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UNIQUENESS OF MEROMORPHIC FUNCTIONS SHARING

TWO FINITE SETS IN C WITH FINITE WEIGHT

ABHIJIT BANERJEE AND GOUTAM HALDAR

Abstract. With the aid of the notion of weighted sharing of sets of mero-
morphic functions we improve some previous results concerning a particular

range set.

1. Introduction, Definitions and Results

In this paper by meromorphic functions we will always mean meromorphic func-
tions in the complex plane. It will be convenient to let E denote any set of positive
real numbers of finite linear measure, not necessarily the same at each occurrence.
For any non-constant meromorphic function h(z) we denote by S(r, h) any quantity
satisfying

S(r, h) = o(T (r, h)) (r −→∞, r 6∈ E).

Let f and g be two non-constant meromorphic functions and let a be a finite
complex number. We say that f and g share a CM, provided that f − a and g − a
have the same zeros with the same multiplicities. Similarly, we say that f and g
share a IM, provided that f−a and g−a have the same zeros ignoring multiplicities.
In addition we say that f and g share ∞ CM, if 1/f and 1/g share 0 CM and we
say that f and g share ∞ IM, if 1/f and 1/g share 0 IM.

Let S be a set of distinct elements of C∪{∞} and Ef (S) =
⋃
a∈S{z : f(z)−a =

0}, where each zero is counted according to its multiplicity. If we do not count the
multiplicity the set

⋃
a∈S{z : f(z)−a = 0} is denoted by Ef (S). If Ef (S) = Eg(S)

we say that f and g share the set S CM. On the other hand if Ef (S) = Eg(S),
we say that f and g share the set S IM. Evidently, if S contains only one element,
then it coincides with the usual definition of CM (respectively, IM) shared values.

In connection with the famous “Gross Question” {see [8]} in the uniqueness
literature Gross and Yang [9] (see also [16]) made a vital contribution by introducing
the new idea of unique range set for meromophic function (URSM in brief). We
recall that “Gross’s Question” was the first one which deal with the uniqueness of
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two functions that share sets of distinct elements instead of values. Initially Gross
and Yang proved that if f and g are two non-constant entire functions and S1, S2

and S3 are three distinct finite sets such that f−1(Si) = g−1(Si) for i = 1, 2, 3,
then f ≡ g. In [8] Gross posed the following question:

Question A. Can one find two finite sets Sj (j = 1, 2) such that any two non-
constant entire functions f and g satisfying Ef (Sj) = Eg(Sj) for j = 1, 2 must be
identical ?

In 2003, the following question was asked by Lin and Yi [18] which is also per-
tinent with that of Gross.
Question B. Can one find two finite sets Sj (j = 1, 2) such that any two non-
constant meromorphic functions f and g satisfying Ef (Sj ,∞) = Eg(Sj ,∞) for
j = 1, 2 must be identical ?

During the last two decades, the main investigations on two set sharing problems
of entire and meromorphic functions have been oriented on the basis of this two
questions. Gradually the research in this direction has somehow been shifted to
give explicitly a set S with n elements and make n as small as possible such that
any two meromorphic functions f and g that share the value∞ and the set S must
be equal {cf.[1]-[7], [11], [15], [17]-[18], [20]-[23]}.

In this connection, we recall the following theorem of Yi [20].

Theorem A. [20] Let S = {z : zn+azn−m+b = 0} where n and m are two positive
integers such that m ≥ 2, n ≥ 2m + 7 with n and m having no common factor, a
and b be two nonzero constants such that zn + azn−m + b = 0 has no multiple root.
If f and g are two non-constant meromorphic functions satisfying Ef (S) = Eg(S)
and Ef ({∞}) = Eg({∞}) then f ≡ g.

In the same paper Yi [19] also asked the following question:
What can be said if m = 1 in Theorem A?
To answer this question Yi [20] proved the following theorem.

