$. Since intersection of semiprime submodules is semiprime, $\operatorname{srad}_{M}(N)$ is the unique smallest semiprime submodule of M containing N.

We know that for an ideal I of $R, \sqrt{\sqrt{I}}=\sqrt{I}$; but the envelope of a submodule does not satisfy an equation similiar to this one. If $R=\mathbb{Q}[x, y, z], M$ is an R-module $R \oplus R$ and $N=\left\langle z^{2} \mathbf{e}_{1}, z^{2} \mathbf{e}_{2}, y z \mathbf{e}_{2}, y^{2} \mathbf{e}_{1}+z \mathbf{e}_{2}, y^{2} \mathbf{e}_{2}, y \mathbf{e}_{1}+x^{3} \mathbf{e}_{2}\right\rangle$ is an R-submodule of M. Since N is $\langle z, y\rangle$-primary,

$$
\left\langle E_{M}(N)\right\rangle=N+\langle z, y\rangle M=\left\langle z \mathbf{e}_{1}, z \mathbf{e}_{2}, y \mathbf{e}_{1}, y \mathbf{e}_{2}, x^{3} \mathbf{e}_{2}\right\rangle
$$

Since $\left\langle E_{M}(N)\right\rangle=Q_{1} \cap Q_{2}$, where

$$
\begin{aligned}
& Q_{1}=\left\langle\mathbf{e}_{2}, z \mathbf{e}_{1}, y \mathbf{e}_{1}\right\rangle \text { is }\langle z, y\rangle-\text { primary } \\
& Q_{2}=\left\langle z \mathbf{e}_{1}, z \mathbf{e}_{2}, z \mathbf{e}_{3}, y \mathbf{e}_{1}, y \mathbf{e}_{2}, x^{3} \mathbf{e}_{1}, x^{3} \mathbf{e}_{2}\right\rangle \text { is }\langle x, y, z\rangle-\text { primary }
\end{aligned}
$$

Theorem 1.1 implies that $\left\langle E_{M}\left(\left\langle E_{M}(N)\right\rangle\right)\right\rangle=\left\langle z \mathbf{e}_{1}, z \mathbf{e}_{2}, y \mathbf{e}_{1}, y \mathbf{e}_{2}, x \mathbf{e}_{2}\right\rangle \neq\left\langle E_{M}(N)\right\rangle$.
In [2], Azizi and Nikseresht defined the k th envelope of N recursively by $E_{0}(N)=$ $N, E_{1}(N)=E_{M}(N), E_{2}(N)=E_{M}\left(\left\langle E_{M}(N)\right\rangle\right)$ and $E_{k}(N)=E_{M}\left(\left\langle E_{k-1}(N)\right)\right\rangle$ for every submodule N of M. It is easy to show that

$$
N=\left\langle E_{0}(N)\right\rangle \subseteq\left\langle E_{1}(N)\right\rangle \subseteq\left\langle E_{2}(N)\right\rangle \subseteq \cdots \cdots \subseteq\left\langle E_{\infty}(N)\right\rangle \subseteq \operatorname{srad}_{M}(N) \subseteq \operatorname{rad}_{M}(N)
$$

where $\left\langle E_{\infty}(N)\right\rangle=\bigcup_{k=0}^{\infty}\left\langle E_{k}(N)\right\rangle$. It is clear that $\left\langle E_{\infty}(N)\right\rangle$ is semiprime and thus $\left\langle E_{\infty}(N)\right\rangle=\operatorname{srad}_{M}(N)$.

When we consider the chain
$N=\left\langle E_{0}(N)\right\rangle \subseteq\left\langle E_{1}(N)\right\rangle \subseteq\left\langle E_{2}(N)\right\rangle \subseteq \cdots \cdots \subseteq\left\langle E_{\infty}(N)\right\rangle=\operatorname{srad}_{M}(N) \subseteq \operatorname{rad}_{M}(N)$,
it seems meaningfull to focus on the submodules $\operatorname{srad}_{M}(N)$ and $\operatorname{rad}_{M}(N)$ and investigate the conditions where the equality $\operatorname{srad}_{M}(N)=\operatorname{rad}_{M}(N)$ occurs.

Here, semiradical equality is defined and some equivalent conditions for a ring to satisfy the semiradical equality are stated.

2. Semiradical Equality

It is clear that intersection of prime submodules is semiprime, but the converse is not true in general, see [1].

Lemma 2.1. Let M be an R-module. Then every semiprime submodule is an intersection of prime submodules if and only if $\operatorname{srad}_{M}(N)=\operatorname{rad}_{M}(N)$ for any submodule N of M.

