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NEIGHBOURHOODS OF A SUBCLASS OF UNIFORMLY

CONVEX FUNCTIONS

T. RAM REDDY AND P. THIRUPATHI REDDY

Abstract. In this paper, we investigate the properties of neighbourhoods of

functions for the classes U CV (α) and Sp(α). First we established an inclu-
sion relationship between them and proved a necessary and sufficient condition

interms of convolutions for a function f to be in Sp(α). Next we show that

the class Sp(α) is closed under convolution with functions f (z) which are con-
vex univalent. The results obtained in this which generalizes the results of

Padmanabhan [8] and Ronning [9].

1. Introduction:

Let A denote the class of functions of the form

(1.1) f (z) = z +

∞∑
n=2

anz
n

which are analytic in the unit disk E = {z : |z |< 1}. Further, let S be the subclass
of A consisting of those functions that are univalent in E. Let CV and ST denote
the subclasses of S consisting of convex and starlike functions respectively.

If f (z) = z +
∑∞
n=2 anz

n and g (z) = z +
∑∞
n=2 bnz

n then the convolution or
Hadamard product of f (z ) and g(z ) denoted by f * g is defined by

(f ∗ g) (z) = z +
∑∞
n=2 anbnz

n. Clearly
f (z) ∗ z

(1−z)2 = zf ′ (z) and f (z) ∗ z
(1−z) = f (z)

Goodman[3,4] defined the following subclasses of CV and ST.
Definition A: A function f is uniformly convex (Starlike) in E if f is in CV (ST )
and has the property that for every circular arc γ contained in E with centre ξ also
in E, the arc f (γ) is convex (Starlike w.r.t f (ξ).

Goodman [3,4] then gave the following two variable analytic characterizations of
these classes, denoted by UCV and UST.
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Theorem A: A function f of the form (1.1) is in UCV if and only if

(1.2) Re

{
1 + (z − ξ)

f ′′ (z)

f ′

}
≥ 0, (z, ξ) ∈ EXE

and is in UST if any only if

(1.3) Re

{
f (z) − f (ξ)

(z − ξ) f ′ (z)

}
≥ 0, (z, ξ) ∈ EXE

The classical Alexander result that f ∈ CV if and only if zf′ ∈ ST does not
hold between the classes UCV and UST. Ronning [7] defined a subclass of starlike
functions Sp with the property that a function f ∈ UCV if and only if zf′ ∈ Sp.
Definition B: Let Sp = {F ∈ ST/F (z) = zf ′ (z) , f ∈ UCV }

Ma and Minda [6] and Ronning [10] independently found a more applicable one
variable characterization for UCV.
Theorem B: A function f is in UCV if and only if

(1.4) Re

{
1 +

zf ′′ (z)

f ′ (z)

}
≥
∣∣∣∣zf ′′ (z)f ′ (z)

∣∣∣∣ , z ∈ E.

Ronning [10] proved a one variable characterization for Sp as follows:
Theorem C: A function f is in Sp if and only if

(1.5)

∣∣∣∣zf ′ (z)f (z)
− 1

∣∣∣∣ ≤ Re

{
zf ′ (z)

f (z)

}
, z ∈ E.

A function f ∈ A is uniformly convex of order α for -1≤ α < 1 if and only if

1 + zf ′′(z)
f ′(z) lies in the parabolic region

(??) Re {ω - α } > |ω - 1 |
In otherwords, the function f is uniformly convex of order α if

(1.6) 1 +
zf ′′ (z)

f ′ (z)
≺ 1 +

2 (1 − α)

π2

[
log

(
1 +

√
z

1 −
√
z

)]2
, z ∈ E

where the symbol ≺ denotes subordination. This class was introduced by Ronning
[9] and it is denoted by UCV (α). The class of all analytic functions f (z )∈ A for

which zf ′(z)
f(z) lies in the parabolic region is denoted by Sp(α) and defined as follows.

Definition C: A function f (z ) is said to be in the class Sp(α) if for all z ∈ E,

(1.7)

∣∣∣∣zf ′ (z)f (z)
− 1

∣∣∣∣ ≤ Re

{
zf ′ (z)

f (z)

}
− α, for − 1 < α < 1.

This implies f ∈ Sp(α) for z ∈ E if and only if zf ′(z)
f(z) lies in the region Ωα

bounded by a parabola with vertex at
(
1+α
2 , 0

)
and parameterized by

t2+ 1 − α2 + 2 it (1 − α)
2(1 − α) for any real t.