Theorem B. [20] Let S = {z : zn+azn−1+b = 0} where n(≥ 9) be an integer and a
and b be two nonzero constants such that zn+azn−1+b = 0 has no multiple root. If
f and g be two non-constant meromorphic functions such that Ef (S) = Eg(S) and

Ef ({∞}) = Eg({∞}) then either f ≡ g or f ≡ −ah(h
n−1−1)

hn−1 and g ≡ −a(h
n−1−1)

hn−1 ,
where h is a non-constant meromorphic function.

In 2001 the idea of gradation of sharing of values and sets known as weighted
sharing has been introduced in [13, 14] which measures how close a shared value is
to being shared IM or to being shared CM. We now give the definition.

Definition 1.1. [13, 14] Let k be a nonnegative integer or infinity. For a ∈ C∪{∞}
we denote by Ek(a; f) the set of all a-points of f , where an a-point of multiplicity
m is counted m times if m ≤ k and k + 1 times if m > k. If Ek(a; f) = Ek(a; g),
we say that f , g share the value a with weight k.

We write f , g share (a, k) to mean that f , g share the value a with weight k.
Clearly if f , g share (a, k) then f , g share (a, p) for any integer p, 0 ≤ p < k. Also
we note that f , g share a value a IM or CM if and only if f , g share (a, 0) or (a,∞)
respectively.

Definition 1.2. [13] Let S be a set of distinct elements of C ∪ {∞} and k be a
nonnegative integer or ∞. We denote by Ef (S, k) the set ∪a∈SEk(a; f).

Clearly Ef (S) = Ef (S,∞) and Ef (S) = Ef (S, 0).
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The notion of weighted sharing of set has immense applications to deal with the
Questions A and B. In particular there are many refinements and improvements
of Theorem B {[2]-[4], [15]} using this notion. But in all the papers, to serve the
purpose, the variations over different deficiency conditions have been taken under
considerations.

In 1996, Yi [21] proved that the set S as defined in Theorem A is an URSM
when m ≥ 2 and n ≥ 2m + 9. Clearly in that case S = {z : z13 + z11 + 1 =
0} is a URSM. So it would be natural to explore the analogous situation in the
direction of Question B, corresponding to the set S as defined in Theorem B such
that the uniqueness of meromorphic functions only depends on the sharing of the
range sets in C. The purpose of the paper is to find a suitable range set, together
with S as defined in Theorem B, such that for the uniqueness of two non-constant
meromorphic functions sharing two sets with finite weight, the conditions over
deficiencies will no longer required. Following two theorems are the main results
of the paper which will improve all the subsequent improvements of Theorem B in
some sense.

Theorem 1.1. Let S1 = {0,−an−1n }, S2 = {z : zn + azn−1 + b = 0} where n(≥ 7)

be an integer and a and b be two nonzero constants such that zn+azn−1+b = 0 has
no multiple root. If Ef (S1, 2) = Eg(S1, 2), and Ef (S2, 3) = Eg(S2, 3), then f ≡ g.

Theorem 1.2. Let Si, i = 1, 2 be given as in Theorem 1.1 where n(≥ 8) be
an integer. If Ef (S1,m) = Eg(S1,m), Ef (S2, p) = Eg(S2, p), then f ≡ g, where
7

2m + m+1
m(2p+1) < 2, with 7

2m + 1
m(2p+1) > 1.

Corollary 1.1. Theorem 1.2 holds for the following pairs of least values of p and
m: (i) p=1, m=3; (ii) p=3, m=2.

Though for the standard definitions and notations of the value distribution the-
ory we refer to [10], we now explain some notations which are used in the paper.

Definition 1.3. [12] For a ∈ C ∪ {∞}we denote by N(r, a; f |= 1) the count-
ing function of simple a points of f . For a positive integer m we denote by
N(r, a; f |≤ m)(N(r, a; f |≥ m)) the counting function of those a points of f whose
multiplicities are not greater(less) than m where each a point is counted according
to its multiplicity.
N(r, a; f |≤ m) (N(r, a; f |≥ m)) are defined similarly, where in counting the

a-points of f we ignore the multiplicities.
Also N(r, a; f |< m), N(r, a; f |> m), N(r, a; f |< m) and N(r, a; f |> m) are

defined analogously.

