Konuralp Journal of Mathematics
Volume 2 No. 2 Pp. 76-84 (2014) ©KJM

HERMITE-HADAMARD'S INEQUALITIES FOR PREQUASIINVEX FUNCTIONS VIA FRACTIONAL INTEGRALS

IMDAT ISCAN

Abstract

In this paper, we extend some estimates of the right hand side of Hermite-Hadamard type inequality for prequasiinvex functions via fractional integrals.

1. Introduction and Preliminaries

Let $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ be a convex mapping defined on the interval I of real numbers and $a, b \in I$ with $a<b$, then

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2} \tag{1.1}
\end{equation*}
$$

This doubly inequality is known in the literature as Hermite-Hadamard integral inequality for convex mapping. For several recent results concerning the inequality (1.1) we refer the interested reader to $[2,3,4,5,7,17,18]$.

We recall that the notion of quasi-convex functions generalizes the notion of convex functions. More precisely, a function $f:[a, b] \rightarrow \mathbb{R}$ is said to be quasi-convex on $[a, b]$ if inequality

$$
f(t x+(1-t) y) \leq \max \{f(x), f(y)\}
$$

holds for all $x, y \in I$ and $t \in[0,1]$.
Clearly, any convex function is quasi-convex function. Furthemore there exist quasi-convex functions which are not convex (see [7]).

We give some necessary definitions and mathematical preliminaries of fractional calculus theory which are used throughout this paper.

Definition 1.1. Let $f \in L[a, b]$. The Riemann-Liouville integrals $J_{a^{+}}^{\alpha} f$ and $J_{b^{-}}^{\alpha} f$ of oder $\alpha>0$ with $a \geq 0$ are defined by

[^0]$$
J_{a^{+}}^{\alpha} f(x)=\frac{1}{\Gamma(\alpha)} \int_{a}^{x}(x-t)^{\alpha-1} f(t) d t, x>a
$$
and
$$
J_{b^{-}}^{\alpha} f(x)=\frac{1}{\Gamma(\alpha)} \int_{x}^{b}(t-x)^{\alpha-1} f(t) d t, x<b
$$
respectively, where $\Gamma(\alpha)$ is the Gamma function and $J_{a^{+}}^{0} f(x)=J_{b^{-}}^{0} f(x)=f(x)$.
In the case of $\alpha=1$, the fractional integral reduces to the classical integral. For some recent result connected with fractional integral inequalities see ([13, 16, 18, 19]).

In [13], Ozdemir and Yıldız proved the Hadamard inequality for quasi-convex functions via Riemann-Liouville fractional integrals as follows:
Theorem 1.1. Let $f:[a, b] \rightarrow \mathbb{R}$, be positive function with $0 \leq a<b$ and $f \in$ $L[a, b]$. If f is a quasi-convex function on $[a, b]$, then the following inequality for fractional integrals holds:

$$
\begin{equation*}
\frac{\Gamma(\alpha+1)}{2(b-a)^{\alpha}}\left[J_{a^{+}}^{\alpha} f(b)+J_{b^{-}}^{\alpha} f(a)\right] \leq \max \{f(a), f(b)\} \tag{1.2}
\end{equation*}
$$

with $\alpha>0$.
Theorem 1.2. Let $f:[a, b] \rightarrow \mathbb{R}$, be a differentiable mapping on (a, b) with $a<b$. If $\left|f^{\prime}\right|$ is quasi-convex on $[a, b], \alpha>0$, then the following inequality for fractional integrals holds:

$$
\begin{align*}
& \left|\frac{f(a)+f(b)}{2}-\frac{\Gamma(\alpha+1)}{2(b-a)^{\alpha}}\left[J_{a^{+}}^{\alpha} f(b)+J_{b^{-}}^{\alpha} f(a)\right]\right| \tag{1.3}\\
\leq & \frac{b-a}{\alpha+1}\left(1-\frac{1}{2^{\alpha}}\right) \max \left\{\left|f^{\prime}(a)\right|,\left|f^{\prime}(b)\right|\right\}
\end{align*}
$$

