

HERMITE-HADAMARD'S INEQUALITIES FOR PREQUASIINVEX FUNCTIONS VIA FRACTIONAL INTEGRALS

IMDAT ISCAN

ABSTRACT. In this paper, we extend some estimates of the right hand side of Hermite-Hadamard type inequality for prequasiinvex functions via fractional integrals.

1. INTRODUCTION AND PRELIMINARIES

Let $f : I \subset \mathbb{R} \to \mathbb{R}$ be a convex mapping defined on the interval I of real numbers and $a, b \in I$ with a < b, then

(1.1)
$$f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_{a}^{b} f(x)dx \le \frac{f(a)+f(b)}{2}.$$

This doubly inequality is known in the literature as Hermite-Hadamard integral inequality for convex mapping. For several recent results concerning the inequality (1.1) we refer the interested reader to [2, 3, 4, 5, 7, 17, 18].

We recall that the notion of quasi-convex functions generalizes the notion of convex functions. More precisely, a function $f : [a, b] \to \mathbb{R}$ is said to be quasi-convex on [a, b] if inequality

$$f(tx + (1 - t)y) \le \max\{f(x), f(y)\},\$$

holds for all $x, y \in I$ and $t \in [0, 1]$.

Clearly, any convex function is quasi-convex function. Furthemore there exist quasi-convex functions which are not convex (see [7]).

We give some necessary definitions and mathematical preliminaries of fractional calculus theory which are used throughout this paper.

Definition 1.1. Let $f \in L[a, b]$. The Riemann-Liouville integrals $J_{a^+}^{\alpha} f$ and $J_{b^-}^{\alpha} f$ of oder $\alpha > 0$ with $a \ge 0$ are defined by

²⁰⁰⁰ Mathematics Subject Classification. 26D10, 26D15, 26A51.

Key words and phrases. Hermite-Hadamard type inequalities, prequasiinvex function, fractional integral.

$$J_{a^{+}}^{\alpha}f(x) = \frac{1}{\Gamma(\alpha)} \int_{a}^{x} (x-t)^{\alpha-1} f(t)dt, \ x > a$$

and

$$J_{b^{-}}^{\alpha} f(x) = \frac{1}{\Gamma(\alpha)} \int_{x}^{b} (t-x)^{\alpha-1} f(t) dt, \ x < b$$

respectively, where $\Gamma(\alpha)$ is the Gamma function and $J^0_{a^+}f(x) = J^0_{b^-}f(x) = f(x)$.

In the case of $\alpha = 1$, the fractional integral reduces to the classical integral. For some recent result connected with fractional integral inequalities see ([13, 16, 18, 19]).

In [13], Ozdemir and Yıldız proved the Hadamard inequality for quasi-convex functions via Riemann-Liouville fractional integrals as follows:

Theorem 1.1. Let $f : [a, b] \to \mathbb{R}$, be positive function with $0 \le a < b$ and $f \in L[a, b]$. If f is a quasi-convex function on [a, b], then the following inequality for fractional integrals holds:

(1.2)
$$\frac{\Gamma(\alpha+1)}{2(b-a)^{\alpha}} \left[J_{a^{+}}^{\alpha} f(b) + J_{b^{-}}^{\alpha} f(a) \right] \le \max\left\{ f(a), f(b) \right\}$$

with $\alpha > 0$.

Theorem 1.2. Let $f : [a, b] \to \mathbb{R}$, be a differentiable mapping on (a, b) with a < b. If |f'| is quasi-convex on [a, b], $\alpha > 0$, then the following inequality for fractional integrals holds:

(1.3)
$$\left| \frac{f(a) + f(b)}{2} - \frac{\Gamma(\alpha + 1)}{2(b - a)^{\alpha}} \left[J_{a^{+}}^{\alpha} f(b) + J_{b^{-}}^{\alpha} f(a) \right] \right|$$
$$\leq \frac{b - a}{\alpha + 1} \left(1 - \frac{1}{2^{\alpha}} \right) \max\left\{ \left| f'(a) \right|, \left| f'(b) \right| \right\}.$$