Definition 1.4. [14] We denote by N2(r, a; f) = N(r, a; f) +N(r, a; f |≥ 2).

Definition 1.5. [13, 14] Let f , g share a value a IM. We denote by N∗(r, a; f, g)
the reduced counting function of those a-points of f whose multiplicities differ
from the multiplicities of the corresponding a-points of g. Clearly N∗(r, a; f, g) ≡
N∗(r, a; g, f) and in particular if f and g share (a, p) thenN∗(r, a; f, g) ≤ N(r, a; f |≥
p+ 1) = N(r, a; g |≥ p+ 1).
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2. Lemmas

In this section we present some lemmas which will be needed in the sequel. Let
F and G be two non-constant meromorphic functions defined in C as follows

(2.1) F =
fn−1(f + a)

−b
, G =

gn−1(g + a)

−b
,

where a, b two nonzero constants defined as in Theorem B. Henceforth we shall
denote by H and Φ the following two functions

(2.2) H =

(
F
′′

F ′
− 2F

′

F − 1

)
−

(
G
′′

G′
− 2G

′

G− 1

)
and

(2.3) Φ =
F
′

F − 1
− G

′

G− 1
.

Lemma 2.1. ([14], Lemma 1) Let F , G be two non-constant meromorphic func-
tions sharing (1, 1) and H 6≡ 0. Then

N(r, 1;F |= 1) = N(r, 1;G |= 1) ≤ N(r,H) + S(r, F ) + S(r,G).

Lemma 2.2. Let S1 and S2 be defined as in Theorem 1.1 and F , G be given
by (2.1). If for two non-constant meromorphic functions f and g Ef (S1, p) =
Eg(S1, p), Ef (S2, 0) = Eg(S2, 0), where 0 ≤ p <∞ and H 6≡ 0 then

N(r,H) ≤ N(r, 0; f |≥ p+ 1) +N

(
r,−an− 1

n
; f |≥ p+ 1

)
+N∗(r, 1;F,G)

+N(r,∞; f) + +N(r,∞; g) +N0(r, 0; f
′
) +N0(r, 0; g

′
),

where N0(r, 0; f
′
) is the reduced counting function of those zeros of f

′
which are

not the zeros of f
(
f − an−1n

)
(F − 1) and N0(r, 0; g

′
) is similarly defined.

Proof. We note that F
′

= fn−2(nf+a(n−1))f
′

−b , G
′

= gn−2(ng+a(n−1))g
′

−b and

F
′′

=
fn−2(nf + a(n− 1))f

′′
+ fn−3(n(n− 1)f + a(n− 1)(n− 2))f

′2

−b
,

G
′′

=
gn−2(ng + a(n− 1))g

′′
+ gn−3(n(n− 1)g + a(n− 1)(n− 2))g

′2

−b
.

So

H =
(n− 1)(nf + a(n− 2))f

′

f(nf + a(n− 1))
− (n− 1)(ng + a(n− 2))g

′

g(ng + a(n− 1))

+
f
′′

f ′
− g

′′

g′
−

(
2F
′

F − 1
− 2G

′

G− 1

)
.

Since Ef (S1, 0) = Eg(S1, 0) it follows that if z0 is a 0-point of f (g) then either
g(z0) = 0 (f(z0) = 0) or g(z0) = −an−1n (f(z0) = −an−1n ). Clearly F and G share
(1, 0). Since H has only simple poles, the lemma can easily be proved by simple
calculations. �
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Lemma 2.3. [5] Let f and g be two meromorphic functions sharing (1,m), where
1 ≤ m <∞. Then

N(r, 1; f) +N(r, 1; g)−N(r, 1; f |= 1) +

(
m− 1

2

)
N∗(r, 1; f, g)

≤ 1

2
[N(r, 1; f) +N(r, 1; g)]

Lemma 2.4. [19] Let f be a non-constant meromorphic function and let

R(f) =

n∑
k=0

akf
k

m∑
j=0

bjf j

be an irreducible rational function in f with constant coefficients {ak} and {bj}where
an 6= 0 and bm 6= 0 Then

T (r,R(f)) = dT (r, f) + S(r, f),

where d = max{n,m}.