Theorem 1.3. Let $f:[a, b] \rightarrow \mathbb{R}$, be a differentiable mapping on (a, b) with $a<b$ such that $f^{\prime} \in L[a, b]$. If $\left|f^{\prime}\right|^{q}$ is quasi-convex on $[a, b]$, and $q>1$, then the following inequality for fractional integrals holds:

$$
\begin{align*}
& \left|\frac{f(a)+f(b)}{2}-\frac{\Gamma(\alpha+1)}{2(b-a)^{\alpha}}\left[J_{a^{+}}^{\alpha} f(b)+J_{b^{-}}^{\alpha} f(a)\right]\right| \tag{1.4}\\
\leq & \frac{b-a}{2(\alpha p+1)^{\frac{1}{p}}}\left(\max \left\{\left|f^{\prime}(a)\right|^{q},\left|f^{\prime}(b)\right|^{q}\right\}\right)^{\frac{1}{q}}
\end{align*}
$$

where $\frac{1}{p}+\frac{1}{q}=1$ and $\alpha \in[0,1]$.
Theorem 1.4. Let $f:[a, b] \rightarrow \mathbb{R}$, be a differentiable mapping on (a, b) with $a<b$ such that $f^{\prime} \in L[a, b] . I f\left|f^{\prime}\right|^{q}$ is quasi-convex on $[a, b]$, and $q \geq 1$, then the following inequality for fractional integrals holds:

$$
\begin{align*}
& \left|\frac{f(a)+f(b)}{2}-\frac{\Gamma(\alpha+1)}{2(b-a)^{\alpha}}\left[J_{a^{+}}^{\alpha} f(b)+J_{b^{-}}^{\alpha} f(a)\right]\right| \tag{1.5}\\
\leq & \frac{b-a}{(\alpha+1)}\left(1-\frac{1}{2^{\alpha}}\right)\left(\max \left\{\left|f^{\prime}(a)\right|^{q},\left|f^{\prime}(b)\right|^{q}\right\}\right)^{\frac{1}{q}}
\end{align*}
$$

with $\alpha>0$.

In recent years several extentions and generalizations have been considered for classical convexity. A significant generalization of convex functions is the invex functions introduced by Hanson in [6]. Weir and Mond [20] introduced the concept of preinvex functions and applied it to the establisment of the sufficient optimality conditions and duality in nonlinear programming. Pini [15] introduced the concept of prequasiinvex function as a generalization of invex functions. Later, Mohan and Neogy [9] obtained some properties of generalized preinvex functions. Noor ([11][12])has established some Hermite-Hadamard type inequalities for preinvex and log-preinvex functions. In recent papers Yang et al. in [22] studied prequasiinvex functions and semistrictly prequasiinvex functions, Barani et al. in [4] presented some generalizations of the right hand side of a Hermite-Hadamard type inequality for prequasiinvex functions and Park in [14] established generalized Simpson-like and Hermite-Hadamard-like type integral inequalities for functions whose second derivatives in absolutely value at certain powers are preinvex and prequasiinvex.

In this paper we generalized the results in [13] for prequasiinvex functions. Now we recall some notions in invexity analysis which will be used throught the paper (see $[1,21]$ and references therein)

Let $f: A \rightarrow \mathbb{R}$ and $\eta: A \times A \rightarrow \mathbb{R}$, where A is a nonempty set in \mathbb{R}^{n}, be continuous functions.

Definition 1.2. The set $A \subseteq \mathbb{R}^{n}$ is said to be invex with respect to $\eta(.,$.$) , if for$ every $x, y \in A$ and $t \in[0,1]$,

$$
x+t \eta(y, x) \in A
$$

The invex set A is also called a η-connected set.
It is obvious that every convex set is invex with respect to $\eta(y, x)=y-x$, but there exist invex sets which are not convex [1].
Definition 1.3. The function f on the invex set A is said to be preinvex with respect to η if

$$
f(x+t \eta(y, x)) \leq(1-t) f(x)+t f(y), \forall x, y \in A, t \in[0,1]
$$

The function f is said to be preconcave if and only if $-f$ is preinvex.
Definition 1.4. The function f on the invex set A is said to be prequasiinvex with respect to η if

$$
f(x+t \eta(y, x)) \leq \max \{f(x), f(y)\}, \forall x, y \in A, t \in[0,1]
$$

Every quasi-convex function is a prequasinvex with respect to $\eta(y, x)=y-x$, but the converse does not holds (see example 1.1 in [22])