Theorem 1.3. Let $f : [a, b] \to \mathbb{R}$, be a differentiable mapping on (a, b) with a < b such that $f' \in L[a, b]$. If $|f'|^q$ is quasi-convex on [a, b], and q > 1, then the following inequality for fractional integrals holds:

(1.4)
$$\left| \frac{f(a) + f(b)}{2} - \frac{\Gamma(\alpha + 1)}{2(b - a)^{\alpha}} \left[J_{a^{+}}^{\alpha} f(b) + J_{b^{-}}^{\alpha} f(a) \right] \right| \\ \leq \frac{b - a}{2(\alpha p + 1)^{\frac{1}{p}}} \left(\max\left\{ |f'(a)|^{q}, |f'(b)|^{q} \right\} \right)^{\frac{1}{q}}$$

where $\frac{1}{p} + \frac{1}{q} = 1$ and $\alpha \in [0, 1]$.

Theorem 1.4. Let $f : [a, b] \to \mathbb{R}$, be a differentiable mapping on (a, b) with a < b such that $f' \in L[a, b]$. If $|f'|^q$ is quasi-convex on [a, b], and $q \ge 1$, then the following inequality for fractional integrals holds:

(1.5)
$$\left| \frac{f(a) + f(b)}{2} - \frac{\Gamma(\alpha + 1)}{2(b - a)^{\alpha}} \left[J_{a^{+}}^{\alpha} f(b) + J_{b^{-}}^{\alpha} f(a) \right] \right| \\ \leq \frac{b - a}{(\alpha + 1)} \left(1 - \frac{1}{2^{\alpha}} \right) \left(\max\left\{ |f'(a)|^{q}, |f'(b)|^{q} \right\} \right)^{\frac{1}{q}}$$

with $\alpha > 0$.

In recent years several extentions and generalizations have been considered for classical convexity. A significant generalization of convex functions is the invex functions introduced by Hanson in [6]. Weir and Mond [20] introduced the concept of preinvex functions and applied it to the establisment of the sufficient optimality conditions and duality in nonlinear programming. Pini [15] introduced the concept of prequasiinvex function as a generalization of invex functions. Later, Mohan and Neogy [9] obtained some properties of generalized preinvex functions. Noor ([11]-[12])has established some Hermite-Hadamard type inequalities for preinvex and log-preinvex functions. In recent papers Yang et al. in [22] studied prequasiinvex functions and semistrictly prequasiinvex functions, Barani et al. in [4] presented some generalizations of the right hand side of a Hermite-Hadamard type inequality for prequasiinvex functions and Park in [14] established generalized Simpson-like and Hermite-Hadamard-like type integral inequalities for functions whose second derivatives in absolutely value at certain powers are preinvex and prequasiinvex.

In this paper we generalized the results in [13] for prequasiinvex functions. Now we recall some notions in invexity analysis which will be used throught the paper (see [1, 21] and references therein)

Let $f : A \to \mathbb{R}$ and $\eta : A \times A \to \mathbb{R}$, where A is a nonempty set in \mathbb{R}^n , be continuous functions.

Definition 1.2. The set $A \subseteq \mathbb{R}^n$ is said to be invex with respect to $\eta(.,.)$, if for every $x, y \in A$ and $t \in [0,1]$,

$$x + t\eta(y, x) \in A.$$

The invex set A is also called a η -connected set.

It is obvious that every convex set is invex with respect to $\eta(y, x) = y - x$, but there exist invex sets which are not convex [1].

Definition 1.3. The function f on the invex set A is said to be preinvex with respect to η if

 $f(x + t\eta(y, x)) \le (1 - t) f(x) + tf(y), \ \forall x, y \in A, \ t \in [0, 1].$

The function f is said to be preconcave if and only if -f is preinvex.