Proof. (\Rightarrow) Since intersection of semiprime submodules is semiprime, $\operatorname{srad}_{M}(N)$ is a semiprime submodule. Hence it is obvious.
(\Leftarrow) Let K be a semiprime submodule of M. Then $K=\operatorname{srad}_{M}(K)=\operatorname{rad}_{M}(K)$. Hence K is an intersection of prime submodules.

Lemma 2.2. Let N be a submodule of an R-module M such that M / N is projective. Then $\operatorname{srad}_{M}(N)=\operatorname{rad}_{M}(N)$.
Proof. Since M / N is projective, $\operatorname{rad}_{M / N}(0)=\left\langle E_{M / N}(0)\right\rangle$ by [1] Lemma 8. Then we have, $\operatorname{rad}_{M}(N)=\left\langle E_{M}(N)\right\rangle$ which implies that $\operatorname{srad}_{M}(N)=\operatorname{rad}_{M}(N)$.

Corollary 2.1. Let N be a submodule of an R-module M such that M / N is projective. Then $\operatorname{srad}_{M}(N)=\operatorname{radRM}+N$.
Proof. Clear by [5] Theorem 2.7 and the above lemma.
We say that a module M satisfies the semiradical equality if for every submodule N of $M, \operatorname{srad}_{M}(N)=\operatorname{rad}_{M}(N)$. It is said that a ring R satisfies the semiradical equality if every R-module satisfies the semiradical equality. Since arithmetical rings satisfy the radical formula [3], an arithmetical ring satisfies the semiradical equality.

Proposition 2.1. The followings are equivalent.
(i) The ring R satisfies the semiradical equality.
(ii) for any ideal I of R, the ring R / I satisfies the semiradical equality.
(iii) for any non-maximal semiprime ideal P of R, the ring R / P satisfies the semiradical equality.
Proof. ($i \Rightarrow i i$) Let M be an R / I-module. By Lemma 2.1, it is enough to show that every semiprime R / I-module is an intersection of prime submodules. Let K be a
semiprime submodule of an R / I-module M. Then K is a semiprime submodule of M as an R-module. So, $K=\operatorname{srad}_{R} M(K)=\operatorname{rad}_{R} M(K)$.

It is easy to see that every submodule of M is a prime R-submodule if and only if it is a prime R / I-submodule. Hence $\operatorname{rad}_{R M}(K)=\operatorname{rad}_{R / I M}(K)$ and thus $K=\operatorname{rad}_{R / I} M(K)$.
$($ iii $\Rightarrow i)$ Let N be a semiprime submodule of an R-module M with N : $M=P$ where P is a non-maximal semiprime ideal. Consider M / N as an R / P module. Then by our assumption, $\operatorname{srad}_{M / N}(0)=\operatorname{rad}_{M / N}(0)$. Hence $\operatorname{srad}_{M}(N)=$ $\operatorname{rad}_{M}(N)$.

Corollary 2.2. If for any non-maximal semiprime ideal P of $R ; R / P$ is a Prüfer domain, then R satisfies the semiradical equality.

Lemma 2.3. A ring R satisfies the semiradical equality if and only if every free R-module satisfies the semiradical equality.

Proof. Let M be an R-module. Then there exists a free R-module F such that $M \cong F / K$. By our assumption, for any submodule N of M

$$
\begin{aligned}
\operatorname{srad}_{F / K}(N / K) & =\operatorname{srad}_{F}(N) / K \\
& =\operatorname{rad}_{F}(N) / K \\
& =\operatorname{rad}_{F / K}(N / K) .
\end{aligned}
$$

Hence M satisfies the semiradical equality.

3. Semiprime Submodules of Cartesian Product of Modules

Let $R=R_{1} \times R_{2}$ where each R_{i} is a commutative ring with nonzero identity. Let M_{i} be an R_{i}-module for $i=1,2$ and $M=M_{1} \times M_{2}$ be the R-module with action $\left(r_{1}, r_{2}\right)\left(m_{1}, m_{2}\right)=\left(r_{1} m_{1}, r_{2} m_{2}\right)$ where $r_{i} \in R_{i}, m_{i} \in M_{i}$. These notations are fixed for this section.

Note that since our action is $\left(r_{1}, r_{2}\right)\left(m_{1}, m_{2}\right)=\left(r_{1} m_{1}, r_{2} m_{2}\right)$ where $r_{i} \in R_{i}, m_{i} \in$ M_{i}, every submodule of $M_{1} \times M_{2}$ is of the form $N_{1} \times N_{2}$ with N_{1} is a submodule of M_{1} and N_{2} is a submodule of M_{2}.