Lemma 2.5. Let S1 and S2 be defined as in Theorem 1.1 with n ≥ 3 and F , G be
given by (2.1). If for two non-constant meromorphic functions f and g Ef (S1, p) =
Eg(S1, p), Ef (S2,m) = Eg(S2,m), 0 ≤ p <∞ and Φ 6≡ 0 then

(2p+ 1)

{
N (r, 0; f |≥ p+ 1) +N

(
r,−an− 1

n
; f |≥ p+ 1

)}
≤ N(r,∞; f) +N(r,∞; g) +N∗(r, 1;F,G) + S(r, f) + S(r, g).

Proof. By the given condition clearly F and G share (1,m). Also we see that

Φ =
fn−2 (nf + a(n− 1)) f

′

−b(F − 1)
− fn−2 (nf + a(n− 1)) f

′

−b(G− 1)
.

Let z0 be a zero or a −an−1n - point of f with multiplicity r. Since Ef (S1, p) =
Eg(S1, p) then that would be a zero of Φ of multiplicity min {(n−2)r+r−1, r+r−1}
i.e., of multiplicity min {(n − 1)r − 1, 2r − 1} if r ≤ p and a zero of multiplicity
at least min{(n − 2)(p + 1) + p, p + 1 + p} i.e., a zero of multiplicity at least
min{(n − 1)p + (n − 2), 2p + 1} if r > p. So using Lemma 2.4 by a simple
calculation we can write

min{(n− 1)p+ (n− 2), (2p+ 1)}
{
N(r, 0; f |≥ p+ 1)

+N(r,−an− 1

n
; f |≥ p+ 1)

}
≤ N(r, 0; Φ)

≤ T (r,Φ)

≤ N(r,∞; Φ) + S(r, F ) + S(r,G)

≤ N∗(r, 1;F,G) +N(r,∞; f) +N(r,∞; g) + S(r, f) + S(r, g).

�
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Lemma 2.6. Let S1, S2 be defined as in Theorem 1.1 and F , G be given by (2.1).
If for two non-constant meromorphic functions f and g Ef (S1, p) = Eg(S1, p),
Ef (S2,m) = Eg(S2,m), where 0 ≤ p <∞, 2 ≤ m <∞ and H 6≡ 0, then

(n+ 1) {T (r, f) + T (r, g)}

≤ 2

{
N(r, 0; f) +N

(
r,−an− 1

n
; f

)}
+N(r, 0; f |≥ p+ 1)

+N

(
r,−an− 1

n
; f |≥ p+ 1

)
+ 2{N(r,∞; f) +N(r,∞; g)}

+
1

2
[N(r, 1;F ) +N(r, 1;G)]−

(
m− 3

2

)
N∗(r, 1;F,G) + S(r, f) + S(r, g).

Proof. By the second fundamental theorem we get

(n+ 1){T (r, f) + T (r, g)}(2.4)

≤ N(r, 1;F ) +N(r, 0; f) +N

(
r,−an− 1

n
; f

)
+N(r,∞; f) +N(r, 1;G)

+N(r, 0; g) +N

(
r,−a n

n− 1
; g

)
+N(r,∞; g)−N0(r, 0; f

′
)

−N0(r, 0; g
′
) + S(r, f) + S(r, g).