Definition 1.4. The function f on the invex set A is said to be prequasiinvex with respect to η if

$$f(x + t\eta(y, x)) \le \max\{f(x), f(y)\}, \ \forall x, y \in A, \ t \in [0, 1].$$

Every quasi-convex function is a prequasinvex with respect to $\eta(y, x) = y - x$, but the converse does not holds (see example 1.1 in [22])

We also need the following assumption regarding the function η which is due to Mohan and Neogy [9]:

Condition C: Let $A \subseteq \mathbb{R}^n$ be an invex subset with respect to $\eta : A \times A \to \mathbb{R}$. For any $x, y \in A$ and any $t \in [0, 1]$,

$$\begin{aligned} \eta \, (y, y + t \eta(x, y)) &= -t \eta(x, y) \\ \eta \, (x, y + t \eta(x, y)) &= (1 - t) \eta(x, y) \end{aligned}$$

Note that for every $x, y \in A$ and every $t \in [0, 1]$ from condition C, we have

(1.6)
$$\eta \left(y + t_2 \eta(x, y), y + t_1 \eta(x, y) \right) = (t_2 - t_1) \eta(x, y).$$

In [4] Barani et al. proved the Hermite-Hadamard type inequality for prequasiinvex as follows:

Theorem 1.5. Let $A \subseteq \mathbb{R}$ be an open invex subset with respect to $\eta : A \times A \to \mathbb{R}$. Suppose that $f : A \to \mathbb{R}$ is a differentiable function. If |f'| is prequasiinvex on A then, for every $a, b \in A$ the following inequalities holds

(1.7)
$$\begin{cases} \frac{f(a) + f(a + \eta(b, a))}{2} - \frac{1}{\eta(b, a)} \int_{a}^{a + \eta(b, a)} f(x) dx \\ \int_{a}^{a +$$

Theorem 1.6. Let $A \subseteq \mathbb{R}$ be an open invex subset with respect to $\eta : A \times A \to \mathbb{R}$. Suppose that $f : A \to \mathbb{R}$ is a differentiable function. Assume that $p \in \mathbb{R}$ with p > 1. If $|f'|^{\frac{p}{p-1}}$ is preinvex on A then, for every $a, b \in A$ the following inequalities holds

(1.8)
$$\begin{cases} \frac{f(a) + f(a + \eta(b, a))}{2} - \frac{1}{\eta(b, a)} \int_{a}^{a + \eta(b, a)} f(x) dx \\ \int_{a}^{p-1} f(x) dx \\ \frac{|\eta(b, a)|}{2(p+1)^{\frac{1}{p}}} \left(\max\left\{ |f'(a)|^{\frac{p}{p-1}}, |f'(b)|^{\frac{p}{p-1}} \right\} \right)^{\frac{p-1}{p}}. \end{cases}$$

In order to prove our main results we need the following lemma:

Lemma 1.1. Let $A \subseteq \mathbb{R}$ be an open invex subset with respect to $\eta : A \times A \to \mathbb{R}$ and $a, b \in A$ with $a < a + \eta(b, a)$. Suppose that $f : A \to \mathbb{R}$ is a differentiable function. If f' is preinvex function on A and $f' \in L[a, a + \eta(b, a)]$ then, the following equality holds:

(1.9)
$$\frac{f(a) + f(a + \eta(b, a))}{2} - \frac{\Gamma(\alpha + 1)}{2\eta^{\alpha}(b, a)} \left[J_{a^{+}}^{\alpha} f(a + \eta(b, a)) + J_{(a + \eta(b, a))^{-}}^{\alpha} f(a) \right]$$
$$= \frac{\eta(b, a)}{2} \int_{0}^{1} \left[t^{\alpha} - (1 - t)^{\alpha} \right] f'(a + t\eta(b, a)) dt$$

By using partial integration in right hand of (1.9) equality, the proof is obvious (see [8]).

In this paper, using Lemma 1.1 we obtained new inequalities related to the right side of Hermite-Hadamard inequalities for prequasiinvex functions via fractional integrals.