We also need the following assumption regarding the function η which is due to Mohan and Neogy [9]:

Condition C: Let $A \subseteq \mathbb{R}^{n}$ be an invex subset with respect to $\eta: A \times A \rightarrow \mathbb{R}$. For any $x, y \in A$ and any $t \in[0,1]$,

$$
\begin{aligned}
& \eta(y, y+t \eta(x, y))=-t \eta(x, y) \\
& \eta(x, y+t \eta(x, y))=(1-t) \eta(x, y)
\end{aligned}
$$

Note that for every $x, y \in A$ and every $t \in[0,1]$ from condition C, we have

$$
\begin{equation*}
\eta\left(y+t_{2} \eta(x, y), y+t_{1} \eta(x, y)\right)=\left(t_{2}-t_{1}\right) \eta(x, y) \tag{1.6}
\end{equation*}
$$

In [4] Barani et al. proved the Hermite-Hadamard type inequality for prequasiinvex as follows:

Theorem 1.5. Let $A \subseteq \mathbb{R}$ be an open invex subset with respect to $\eta: A \times A \rightarrow \mathbb{R}$. Suppose that $f: A \rightarrow \mathbb{R}$ is a differentiable function. If $\left|f^{\prime}\right|$ is prequasiinvex on A then, for every $a, b \in A$ the following inequalities holds

$$
\begin{align*}
& \left|\frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x\right| \\
\leq & \frac{|\eta(b, a)|}{4} \max \left\{\left|f^{\prime}(a)\right|,\left|f^{\prime}(b)\right|\right\} . \tag{1.7}
\end{align*}
$$

Theorem 1.6. Let $A \subseteq \mathbb{R}$ be an open invex subset with respect to $\eta: A \times A \rightarrow \mathbb{R}$. Suppose that $f: A \rightarrow \mathbb{R}$ is a differentiable function. Assume that $p \in \mathbb{R}$ with $p>1$. If $\left|f^{\prime}\right|^{\frac{p}{p-1}}$ is preinvex on A then, for every $a, b \in A$ the following inequalities holds

$$
\begin{align*}
& \left|\frac{f(a)+f(a+\eta(b, a))}{2}-\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x\right| \\
\leq & \frac{|\eta(b, a)|}{2(p+1)^{\frac{1}{p}}}\left(\max \left\{\left|f^{\prime}(a)\right|^{\frac{p}{p-1}},\left|f^{\prime}(b)\right|^{\frac{p}{p-1}}\right\}\right)^{\frac{p-1}{p}} . \tag{1.8}
\end{align*}
$$

In order to prove our main results we need the following lemma:
Lemma 1.1. Let $A \subseteq \mathbb{R}$ be an open invex subset with respect to $\eta: A \times A \rightarrow \mathbb{R}$ and $a, b \in A$ with $a<a+\eta(b, a)$. Suppose that $f: A \rightarrow \mathbb{R}$ is a differentiable function. If f^{\prime} is preinvex function on A and $f^{\prime} \in L[a, a+\eta(b, a)]$ then, the following equality holds:

$$
\begin{align*}
& \frac{f(a)+f(a+\eta(b, a))}{2}-\frac{\Gamma(\alpha+1)}{2 \eta^{\alpha}(b, a)}\left[J_{a^{+}}^{\alpha} f(a+\eta(b, a))+J_{(a+\eta(b, a))^{-}}^{\alpha} f(a)\right] \tag{1.9}\\
= & \frac{\eta(b, a)}{2} \int_{0}^{1}\left[t^{\alpha}-(1-t)^{\alpha}\right] f^{\prime}(a+t \eta(b, a)) d t
\end{align*}
$$

By using partial integration in right hand of (1.9) equality, the proof is obvious (see [8]).

In this paper, using Lemma 1.1 we obtained new inequalities related to the right side of Hermite-Hadamard inequalities for prequasiinvex functions via fractional integrals.