Proposition 3.1. Let R and M be as above. Then
(i) If N_{1} is semiprime submodule of M_{1}, then $N_{1} \times M_{2}$ is semiprime submodule of $M_{1} \times M_{2}$.
(ii) If N_{2} is semiprime submodule of M_{2}, then $M_{1} \times N_{2}$ is semiprime submodule of $M_{1} \times M_{2}$.

Proof. (i) Let $r=\left(r_{1}, r_{2}\right) \in R, m=\left(m_{1}, m_{2}\right) \in M$ and $r^{k} m \in N_{1} \times M_{2}$ for some $k \in \mathbb{Z}^{+}$. Since N_{1} is semiprime submodule of $M_{1}, r_{1} m_{1} \in N_{1}$. Then $\left(r_{1} m_{1}, r_{2} m_{2}\right)=$ $r m \in N_{1} \times M_{2}$ which implies that $N_{1} \times M_{2}$ is semiprime submodule of M.
(ii) Similiar to case (i).

Lemma 3.1. Let R and M be as above. Then $Q_{1} \times Q_{2}$ is a semiprime submodule of M if and only if Q_{i} is semiprime submodule of M_{i} for all $i=1,2$.

Proof. Let $\left(r_{1}, r_{2}\right)^{k}\left(m_{1}, m_{2}\right) \in Q_{1} \times Q_{2}$ where $m_{i} \in M_{i}, r_{i} \in R_{i}$ and $k \in \mathbb{Z}^{+}$and Q_{1} and Q_{2} be semiprime submodules of M_{1} and M_{2} respectively. Since Q_{1} and Q_{2} are semiprime, $r_{i} m_{i} \in Q_{i}$ for $i=1,2$ which implies that $Q_{1} \times Q_{2}$ is semiprime.
Now assume that $Q_{1} \times Q_{2}$ is semiprime submodule of $M_{1} \times M_{2}$. Let $r_{1} \in R_{1}$, $m_{1} \in M_{1}$ with $r_{1}^{k} m_{1} \in Q_{1}$. Then $\left(r_{1}, 1\right)^{k}\left(m_{1}, 0\right) \in Q_{1} \times Q_{2}$. Since $Q_{1} \times Q_{2}$ is semiprime, $\left(r_{1}, 1\right)\left(m_{1}, 0\right)=\left(r_{1} m_{1}, 0\right) \in Q_{1} \times Q_{2}$ implies that Q_{1} is semiprime submodule of M_{1}. Similarly it can be shown that Q_{2} is semiprime submodule of M_{2}.

Lemma 3.2. Let $N=N_{1} \times N_{2}$ be a submodule of M where N_{i} is a submodule of M_{i} for $i=1,2$. Then $N: M=\left(N_{1}: M_{1}\right) \times\left(N_{2}: M_{2}\right)$

Proof. Let $x=\left(x_{1}, x_{2}\right) \in(N: M)$. Then $x M \subseteq N$ which means that

$$
\left(x_{1}, x_{2}\right)\left(m_{1}, m_{2}\right)=\left(x_{1} m_{1}, x_{2} m_{2}\right) \in N_{1} \times N_{2}
$$

for all $m_{1} \in M_{1}$ and $m_{2} \in M_{2}$. So, $x_{1} m_{1} \in N_{1}$ and $x_{2} m_{2} \in N_{2}$. Hence

$$
x_{1} \in\left(N_{1}: M_{1}\right), \quad x_{2} \in\left(N_{2}: M_{2}\right)
$$

and thus $x=\left(x_{1}, x_{2}\right) \in\left(N_{1}: M_{1}\right) \times\left(N_{2}: M_{2}\right)$.
Conversely, let $y=\left(y_{1}, y_{2}\right) \in\left(N_{1}: M_{1}\right) \times\left(N_{2}: M_{2}\right)$. Then $y_{1} M_{1} \subseteq N_{1}$ and $y_{2} M_{2} \subseteq N_{2}$. Hence for all $m_{1} \in M_{1}, m_{2} \in M_{2}$,

$$
\left(y_{1}, y_{2}\right)\left(m_{1}, m_{2}\right)=\left(y_{1} m_{1}, y_{2} m_{2}\right) \in N_{1} \times N_{2}
$$

This implies that $y \in\left(N_{1} \times N_{2}\right):\left(M_{1} \times M_{2}\right)=(N: M)$.
Let N be a semiprime submodule of an R-module M. If $p=\sqrt{N: M}$ is a prime ideal, then N is called p-semiprime submodule.