2. Main Results

Theorem 2.1. Let $A \subseteq \mathbb{R}$ be an open invex subset with respect to $\eta : A \times A \to \mathbb{R}$ and $a, b \in A$ with $a < a + \eta(b, a)$. If $f : [a, a + \eta(b, a)] \to (0, \infty)$ is a prequasiinvex function, $f \in L[a, a + \eta(b, a)]$ and η satisfies condition C then, the following inequalities for fractional integrals holds:

(2.1)
$$\frac{\Gamma(\alpha+1)}{2\eta^{\alpha}(b,a)} \left[J_{a+}^{\alpha} f(a+\eta(b,a)) + J_{(a+\eta(b,a))^{-}}^{\alpha} f(a) \right] \\ \leq \max\left\{ f(a), f(a+\eta(b,a) \right\} \leq \max\left\{ f(a), f(b) \right\}$$

Proof. Since $a, b \in A$ and A is an invex set with respect to η , for every $t \in [0, 1]$, we have $a + t\eta(b, a) \in A$. By prequasiinvexity of f and inequality (1.6) for every $t \in [0, 1]$ we get

(2.2)
$$f(a + t\eta(b, a)) = f(a + \eta(b, a) + (1 - t)\eta(a, a + \eta(b, a))) \\ \leq \max\{f(a), f(a + \eta(b, a)\}\}$$

and similarly

$$\begin{array}{ll} f\left(a + (1-t)\eta(b,a)\right) &=& f\left(a + \eta(b,a) + t\eta(a,a + \eta(b,a))\right) \\ &\leq& \max\left\{f(a), f(a + \eta(b,a)\right\}. \end{array}$$

By adding these inequalities we have

(2.3)
$$f(a + t\eta(b, a)) + f(a + (1 - t)\eta(b, a)) \le 2\max\{f(a), f(a + \eta(b, a))\}$$

Then multiplying both (2.3) by $t^{\alpha-1}$ and integrating the resulting inequality with respect to t over [0, 1], we obtain

$$\int_{0}^{1} t^{\alpha-1} f\left(a + t\eta(b, a)\right) dt + \int_{0}^{1} t^{\alpha-1} f\left(a + (1 - t)\eta(b, a)\right) dt \le 2 \max\left\{f(a), f(a + \eta(b, a)\right\} \int_{0}^{1} t^{\alpha-1} dt.$$

i.e.

$$\frac{\Gamma(\alpha)}{\eta^{\alpha}(b,a)} \left[J_{a^{+}}^{\alpha} f(a + \eta(b,a)) + J_{(a+\eta(b,a))^{-}}^{\alpha} f(a) \right] \leq \frac{2 \max\left\{ f(a), f(a + \eta(b,a) \right\}}{\alpha}.$$

Using the mapping η satisfies condition C the proof is completed.

Remark 2.1. In Theorem 2.1, if we take $\eta(b, a) = b - a$, then inequality (2.1) become inequality (1.2) of Theorem 1.1.

Theorem 2.2. Let $A \subseteq \mathbb{R}$ be an open invex subset with respect to $\eta : A \times A \to \mathbb{R}$ and $a, b \in A$ with $a < a + \eta(b, a)$ such that $f' \in L[a, a + \eta(b, a)]$. Suppose that $f : A \to \mathbb{R}$ is a differentiable function. If |f'| is prequasiinvex function on $[a, a + \eta(b, a)]$ then the following inequality for fractional integrals with $\alpha > 0$ holds:

$$(2.4) \quad \left| \frac{f(a) + f(a + \eta(b, a))}{2} - \frac{\Gamma(\alpha + 1)}{2\eta^{\alpha}(b, a)} \left[J_{a^{+}}^{\alpha} f(a + \eta(b, a)) + J_{(a + \eta(b, a))^{-}}^{\alpha} f(a) \right] \right| \\ \leq \quad \frac{\eta(b, a)}{\alpha + 1} \left(1 - \frac{1}{2^{\alpha}} \right) \max\left\{ |f'(a)|, |f'(b)| \right\}.$$