2. Main Results

Theorem 2.1. Let $A \subseteq \mathbb{R}$ be an open invex subset with respect to $\eta: A \times A \rightarrow \mathbb{R}$ and $a, b \in A$ with $a<a+\eta(b, a)$. If $f:[a, a+\eta(b, a)] \rightarrow(0, \infty)$ is a prequasiinvex function, $f \in L[a, a+\eta(b, a)]$ and η satisfies condition C then, the following
inequalities for fractional integrals holds:

$$
\begin{align*}
& \frac{\Gamma(\alpha+1)}{2 \eta^{\alpha}(b, a)}\left[J_{a^{+}}^{\alpha} f(a+\eta(b, a))+J_{(a+\eta(b, a))^{-}}^{\alpha} f(a)\right] \\
\leq & \max \{f(a), f(a+\eta(b, a)\} \leq \max \{f(a), f(b)\} \tag{2.1}
\end{align*}
$$

Proof. Since $a, b \in A$ and A is an invex set with respect to η, for every $t \in[0,1]$, we have $a+\operatorname{t\eta }(b, a) \in A$. By prequasinvexity of f and inequality (1.6) for every $t \in[0,1]$ we get

$$
\begin{align*}
f(a+t \eta(b, a)) & =f(a+\eta(b, a)+(1-t) \eta(a, a+\eta(b, a))) \\
& \leq \max \{f(a), f(a+\eta(b, a)\} \tag{2.2}
\end{align*}
$$

and similarly

$$
\begin{aligned}
f(a+(1-t) \eta(b, a)) & =f(a+\eta(b, a)+\operatorname{t\eta }(a, a+\eta(b, a))) \\
& \leq \max \{f(a), f(a+\eta(b, a)\}
\end{aligned}
$$

By adding these inequalities we have

$$
\begin{equation*}
f(a+t \eta(b, a))+f(a+(1-t) \eta(b, a)) \leq 2 \max \{f(a), f(a+\eta(b, a)\} \tag{2.3}
\end{equation*}
$$

Then multiplying both (2.3) by $t^{\alpha-1}$ and integrating the resulting inequality with respect to t over $[0,1]$, we obtain

$$
\int_{0}^{1} t^{\alpha-1} f(a+t \eta(b, a)) d t+\int_{0}^{1} t^{\alpha-1} f(a+(1-t) \eta(b, a)) d t \leq 2 \max \left\{f(a), f(a+\eta(b, a)\} \int_{0}^{1} t^{\alpha-1} d t .\right.
$$

i.e.

$$
\frac{\Gamma(\alpha)}{\eta^{\alpha}(b, a)}\left[J_{a^{+}}^{\alpha} f(a+\eta(b, a))+J_{(a+\eta(b, a))^{-}}^{\alpha} f(a)\right] \leq \frac{2 \max \{f(a), f(a+\eta(b, a)\}}{\alpha}
$$

Using the mapping η satisfies condition C the proof is completed.

Remark 2.1. In Theorem 2.1, if we take $\eta(b, a)=b-a$, then inequality (2.1) become inequality (1.2) of Theorem 1.1.

Theorem 2.2. Let $A \subseteq \mathbb{R}$ be an open invex subset with respect to $\eta: A \times A \rightarrow \mathbb{R}$ and $a, b \in A$ with $a<a+\eta(b, a)$ such that $f^{\prime} \in L[a, a+\eta(b, a)]$. Suppose that $f: A \rightarrow \mathbb{R}$ is a differentiable function. If $\left|f^{\prime}\right|$ is prequasiinvex function on $[a, a+\eta(b, a)]$ then the following inequality for fractional integrals with $\alpha>0$ holds:

$$
\begin{align*}
& \text { 4) }\left|\frac{f(a)+f(a+\eta(b, a))}{2}-\frac{\Gamma(\alpha+1)}{2 \eta^{\alpha}(b, a)}\left[J_{a^{+}}^{\alpha} f(a+\eta(b, a))+J_{(a+\eta(b, a))^{-}}^{\alpha} f(a)\right]\right| \tag{2.4}\\
& \leq \frac{\eta(b, a)}{\alpha+1}\left(1-\frac{1}{2^{\alpha}}\right) \max \left\{\left|f^{\prime}(a)\right|,\left|f^{\prime}(b)\right|\right\} .
\end{align*}
$$