Using Lemmas 2.1, 2.2, 2.3 and 2.4 we note that

N(r, 1;F ) +N(r, 1;G)(2.5)

≤ 1

2
[N(r, 1;F ) +N(r, 1;G)] +N(r, 1;F |= 1)−

(
m− 1

2

)
N∗(r, 1;F,G)

≤ 1

2
[N(r, 1;F ) +N(r, 1;G)] +N(r, 0; f |≥ p+ 1)

+N

(
r,−an− 1

n
; f |≥ p+ 1

)
+N∗(r,∞; f, g)−

(
m− 3

2

)
N∗(r, 1;F,G)

+N0(r, 0; f
′
) +N0(r, 0; g

′
) + S(r, f) + S(r, g).

Using (2.5) in (2.4) and noting that N(r, 0; f) + N
(
r,−an−1n ; f

)
= N(r, 0; g) +

N
(
r,−an−1n ; g

)
the lemma follows. �

Lemma 2.7. Let f , g be two non-constant meromorphic functions such that
Ef ({0,−an−1n }, 0) = Eg({0,−an−1n }, 0) then fn−1(f + a) ≡ gn−1(g + a) implies
f ≡ g, where n (≥ 2) is an integer and a is a nonzero finite constant.

Proof. Let
fn−1(f + a) ≡ gn−1(g + a)

and suppose f 6≡ g. We consider two cases:
Case I Let y = g

f be a constant. Then from (2.6) it follows that y 6= 1, yn−1 6= 1,

yn 6= 1 and f ≡ −a yn−1−1
yn−1 , a constant, which is impossible.

Case II Let y = g
f be non-constant. Suppose none of 0 and −an−1n is an exceptional

value of Picard (e.v.P.) of f and g. Then from (2.6) we see that if z0 is a 0 (−an−1n )-

point of f then that must be a 0 (−an−1n )-point of g. That is f , g share (0,∞)
(∞,∞). So y has no zero and pole. Again from (2.6) we observe that

f(yn − 1) ≡ −a( yn−1 − 1).
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Clearly y 6≡ 1. So eliminating this common factor we are left with

f(y − α1)(y − α2) . . . (y − αn−1) ≡ −a(y − β1)(y − β2) . . . (y − βn−2),

where αj = exp ( 2jπi
n ) for j = 1, 2, . . . , n − 1 and βk = exp ( 2kπi

n−1 ) for k =
1, 2, . . . , n − 2. Clearly none of the αj ’s coincides with βk’s. First we observe
that y can not omit any of the 2n− 3 distinct values αj or βk for j = 1, 2, . . . , n− 1
and k = 1, 2, . . . , n−2, since otherwise y will have more than two Picard exceptional
value, a contradiction.

So if z0 is a point such that y(z0) = αj , then we have (y(z0) − β1)(y(z0) −
β2) . . . (y(z0)− βn−2) ≡ 0, a contradiction. On the otherhand if z1 is a point such

that y(z1) = g(z1)
f(z1)

= βk 6= 0, k = 1, 2, . . . , n−2, then we must have f(z1) = 0 which

is impossible as f and g share (0,∞).
If 0 is an e.v.P. or 0 and −an−1n both are e.v.P. of f and g then by the same

argument as above we can obtain a contradiction.
If −an−1n is an e.v.P. of f and g, then we have from (2.7) that(

f + a
(n− 1)

n

)
{n(yn − 1)} ≡ a{(n− 1)yn − nyn−1 + 1}.

If we assume p(z) = (n − 1)zn − nzn−1 + 1, then p(0) 6= 0 and p(1) = p
′
(1) = 0.

From above we see that p(y) has n− 1 distinct zeros none of which coincides with
αj , j = 1, 2, . . . , n− 1. Then again by the same argument as above we have at last
left with a point say z2 such that f(z2) = −an−1n , a contradiction.

Hence f ≡ g and this proves the lemma. �

Lemma 2.8. Let f , g be two non-constant meromorphic functions such that
Ef ({0,−an−1n }, 0) = Eg({0,−an−1n }, 0) and suppose n (≥ 3) be an integer. Then

fn−1(f + a)gn−1(g + a) 6≡ b2,
where a, b are finite nonzero constants.