Proof. Using Lemma 1.1 and the prequasiinvexity of |f'| we get

$$\begin{split} & \left| \frac{f(a) + f(a + \eta(b, a))}{2} - \frac{\Gamma(\alpha + 1)}{2\eta^{\alpha}(b, a)} \left[J_{a^{+}}^{\alpha} f(a + \eta(b, a)) + J_{(a + \eta(b, a))^{-}}^{\alpha} f(a) \right] \right| \\ & \leq \quad \frac{\eta(b, a)}{2} \int_{0}^{1} |t^{\alpha} - (1 - t)^{\alpha}| \max\left\{ |f'(a)|, |f'(b)| \right\} dt \\ & \leq \quad \frac{\eta(b, a)}{2} \left\{ \int_{0}^{\frac{1}{2}} \left[(1 - t)^{\alpha} - t^{\alpha} \right] \max\left\{ |f'(a)|, |f'(b)| \right\} dt + \int_{\frac{1}{2}}^{1} [t^{\alpha} - (1 - t)^{\alpha}] \max\left\{ |f'(a)|, |f'(b)| \right\} dt \right\} \\ & = \quad \eta(b, a) \max\left\{ |f'(a)|, |f'(b)| \right\} \left(\int_{0}^{\frac{1}{2}} \left[(1 - t)^{\alpha} - t^{\alpha} \right] dt \right) \\ & = \quad \frac{\eta(b, a)}{(\alpha + 1)} \left(1 - \frac{1}{2^{\alpha}} \right) \max\left\{ |f'(a)|, |f'(b)| \right\}, \end{split}$$

which completes the proof.

Remark 2.2. a) In Theorem 2.2, if we take $\eta(b, a) = b - a$, then inequality (2.4) become inequality (1.3) of Theorem 1.2

b) In Theorem 2.2, if we take $\alpha=1,$ then inequality (2.4) become inequality (1.7) of Theorem 1.5.

c) In Theorem 2.2, assume that η satisfies condition C.U sing inequality (2.2) we get

$$\begin{aligned} \left| \frac{f(a) + f(a + \eta(b, a))}{2} - \frac{\Gamma(\alpha + 1)}{2\eta^{\alpha}(b, a)} \left[J_{a^{+}}^{\alpha} f(a + \eta(b, a)) + J_{(a + \eta(b, a))^{-}}^{\alpha} f(a) \right] \right| \\ \leq \quad \frac{\eta(b, a)}{(\alpha + 1)} \left(1 - \frac{1}{2^{\alpha}} \right) \max\left\{ |f'(a)|, |f'(a + \eta(b, a))| \right\} \end{aligned}$$

Theorem 2.3. Let $A \subseteq \mathbb{R}$ be an open invex subset with respect to $\eta : A \times A \to \mathbb{R}$ and $a, b \in A$ with $a < a + \eta(b, a)$ such that $f' \in L[a, a + \eta(b, a)]$. Suppose that $f : A \to \mathbb{R}$ is a differentiable function. If $|f'|^q$ is prequasily function on $[a, a + \eta(b, a)]$ for some fixed $q \ge 1$ then the following inequality holds:

(2.5)
$$\left| \frac{f(a) + f(a + \eta(b, a))}{2} - \frac{\Gamma(\alpha + 1)}{2\eta^{\alpha}(b, a)} \left[J_{a^{+}}^{\alpha} f(a + \eta(b, a)) + J_{(a + \eta(b, a))^{-}}^{\alpha} f(a) \right] \right|$$

$$\leq \frac{\eta(b, a)}{(\alpha + 1)} \left(1 - \frac{1}{2^{\alpha}} \right) \left(\max\left\{ \left| f'(a) \right|^{q}, \left| f'(b) \right|^{q} \right\} \right)^{\frac{1}{q}}$$

where $\alpha > 0$.