Proof. Using Lemma 1.1 and the prequasiinvexity of $\left|f^{\prime}\right|$ we get

$$
\begin{aligned}
& \left|\frac{f(a)+f(a+\eta(b, a))}{2}-\frac{\Gamma(\alpha+1)}{2 \eta^{\alpha}(b, a)}\left[J_{a^{+}}^{\alpha} f(a+\eta(b, a))+J_{(a+\eta(b, a))^{-}}^{\alpha} f(a)\right]\right| \\
\leq & \frac{\eta(b, a)}{2} \int_{0}^{1}\left|t^{\alpha}-(1-t)^{\alpha}\right|\left|f^{\prime}(a+t \eta(b, a))\right| d t \\
\leq & \frac{\eta(b, a)}{2} \int_{0}^{1}\left|t^{\alpha}-(1-t)^{\alpha}\right| \max \left\{\left|f^{\prime}(a)\right|,\left|f^{\prime}(b)\right|\right\} d t \\
\leq & \frac{\eta(b, a)}{2}\left\{\int_{0}^{\frac{1}{2}}\left[(1-t)^{\alpha}-t^{\alpha}\right] \max \left\{\left|f^{\prime}(a)\right|,\left|f^{\prime}(b)\right|\right\} d t+\int_{\frac{1}{2}}^{1}\left[t^{\alpha}-(1-t)^{\alpha}\right] \max \left\{\left|f^{\prime}(a)\right|,\left|f^{\prime}(b)\right|\right\} d t\right\} \\
= & \eta(b, a) \max \left\{\left|f^{\prime}(a)\right|,\left|f^{\prime}(b)\right|\right\}\left(\int_{0}^{\frac{1}{2}}\left[(1-t)^{\alpha}-t^{\alpha}\right] d t\right) \\
= & \frac{\eta(b, a)}{(\alpha+1)}\left(1-\frac{1}{2^{\alpha}}\right) \max \left\{\left|f^{\prime}(a)\right|,\left|f^{\prime}(b)\right|\right\},
\end{aligned}
$$

which completes the proof.

Remark 2.2. a) In Theorem 2.2, if we take $\eta(b, a)=b-a$, then inequality (2.4) become inequality (1.3) of Theorem 1.2
b) In Theorem2.2, if we take $\alpha=1$, then inequality (2.4) become inequality (1.7) of Theorem 1.5.
c) In Theorem2.2, assume that η satisfies condition C.Using inequality (2.2) we get

$$
\begin{aligned}
& \left|\frac{f(a)+f(a+\eta(b, a))}{2}-\frac{\Gamma(\alpha+1)}{2 \eta^{\alpha}(b, a)}\left[J_{a^{+}}^{\alpha} f(a+\eta(b, a))+J_{(a+\eta(b, a))^{-}}^{\alpha} f(a)\right]\right| \\
\leq & \frac{\eta(b, a)}{(\alpha+1)}\left(1-\frac{1}{2^{\alpha}}\right) \max \left\{\left|f^{\prime}(a)\right|,\left|f^{\prime}(a+\eta(b, a))\right|\right\}
\end{aligned}
$$

Theorem 2.3. Let $A \subseteq \mathbb{R}$ be an open invex subset with respect to $\eta: A \times A \rightarrow \mathbb{R}$ and $a, b \in A$ with $a<a+\eta(b, a)$ such that $f^{\prime} \in L[a, a+\eta(b, a)]$. Suppose that $f: A \rightarrow \mathbb{R}$ is a differentiable function. If $\left|f^{\prime}\right|^{q}$ is prequasiinvex function on $[a, a+\eta(b, a)]$ for some fixed $q \geq 1$ then the following inequality holds:

$$
\begin{align*}
& \text { 5) }\left|\frac{f(a)+f(a+\eta(b, a))}{2}-\frac{\Gamma(\alpha+1)}{2 \eta^{\alpha}(b, a)}\left[J_{a^{+}}^{\alpha} f(a+\eta(b, a))+J_{(a+\eta(b, a))^{-}}^{\alpha} f(a)\right]\right| \tag{2.5}\\
& \leq \frac{\eta(b, a)}{(\alpha+1)}\left(1-\frac{1}{2^{\alpha}}\right)\left(\max \left\{\left|f^{\prime}(a)\right|^{q},\left|f^{\prime}(b)\right|^{q}\right\}\right)^{\frac{1}{q}}
\end{align*}
$$

where $\alpha>0$.