Proof. If possible, let us suppose

(2.6) fn−1(f + a)gn−1(g + a) ≡ b2.
Let z0 be a zero of f (g). Then z0 must be either a 0-point or a −an−1n point of

g (f), which is impossible from (2.6). It follows that f (g) has no zero.
Next let z0 be a zero of f + a with multiplicity p. Then z0 is a pole of g with

multiplicity q such that p = (n− 1)q + q = nq ≥ n.
Since the poles of f are the zeros of g + a only, we get

N(r,∞; f) ≤ N(r,−a; g) ≤ 1

n
T (r, g).

By the second fundamental theorem we get

T (r, f) ≤ N(r,∞; f) +N(r, 0; f) +N(r,−a; f) + S(r, f)

≤ 1

n
N(r,−a; f) +

1

n
T (r, g) + S(r, f)

≤ 1

n
T (r, f) +

1

n
T (r, g) + S(r, f).

i.e.,

(1− 1

n
) T (r, f) ≤ 1

n
T (r, g) + S(r, f).
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Similarly

(1− 1

n
) T (r, g) ≤ 1

n
T (r, f) + S(r, g)

Adding (2.9) and (2.10) we get

(1− 2

n
) {T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

a contradiction for n ≥ 3. This proves the lemma. �

Lemma 2.9. Let F , G be given by (2.1) and they share (1,m). Also let ω1, ω2 . . . ωn
are the members of the set S2 = {z : zn + azn−1 + b = 0}, where a, b are nonzero
constants such that zn + azn−1 + b = 0 has no repeated root and n (≥ 3) is an
integer. Then

N∗(r, 1;F,G) ≤ 1

m

[
N(r, 0; f) +N(r,−an− 1

n
; f)

]
+ S(r, f).

Proof. First we note that since S2 has distinct elements, −an−1n can not be a
member of S2. So

N∗(r, 1;F,G)

≤ N(r, 1;F |≥ m+ 1)

≤ 1

m

(
N(r, 1;F )−N(r, 1;F )

)
≤ 1

m

 n∑
j=1

(
N(r, ωj ; f)−N(r, ωj ; f)

)
≤ 1

m

[
N

(
r, 0; f

′
| f 6= 0, −an− 1

n

)]
]

≤ 1

m

[
N

(
r,∞;

f(f + an−1n )

f ′

)]
≤ 1

m

[
N

(
r,∞;

f
′

f(f + an−1n )

)]
+ S(r, f)

≤ 1

m

[
N(r, 0; f) +N(r,−an− 1

n
; f)

]
+ S(r, f)

�

Lemma 2.10. [2] Let F , G be given by (2.1) where n ≥ 7 is an integer. If H ≡ 0
then either fn−1(f + a)gn−1(g + a) ≡ b2 or fn−1(f + a) ≡ gn−1(g + a)

3. Proofs of the theorems

Proof of Theorem 1.1. Let F , G be given by (2.1). Then F and G share (1, 3). We
consider the following cases.
Case 1. Suppose that Φ 6≡ 0.
Subcase 1.1 Let H 6≡ 0. Then using Lemma 2.6 for m = 3 and p = 2, Lemma 2.5
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for p = 0, Lemma 2.4 and Lemma 2.9 for m = 3 we obtain

(n+ 1) {T (r, f) + T (r, g)}(3.1)

≤ 2

{
N(r, 0; f) +N

(
r,−an− 1

n
; f

)}
+ 2{N(r,∞; f) +N(r,∞; g)}

+N(r, 0; f |≥ 3) +N

(
r,−an− 1

n
; f |≥ 3

)
+

1

2
[N(r, 1;F ) +N(r, 1;G)]

− 3

2
N∗(r, 1;F,G) + S(r, f) + S(r, g)

≤ (4 +
1

5
){N(r,∞; f) +N(r,∞; g)}+

1

2
[N(r, 1;F ) +N(r, 1;G)]

+
7

60

{
N(r, 0; f) +N

(
r,−an− 1

n
; f

)
+N(r, 0; g) +N

(
r,−an− 1

n
; g

)}
+S(r, f) + S(r, g)

≤ (
n

2
+ 4 +

13

30
){T (r, f) + T (r, g)}+ S(r, f) + S(r, g).