Proof. From Lemma1.1 and using Power-mean inequality with properties of modulus, we have

$$\begin{aligned} \left| \frac{f(a) + f(a + \eta(b, a))}{2} - \frac{\Gamma(\alpha + 1)}{2\eta^{\alpha}(b, a)} \left[J_{a^{+}}^{\alpha} f(a + \eta(b, a)) + J_{(a + \eta(b, a))^{-}}^{\alpha} f(a) \right] \right| \\ \leq & \frac{\eta(b, a)}{2} \int_{0}^{1} |t^{\alpha} - (1 - t)^{\alpha}| \left| f'(a + t\eta(b, a)) \right| dt \\ \leq & \frac{\eta(b, a)}{2} \left(\int_{0}^{1} |t^{\alpha} - (1 - t)^{\alpha}| dt \right)^{1 - \frac{1}{q}} \left(\int_{0}^{1} |t^{\alpha} - (1 - t)^{\alpha}| \left| f'(a + t\eta(b, a)) \right|^{q} dt \right)^{\frac{1}{q}} \end{aligned}$$

On the other hand, we have

$$\int_{0}^{1} |t^{\alpha} - (1-t)^{\alpha}| dt = \int_{0}^{\frac{1}{2}} [(1-t)^{\alpha} - t^{\alpha}] dt + \int_{\frac{1}{2}}^{1} [t^{\alpha} - (1-t)^{\alpha}] dt$$
$$= \frac{2}{\alpha+1} \left(1 - \frac{1}{2^{\alpha}}\right).$$

Since $|f'|^q$ is prequasiinvex function on $[a, a + \eta(b, a)]$, we obtain

$$|f'(a + t\eta(b, a))|^q \le \max\left\{|f'(a)|^q, |f'(b)|^q\right\}, \ t \in [0, 1]$$

and

$$\int_{0}^{1} |t^{\alpha} - (1-t)^{\alpha}| |f'(a+t\eta(b,a))|^{q} dt \leq \int_{0}^{1} |t^{\alpha} - (1-t)^{\alpha}| \max\{|f'(a)|^{q}, |f'(b)|^{q}\} dt$$

$$= \max\{|f'(a)|^{q}, |f'(b)|^{q}\} \int_{0}^{1} |t^{\alpha} - (1-t)^{\alpha}| dt$$

$$= \frac{2}{\alpha+1} \left(1 - \frac{1}{2^{\alpha}}\right) \max\{|f'(a)|^{q}, |f'(b)|^{q}\}$$
from here we obtain inequality (2.5). This completes the proof.

from here we obtain inequality (2.5). This completes the proof.

Remark 2.3. a) In Theorem 2.3, if we take $\eta(b, a) = b - a$ then inequality (2.5) become inequality (1.5) Theorem 1.4.

b) In Theorem 2.3, assume that η satisfies condition C. Using inequality (2.2) we get

$$\left| \frac{f(a) + f(a + \eta(b, a))}{2} - \frac{\Gamma(\alpha + 1)}{2\eta^{\alpha}(b, a)} \left[J_{a^{+}}^{\alpha} f(a + \eta(b, a)) + J_{(a + \eta(b, a))^{-}}^{\alpha} f(a) \right] \right|$$

$$\leq \frac{\eta(b, a)}{(\alpha + 1)} \left(1 - \frac{1}{2^{\alpha}} \right) \left(\max\left\{ |f'(a)|^{q}, |f'(a + \eta(b, a))|^{q} \right\} \right)^{\frac{1}{q}}.$$

Theorem 2.4. Let $A \subseteq \mathbb{R}$ be an open invex subset with respect to $\eta : A \times A \to \mathbb{R}$ and $a, b \in A$ with $a < a + \eta(\overline{b}, a)$ such that $f' \in L[a, a + \eta(b, a)]$. Suppose that $f : A \to \mathbb{R}$ is a differentiable function. If $|f'|^q$ is prequasily function on $[a, a + \eta(b, a)]$ for