Proof. From Lemma1.1 and using Power-mean inequality with properties of modulus, we have

$$
\begin{aligned}
& \left|\frac{f(a)+f(a+\eta(b, a))}{2}-\frac{\Gamma(\alpha+1)}{2 \eta^{\alpha}(b, a)}\left[J_{a^{+}}^{\alpha} f(a+\eta(b, a))+J_{(a+\eta(b, a))^{-}}^{\alpha} f(a)\right]\right| \\
\leq & \frac{\eta(b, a)}{2} \int_{0}^{1}\left|t^{\alpha}-(1-t)^{\alpha}\right|\left|f^{\prime}(a+t \eta(b, a))\right| d t \\
\leq & \frac{\eta(b, a)}{2}\left(\int_{0}^{1}\left|t^{\alpha}-(1-t)^{\alpha}\right| d t\right)^{1-\frac{1}{q}}\left(\int_{0}^{1}\left|t^{\alpha}-(1-t)^{\alpha}\right|\left|f^{\prime}(a+t \eta(b, a))\right|^{q} d t\right)^{\frac{1}{q}} .
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
\int_{0}^{1}\left|t^{\alpha}-(1-t)^{\alpha}\right| d t & =\int_{0}^{\frac{1}{2}}\left[(1-t)^{\alpha}-t^{\alpha}\right] d t+\int_{\frac{1}{2}}^{1}\left[t^{\alpha}-(1-t)^{\alpha}\right] d t \\
& =\frac{2}{\alpha+1}\left(1-\frac{1}{2^{\alpha}}\right)
\end{aligned}
$$

Since $\left|f^{\prime}\right|^{q}$ is prequasiinvex function on $[a, a+\eta(b, a)]$, we obtain

$$
\left|f^{\prime}(a+t \eta(b, a))\right|^{q} \leq \max \left\{\left|f^{\prime}(a)\right|^{q},\left|f^{\prime}(b)\right|^{q}\right\}, \quad t \in[0,1]
$$

and

$$
\begin{aligned}
\int_{0}^{1}\left|t^{\alpha}-(1-t)^{\alpha}\right|\left|f^{\prime}(a+t \eta(b, a))\right|^{q} d t & \leq \int_{0}^{1}\left|t^{\alpha}-(1-t)^{\alpha}\right| \max \left\{\left|f^{\prime}(a)\right|^{q},\left|f^{\prime}(b)\right|^{q}\right\} d t \\
& =\max \left\{\left|f^{\prime}(a)\right|^{q},\left|f^{\prime}(b)\right|^{q}\right\} \cdot \int_{0}^{1}\left|t^{\alpha}-(1-t)^{\alpha}\right| d t \\
& =\frac{2}{\alpha+1}\left(1-\frac{1}{2^{\alpha}}\right) \max \left\{\left|f^{\prime}(a)\right|^{q},\left|f^{\prime}(b)\right|^{q}\right\}
\end{aligned}
$$

from here we obtain inequality (2.5). This completes the proof.
Remark 2.3. a) In Theorem2.3, if we take $\eta(b, a)=b-a$ then inequality (2.5)become inequality (1.5) Theorem1.4.
b) In Theorem2.3, assume that η satisfies condition C. Using inequality (2.2) we get

$$
\begin{aligned}
& \left|\frac{f(a)+f(a+\eta(b, a))}{2}-\frac{\Gamma(\alpha+1)}{2 \eta^{\alpha}(b, a)}\left[J_{a^{+}}^{\alpha} f(a+\eta(b, a))+J_{(a+\eta(b, a))^{-}}^{\alpha} f(a)\right]\right| \\
\leq & \frac{\eta(b, a)}{(\alpha+1)}\left(1-\frac{1}{2^{\alpha}}\right)\left(\max \left\{\left|f^{\prime}(a)\right|^{q},\left|f^{\prime}(a+\eta(b, a))\right|^{q}\right\}\right)^{\frac{1}{q}} .
\end{aligned}
$$