(3.1) gives a contradiction for n ≥ 7.
Subcase 1.2 Let H ≡ 0. Now the conclusion of the theorem can be obtain from
Lemmas 2.10, 2.8 and 2.7.
Case 2. Suppose that Φ ≡ 0. On integration we get (F − 1) ≡ A(G− 1) for some
non zero constant A. So in view of Lemma 2.4 we have

(3.2) T (r, f) = T (r, g) +O(1).

Since by the given condition of the theorem Ef (S1, 0) = Eg(S1, 0) we consider the
following cases.
Subcase 2.1. Let us first assume f and g share (0, 0) and (−an−1n , 0). If one of

0 or −an−1n is an e.v.P. of both f and g, then we get A = 1 and we have F ≡ G,

which in view of Lemma 2.7 implies f ≡ g. Let both 0 and −an−1n are e.v.P. of f
as well as g then noting that here F ≡ AG+(1−A), suppose A 6= 1. Using Lemma
2.4, (3.2) and the second fundamental theorem we get

nT (r, f)

≤ N(r, 0;F ) +N(r, 1−A;F ) +N(r,∞;F ) + S(r, F )

≤ N(r, 0; f) +N(r,−a; f) +N(r, 0;G) +N(r,∞; f) + S(r, f)

≤ 2T (r, f) + T (r, g) + S(r, f)

≤ 3T (r, f) + S(r, f),

which implies a contradiction since n ≥ 7.
Subcase 2.2. Next suppose that there is at least one point z0 such that f(z0) = 0
and g(z0) = −an−1n . At the point z0, we have F (z0) = 0 and G(z0) = β (say). So

A = 1
1−β . Putting this values we obtain from above

F ≡ 1

1− β
G+

β

β − 1
.

If β 6= 0 then again noting that N(r, β
β−1 ;F ) = N(r, 0;G), we can again get a

contradiction as above when n ≥ 7. �
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Proof of Theorem 1.2. Let F , G be given by (2.1). Then F and G share (1, 3). We
consider the following cases.
Case 1. Suppose that Φ 6≡ 0.
Subcase 1.1. Let H 6≡ 0. Then using Lemma 2.6, Lemma 2.5 for p = 0, Lemma
2.4 and Lemma 2.9 we obtain

(n+ 1) {T (r, f) + T (r, g)}(3.3)

≤ 2

{
N(r, 0; f) +N

(
r,−an− 1

n
; f

)}
+ 2{N(r,∞; f) +N(r,∞; g)}

+N(r, 0; f |≥ p+ 1) +N

(
r,−an− 1

n
; f |≥ p+ 1

)
+

1

2
[N(r, 1;F )

+N(r, 1;G)] +

(
3

2
−m

)
N∗(r, 1;F,G) + S(r, f) + S(r, g)

≤
(

4 +
1

2p+ 1

)
{N(r,∞; f) +N(r,∞; g)}+

1

2
[N(r, 1;F ) +N(r, 1;G)]

+

(
7

4m
+

1

2m(2p+ 1)
− 1

2

){
N(r, 0; f) +N

(
r,−an− 1

n
; f

)
+N(r, 0; g)

+N

(
r,−an− 1

n
; g

)}
+ S(r, f) + S(r, g)

≤
(
n

2
+ 3 +

7

2m
+

m+ 1

m(2p+ 1)

)
{T (r, f) + T (r, g)}+ S(r, f) + S(r, g).

Since 7
2m + m+1

m(2p+1) < 2, with 7
2m + 1

m(2p+1) > 1 and n ≥ 8, (3.2) gives a contra-

diction.
We now omit the rest of the proof since the same is similar to that of Theorem
1.1. �
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