82

some fixed q > 1 then the following inequality holds:

$$(2.6) \quad \left| \frac{f(a) + f(a + \eta(b, a))}{2} - \frac{\Gamma(\alpha + 1)}{2\eta^{\alpha}(b, a)} \left[J_{a^{+}}^{\alpha} f(a + \eta(b, a)) + J_{(a + \eta(b, a))^{-}}^{\alpha} f(a) \right] \right|$$

$$\leq \frac{\eta(b, a)}{2(\alpha p + 1)^{\frac{1}{p}}} \left(\max\left\{ |f'(a)|^{q}, |f'(a + \eta(b, a))|^{q} \right\} \right)^{\frac{1}{q}}.$$

where $\frac{1}{p} + \frac{1}{q} = 1$ and $\alpha \in [0, 1].$

 $\mathit{Proof.}$ From Lemma 1.1 and using Hölder inequality with properties of modulus, we have

$$\begin{aligned} &\left|\frac{f(a) + f(a + \eta(b, a))}{2} - \frac{\Gamma(\alpha + 1)}{2\eta^{\alpha}(b, a)} \left[J_{a^{+}}^{\alpha} f(a + \eta(b, a)) + J_{(a + \eta(b, a))^{-}}^{\alpha} f(a)\right] \\ &\leq \frac{\eta(b, a)}{2} \int_{0}^{1} |t^{\alpha} - (1 - t)^{\alpha}| |f'(a + t\eta(b, a))| dt \\ &\leq \frac{\eta(b, a)}{2} \left(\int_{0}^{1} |t^{\alpha} - (1 - t)^{\alpha}|^{p} dt\right)^{\frac{1}{p}} \left(\int_{0}^{1} |f'(a + t\eta(b, a))|^{q} dt\right)^{\frac{1}{q}}.\end{aligned}$$

We know that for $\alpha \in [0,1]$ and $\forall t_1, t_2 \in [0,1]$,

$$|t_1^{\alpha} - t_2^{\alpha}| \le |t_1 - t_2|^{\alpha}$$
,

therefore

$$\int_{0}^{1} |t^{\alpha} - (1-t)^{\alpha}|^{p} dt \leq \int_{0}^{1} |1-2t|^{\alpha p} dt$$
$$= \int_{0}^{\frac{1}{2}} [1-2t]^{\alpha p} dt + \int_{\frac{1}{2}}^{1} [2t-1]^{\alpha p} dt$$
$$= \frac{1}{\alpha p+1}.$$

Since $|f'|^q$ is prequasiinvex on $[a, a + \eta(b, a)]$, we have inequality (2.6). This completes the proof.

Remark 2.4. a) In Theorem 2.4, if we take $\eta(b, a) = b - a$ then inequality (2.6) become inequality (1.4) of Theorem 1.3.

b) In Theorem 2.4, if we take $\alpha = 1$ then inequality (2.6) become inequality (1.8) of Theorem 1.6.

c) In Theorem 2.4, assume that η satisfies condition C. Using inequality (2.2) we get

$$\left| \frac{f(a) + f(a + \eta(b, a))}{2} - \frac{\Gamma(\alpha + 1)}{2\eta^{\alpha}(b, a)} \left[J_{a^{+}}^{\alpha} f(a + \eta(b, a)) + J_{(a + \eta(b, a))^{-}}^{\alpha} f(a) \right] \right|$$

$$\leq \frac{\eta(b, a)}{2(\alpha p + 1)^{\frac{1}{p}}} \left(\max\left\{ \left| f'(a) \right|^{q}, \left| f'(a + \eta(b, a)) \right|^{q} \right\} \right)^{\frac{1}{q}}.$$