Theorem 2.4. Let $A \subseteq \mathbb{R}$ be an open invex subset with respect to $\eta: A \times A \rightarrow \mathbb{R}$ and $a, b \in A$ with $a<a+\eta(b, a)$ such that $f^{\prime} \in L[a, a+\eta(b, a)]$. Suppose that $f: A \rightarrow \mathbb{R}$ is a differentiable function. If $\left|f^{\prime}\right|^{q}$ is prequasiinvex function on $[a, a+\eta(b, a)]$ for
some fixed $q>1$ then the following inequality holds:

$$
\begin{align*}
& \text { 6) }\left|\frac{f(a)+f(a+\eta(b, a))}{2}-\frac{\Gamma(\alpha+1)}{2 \eta^{\alpha}(b, a)}\left[J_{a^{+}}^{\alpha} f(a+\eta(b, a))+J_{(a+\eta(b, a))^{-}}^{\alpha} f(a)\right]\right| \tag{2.6}\\
& \leq \frac{\eta(b, a)}{2(\alpha p+1)^{\frac{1}{p}}}\left(\max \left\{\left|f^{\prime}(a)\right|^{q},\left|f^{\prime}(a+\eta(b, a))\right|^{q}\right\}\right)^{\frac{1}{q}} .
\end{align*}
$$

where $\frac{1}{p}+\frac{1}{q}=1$ and $\alpha \in[0,1]$.
Proof. From Lemma1.1 and using Hölder inequality with properties of modulus, we have

$$
\begin{aligned}
& \left|\frac{f(a)+f(a+\eta(b, a))}{2}-\frac{\Gamma(\alpha+1)}{2 \eta^{\alpha}(b, a)}\left[J_{a^{+}}^{\alpha} f(a+\eta(b, a))+J_{(a+\eta(b, a))^{-}}^{\alpha} f(a)\right]\right| \\
\leq & \frac{\eta(b, a)}{2} \int_{0}^{1}\left|t^{\alpha}-(1-t)^{\alpha}\right|\left|f^{\prime}(a+t \eta(b, a))\right| d t \\
\leq & \frac{\eta(b, a)}{2}\left(\int_{0}^{1}\left|t^{\alpha}-(1-t)^{\alpha}\right|^{p} d t\right)^{\frac{1}{p}}\left(\int_{0}^{1}\left|f^{\prime}(a+t \eta(b, a))\right|^{q} d t\right)^{\frac{1}{q}} .
\end{aligned}
$$

We know that for $\alpha \in[0,1]$ and $\forall t_{1}, t_{2} \in[0,1]$,

$$
\left|t_{1}^{\alpha}-t_{2}^{\alpha}\right| \leq\left|t_{1}-t_{2}\right|^{\alpha}
$$

therefore

$$
\begin{aligned}
\int_{0}^{1}\left|t^{\alpha}-(1-t)^{\alpha}\right|^{p} d t & \leq \int_{0}^{1}|1-2 t|^{\alpha p} d t \\
& =\int_{0}^{\frac{1}{2}}[1-2 t]^{\alpha p} d t+\int_{\frac{1}{2}}^{1}[2 t-1]^{\alpha p} d t \\
& =\frac{1}{\alpha p+1}
\end{aligned}
$$

Since $\left|f^{\prime}\right|^{q}$ is prequasiinvex on $[a, a+\eta(b, a)]$, we have inequality (2.6). This completes the proof.

Remark 2.4. a) In Theorem 2.4, if we take $\eta(b, a)=b-a$ then inequality (2.6) become inequality (1.4) of Theorem 1.3 .
b) In Theorem 2.4, if we take $\alpha=1$ then inequality (2.6) become inequality (1.8) of Theorem 1.6.
c) In Theorem 2.4, assume that η satisfies condition C. Using inequality (2.2) we get

$$
\begin{aligned}
& \left|\frac{f(a)+f(a+\eta(b, a))}{2}-\frac{\Gamma(\alpha+1)}{2 \eta^{\alpha}(b, a)}\left[J_{a^{+}}^{\alpha} f(a+\eta(b, a))+J_{(a+\eta(b, a))^{-}}^{\alpha} f(a)\right]\right| \\
\leq & \frac{\eta(b, a)}{2(\alpha p+1)^{\frac{1}{p}}}\left(\max \left\{\left|f^{\prime}(a)\right|^{q},\left|f^{\prime}(a+\eta(b, a))\right|^{q}\right\}\right)^{\frac{1}{q}} .
\end{aligned}
$$