Lemma 3.3. Let $N=N_{1} \times N_{2}$ be a submodule of M. Then
(i) N is $p \times R_{2}$ semiprime submodule of M iff N_{1} is p-semiprime submodule of M_{1} and $N_{2}=M_{2}$.
(ii) N is $R_{1} \times p$ semiprime submodule of M iff N_{2} is p-semiprime submodule of M_{2} and $N_{1}=M_{1}$.

Proof. (i) Suppose $N=N_{1} \times N_{2}$ is semiprime submodule of $M_{1} \times M_{2}$. By Lemma 3.1, N_{1} is semiprime submodule of M_{1}.

Since $N: M=p \times R_{2}, N_{1}$ is p-semiprime and $N_{2}: M_{2}=R_{2}$ implies that $N_{2}=M_{2}$.

Other side is clear by Proposition 3.1 and Lemma 3.2.
(ii) Similiar to case (i).

If p_{1} and p_{2} are prime ideals of R_{1} and R_{2} respectively, it is not true in general that $p_{1} \times p_{2}$ is prime ideal of $R_{1} \times R_{2}$, for example if we take $R_{1}=R_{2}=\mathbb{Z}, p_{1}=2 \mathbb{Z}$ and $p_{2}=3 \mathbb{Z}$, then $2 \mathbb{Z} \times 3 \mathbb{Z}$ is not a prime ideal of $\mathbb{Z} \times \mathbb{Z}$ since $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$ is not an integral domain. So, if we try to generalize Lemma 3.3, we only get the following lemma.

Lemma 3.4. Let $N=N_{1} \times N_{2}$ be a submodule of M. If $N_{1} \times N_{2}$ is $p_{1} \times p_{2}$ semiprime submodule, then N_{i} is p_{i}-semiprime submodule of M_{i} for $i=1,2$.

Proof. Assume that $N_{1} \times N_{2}$ is $p_{1} \times p_{2}$-semiprime submodule of M. By Lemma 3.1, N_{1} and N_{2} are semiprime submodules of M_{1} and M_{2} respectively. Since $p_{1} \times p_{2}$ is prime ideal, by Lemma 3.2

$$
\begin{aligned}
\left(N_{1} \times N_{2}\right):\left(M_{1} \times M_{2}\right) & =\sqrt{N: M}=p_{1} \times p_{2} \\
\left(N_{1}: M_{1}\right) \times\left(N_{2}: M_{2}\right) & =p_{1} \times p_{2} .
\end{aligned}
$$

Hence, $N_{1}: M_{1}=p_{1}$ and $N_{2}: M_{2}=p_{2}$. Since p_{1} and p_{2} are prime ideals,

$$
\begin{aligned}
& N_{1}: M_{1}=\sqrt{N_{1}: M_{1}}=p_{1} \quad \text { and } \\
& N_{2}: M_{2}=\sqrt{N_{2}: M_{2}}=p_{2}
\end{aligned}
$$

Thus, N_{i} is p_{i}-semiprime submodule of M_{i} for $i=1,2$.
Proposition 3.2. Let $N=N_{1} \times N_{2}$ be a submodule of M. Then

$$
\operatorname{srad}_{M}(N)=\operatorname{srad}_{M_{1}}\left(N_{1}\right) \times \operatorname{srad}_{M_{2}}\left(N_{2}\right)
$$

Proof. Let $Q_{1} \times Q_{2}$ be a semiprime submodule of M containing $N_{1} \times N_{2}$. By Lemma 3.1, Q_{i} is semiprime submodule of M_{i} containing N_{i} for $i=1,2$. Then

$$
\operatorname{srad}_{M_{1}}\left(N_{1}\right) \times \operatorname{srad}_{M_{2}}\left(N_{2}\right) \subseteq \operatorname{srad}_{M}\left(N_{1} \times N_{2}\right)
$$

since $\operatorname{srad}_{M_{1}}\left(N_{1}\right) \times \operatorname{srad}_{M_{2}}\left(N_{2}\right) \subseteq Q_{1} \times Q_{2}$.
Since $\operatorname{srad}_{M_{i}}\left(N_{i}\right)$ is the minimal semiprime submodule of M_{i} containing N_{i}, Lemma 3.1 implies that $\operatorname{srad}_{M_{1}}\left(N_{1}\right) \times \operatorname{srad}_{M_{2}}\left(N_{2}\right)$ is a semiprime submodule of $M_{1} \times M_{2}$ which contains $N_{1} \times N_{2}$. Hence

$$
\operatorname{srad}_{M}(N) \subseteq \operatorname{srad}_{M_{1}}\left(N_{1}\right) \times \operatorname{srad}_{M_{2}}\left(N_{2}\right)
$$