IMDAT ISCAN

References

- [1] T. Antczak, Mean value in invexity analysis, Nonlinear Analysis, 60 (2005) 1471-1484.
- [2] M. Alomari, M. Darus and U.S. Kırmacı, Refinements of Hadamard-type inequalities for quasi-convex functions with applications to trapezoidal formula and to special means, *Comp.and Math. with Applications*, 59 (2010), 225-232.
- [3] M.K. Bakula, M.E. Ozdemir and J. Pečarić, Hadamard type inequalities for m-convex and (α, m)-convex functions, J. Inequal. Pure Appl. Math. 9 (2008) Article 96. [Online: http://jipam.vu.edu.au].
- [4] A. Barani, A.G. Ghazanfari and S.S. Dragomir, Hermite-Hadamard inequality through prequasiinvex functions, *RGMIA Res. Rep. Coll.*, 14 (2011), Article 48.
- [5] S.S. Dragomir and C.E.M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000.
- [6] M.A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl., 80 (1981) 545-550.
- [7] D.A. Ion, Some estimates on the Hermite-Hadamard inequalities through quasi-convex functions, Annals of University of Craiova, Math. Comp. Sci. Ser., 34 (2007), 82-87.
- [8] I. Iscan, Hermite-Hadamard's inequalities for preinvex functions via fractional integrals and related fractional inequalities, arXiv:1204.0272, submitted.
- [9] S.R.Mohan and S.K. Neogy, On invex sets and preinvex functions, J. Math. Anal. Appl., 189 (1995), 901-908.
- [10] M. Aslam Noor, Some new classes of nonconvex functionss, Nonl. Funct. Anal. Appl., 11 (2006), 165-171.
- [11] M. Aslam Noor, On Hadamard integral inequalities invoving two log-preinvex functions, J. Inequal. Pure Appl. Math., 8 (2007), No. 3, 1-6, Article 75.
- [12] M. Aslam Noor, Hadamard integral inequalities for product of two preinvex function, Nonl. anal. Forum, 14 (2009), 167-173.
- [13] M.E. Özdemir and Ç. Yıldız, The Hadamard's inequality for quasi-convex functions via fractional integrals, RGMIA Res. Rep. Coll., 14 (2011), Article 101.
- [14] J. Park, Simpson-like and Hermite-Hadamard-like type integral inequalities for twice differentiable preinvex functions, Int. Journal of Pure and Appl. Math., 79 (4) (2012), 623-640.
- [15] R. Pini, Invexity and generalized Convexity, Optimization, 22 (1991) 513-525.
- [16] M.Z. Sarıkaya and H. Ogunmez, On new inequalities via Riemann-Liouville fractional integration, Abstract and Applied Analysis, 2012 (2012), Article ID 428983, 10 pages, doi:10.1155/2012/428983.
- [17] M.Z. Sarıkaya, E. Set and M.E. Özdemir, On some new inequalities of Hadamard type involving h-convex functions, Acta Nath. Univ. Comenianae vol. LXXIX, 2 (2010), pp. 265-272.
- [18] M.Z. Sarıkaya, E. Set, H. Yaldız and N. Başak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, *Mathematical and Computer Modelling*, DOI:10.1016/j.mcm.2011.12.048.
- [19] E. Set, New inequalities of Ostrowski type for mapping whose derivatives are s-convex in the second sense via fractional integrals, Computers and Math. with Appl., 63 (2012) 1147-1154.
- [20] T. Weir, and B. Mond, Preinvex functions in multiple objective optimization, Journal of Mathematical Analysis and Applications, 136, (1998) 29-38.
- [21] X.M. Yang and D. Li, On properties of preinvex functions, J. Math. Anal. Appl. 256 (2001) 229-241.
- [22] X.M. Yang, X.Q. Yang and K.L. Teo, Characterizations and applications of prequasiinvex functions, properties of preinvex functions, J. Optim. Theo. Appl., 110 (2001) 645-668.

GIRESUN UNIVERSITY, SCIENCE AND ART FACULTY, DEPARTMENT OF MATHEMATICS, GIRESUNTURKEY

E-mail address: imdat.iscan@giresun.edu.tr