References

[1] T. Antczak, Mean value in invexity analysis, Nonlinear Analysis, 60 (2005) 1471-1484.
[2] M. Alomari, M. Darus and U.S. Kırmacı, Refinements of Hadamard-type inequalities for quasi-convex functions with applications to trapezoidal formula and to special means, Comp.and Math. with Applications, 59 (2010), 225-232.
[3] M.K. Bakula, M.E. Ozdemir and J. Pečarić, Hadamard type inequalities for m-convex and (α, m)-convex functions, J. Inequal. Pure Appl. Math. 9 (2008) Article 96. [Online: http://jipam.vu.edu.au].
[4] A. Barani, A.G. Ghazanfari and S.S. Dragomir, Hermite-Hadamard inequality through prequasiinvex functions, RGMIA Res. Rep. Coll., 14 (2011), Article 48.
[5] S.S. Dragomir and C.E.M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs,Victoria University, 2000.
[6] M.A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl., 80 (1981) 545-550.
[7] D.A. Ion, Some estimates on the Hermite-Hadamard inequalities through quasi-convex functions, Annals of University of Craiova, Math. Comp. Sci. Ser., 34 (2007), 82-87.
[8] I. Iscan, Hermite-Hadamard's inequalities for preinvex functions via fractional integrals and related fractional inequalities, arXiv:1204.0272, submitted.
[9] S.R.Mohan and S.K. Neogy, On invex sets and preinvex functions, J. Math. Anal. Appl., 189 (1995), 901-908.
[10] M. Aslam Noor, Some new classes of nonconvex functionss, Nonl. Funct. Anal. Appl., 11 (2006), 165-171.
[11] M. Aslam Noor, On Hadamard integral inequalities invoving two log-preinvex functions, J. Inequal. Pure Appl. Math., 8 (2007), No. 3, 1-6, Article 75.
[12] M. Aslam Noor, Hadamard integral inequalities for product of two preinvex function, Nonl. anal. Forum, 14 (2009), 167-173.
[13] M.E. Özdemir and Ç. Yıldız, The Hadamard's inequality for quasi-convex functions via fractional integrals, RGMIA Res. Rep. Coll., 14 (2011), Article 101.
[14] J. Park, Simpson-like and Hermite-Hadamard-like type integral inequalities for twice differentiable preinvex functions, Int. Journal of Pure and Appl. Math., 79 (4) (2012), 623-640.
[15] R. Pini, Invexity and generalized Convexity, Optimization, 22 (1991) 513-525.
[16] M.Z. Sarıkaya and H. Ogunmez, On new inequalities via Riemann-Liouville fractional integration, Abstract and Applied Analysis, 2012 (2012), Article ID 428983, 10 pages, doi:10.1155/2012/428983.
[17] M.Z. Sarıkaya, E. Set and M.E. Özdemir, On some new inequalities of Hadamard type involving h-convex functions, Acta Nath. Univ. Comenianae vol. LXXIX, 2 (2010), pp. 265-272.
[18] M.Z. Sarıkaya, E. Set, H. Yaldız and N. Başak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Mathematical and Computer Modelling, DOI:10.1016/j.mcm.2011.12.048.
[19] E. Set, New inequalities of Ostrowski type for mapping whose derivatives are s-convex in the second sense via fractional integrals, Computers and Math. with Appl., 63 (2012) 1147-1154.
[20] T. Weir, and B. Mond, Preinvex functions in multiple objective optimization, Journal of Mathematical Analysis and Applications, 136, (1998) 29-38.
[21] X.M. Yang and D. Li, On properties of preinvex functions, J. Math. Anal. Appl. 256 (2001) 229-241.
[22] X.M. Yang, X.Q. Yang and K.L. Teo, Characterizations and applications of prequasiinvex functions, properties of preinvex functions, J. Optim. Theo. Appl., 110 (2001) 645-668.

Giresun University, Science and Art Faculty, Department of Mathematics, GiresunTURKEY

E-mail address: imdat.iscan@giresun.edu.tr

[^0]: 2000 Mathematics Subject Classification. 26D10, 26D15, 26A51.
 Key words and phrases. Hermite-Hadamard type inequalities, prequasiinvex function, fractional integral.