Corollary 3.1. Let $N=N_{1} \times N_{2}$ be a submodule of M. Then
(i) $\operatorname{srad}_{M}\left(N_{1} \times M_{2}\right)=\operatorname{srad}_{M_{1}}\left(N_{1}\right) \times M_{2}$
(ii) $\operatorname{srad}_{M}\left(M_{1} \times N_{2}\right)=M_{1} \times \operatorname{srad}_{M_{2}}\left(N_{2}\right)$

Proof. Clear by Proposition 3.2.

Proposition 3.3. ([6], Proposition 2.12) Let $N=N_{1} \times N_{2}$ be a submodule of M. Then $\left\langle E_{M}(N)\right\rangle=\left\langle E_{M_{1}}\left(N_{1}\right)\right\rangle \times\left\langle E_{M_{2}}\left(N_{2}\right)\right\rangle$.
Theorem 3.1. M s.t.s.r.f. if and only if M_{i} s.t.s.r.f. for all $i=1,2$.
Proof. Assume M s.t.s.r.f.. Take a submodule N_{1} of M_{1}. Then $N_{1} \times M_{2}$ s.t.s.r.f., so that $\operatorname{srad}_{M_{1}}\left(N_{1}\right) \times M_{2}=\left\langle E_{M_{1}}\left(N_{1}\right)\right\rangle \times\left\langle E_{M_{2}}\left(M_{2}\right)\right\rangle$. Now, let $x \in \operatorname{srad}_{M_{1}}\left(N_{1}\right)$. Then $(x, m) \in \operatorname{srad}_{M_{1}}\left(N_{1}\right) \times M_{2}$ and hence $x \in\left\langle E_{M_{1}}\left(N_{1}\right)\right\rangle$. Similiarly it can be shown that $\operatorname{srad}_{M_{2}}\left(N_{2}\right)=\left\langle E_{M_{2}}\left(N_{2}\right)\right\rangle$.

Conversely assume that M_{1} and M_{2} s.t.s.r.f. Take any submodule $N_{1} \times N_{2}$ of $M_{1} \times M_{2}$. Then

$$
\begin{aligned}
\operatorname{srad}_{M}\left(N_{1} \times N_{2}\right) & =\operatorname{srad}_{M_{1}}\left(N_{1}\right) \times \operatorname{srad}_{M_{2}}\left(N_{2}\right) \\
& =\left\langle E_{M_{1}}\left(N_{1}\right)\right\rangle \times\left\langle E_{M_{2}}\left(N_{2}\right)\right\rangle \\
& =\left\langle E_{M}\left(N_{1} \times N_{2}\right)\right\rangle
\end{aligned}
$$

Thus, $M=M_{1} \times M_{2}$ s.t.s.r.f..

References

[1] J. Jenkins and P. F. Smith, On the prime radical of a module over a commutative ring, Comm. in Algebra. Vol:20, No. 12 (1992), 3593 - 3602.
[2] A. Azizi and A. Nikseresht, On radical formula in modules, Glasgow. Math. J. Vol:53, No. 3 (2011), $657-668$.
[3] A. Parkash, Arithmetical rings satisfy the radical formula, Journal of Commutative Algebra. Vol:4, No. 2 (2012), 293 - 296.
[4] E. Ylmaz and S. Klarslan Cansu, Baer's lower nilradical and classical prime submodules, Bul. Iran Math. Soc., to appear.
[5] M. Alkan and Y. Tra, On prime submodules, Rocky Mountain Journal of Mathematics, Vol:37, No. 3 (2007), $709-722$.
[6] S. Atani and F. K. Saraei, Modules which satisfy the radical formula, Int. J. Contemp. Math. Sci. Vol:2, No. 1 (2007), 13 - 18.

Abant Izzet Baysal University, Science and Art Faculty, Department of Mathematics, Bolu-TURKEY

E-mail address: kilicarslan_s@ibu.edu.tr

[^0]: Date: March 13, 2014 and, in revised form, July 3, 2014.
 2000 Mathematics Subject Classification. 13C99, 13A99.
 Key words and phrases. Semiprime submodules, semiprime radical.