It is known [9] that the function

(1.8) Pα (z) = 1 +
2 (1 − α)

π2

[
log

1 +
√
z

1−
√
z

]2
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maps the unit disk E on to the parabolic region Ωα (The branch
√
z is choosen in

such a way that Im
√
z ≥ 0). Then from the above definition f ∈ A is in the class

Sp(α) if and only if zf ′(z)
f(z) ≺ Pα (z).

The notion of δ - neghbourhood was first introduced by St. Ruscheweyh [11].
Definition D: For δ ≥ 0, the δ - neighbourhood of f (z) = z +

∑∞
n=2 anz

n ∈ A
is defined by

(1.9) Nδ (f) =

{
g (z) = z +

∞∑
n=2

bn z
n :

∞∑
n=2

n |an − bn| ≤ δ

}
.

Recently Padmanabhan [8] has introduced the neighbourhoods of functions in
the calss Sp and studied various properties.

In this paper we studied some related work on the neighbourhood problems for
k-uniformly convex functions of Kanas[5].The work of Ma and Minda [7 ] generalize
many studies on subclasses of starlike and convex functions. we introduce a new
class of functions and study the properties of neighbourhoods, of functions in this
class which generalizes the recent results of Padmanabhan [8] and Ronning [9].

First let us state lammas which are needed to establish our results in the sequel.
Lemma A [2]: Let β, γ ∈ C, let h(z ) be analytic, univalent and convex in E with
h(0) = 1 and Re (β h (z ) + γ) > 0, z ∈ E and let p(z ) = 1 + p1 z + . . . . z ∈ E,
then

(1.10) p (z) +
z p′ (z)

β p (z) + γ
≺ h (z) ⇒ p (z) ≺ h (z) .

Lemma B [12]: Let f (z) =
∑∞
n=2 anz

n and g (z) =
∑∞
n=2 anz

n be in ST
(
1+α
2

)
denote by f * g the Hadamard product (f * g) (z ) =

∑∞
n=2 an bn z

n . Then for
any function F (z ) analytic in E, we have for z ∈ E that

f (z) ∗ g (z) F (z)

f (z) ∗ g (z)
⊂ Co (F (E))

Co denotes the closed convex hull.
2. Main Results

First let us establish an inclusion relation.
Theorem 2.1: Let f ∈ UCV (α). Then f ∈ Sp(α).

Proof: Let p(z ) = zf ′(z)
f(z) . Then since f ∈ UCV (α)

p (z) +
zp′ (z)

p (z)
= 1 +

zf ′′ (z)

f ′ (z)
⊂ Ωα

Since Ωα is a convex damain, an application of Lemma A gives zp′(z)
p(z) = p (z) ⊂

Ωα, z ∈ E which implies that f ∈ Sp(α).
Now we give a characterization of the class Sp(α) in terms of convolution.

Definition 2.1: Let S′p (α) be the class of all functions hα(z ) in A of the form

(1.11)

hα (z) =
2 (1− α)

(1− α)
2 − t2 − 2it (1− α)

[
2

(1− z)2
− t2 + 1 − α2 + 2it (1− α)

2 (1− α)

z

(1− z)

]
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for -1 ≤ α < 1 and for all real t.
Theorem 2.2: A function f (z) in A is in Sp(α) if and only if for all z in E (z 6=
0) there exists a function hα(z) in S′p (α) such that (f∗ hα)(z)

z 6= 0.

Proof: Let us assume that (f∗ hα)(z)
z 6= 0, then for all hα(z ) ∈ S′p (α) and for z ∈

E (z 6= 0). From the definition of hα(z ) it follows that

f (z) ∗ hα (z)

z
=

2 (1− α)

z
[
(1− α)

2 − t2 − 2it (1− α)
] [f (z) ∗ z

(1− z)2
− t2 + 1 − α2 + 2it (1− α)

2 (1− α)
f ∗ z

1− z

]

=
2 (1− α)

z
[
(1− α)

2 − t2 − 2it (1− α)
] [zf ′ (z) − t2 + 1− α2 + 2it (1− α)

2 (1− α)
f (z)

]

6= 0.

Equivalently zf ′(z)
f(z) 6= t2 + 1 − α2 + 2it(1−α)

2(1−α) , t ∈ R. This means that zf ′(z)
f(z) lies

completely either inside Ωα or complement of Ωα for all z in E. At z = 0, zf
′(z)

f(z) =

1 ∈ Ωα , so zf ′(z)
f(z) ⊂ Ωα which means f ∈ Sp(α).

Conversely let f ∈ Sp(α). Hence zf ′(z)
f(z) lies with in the parabola with vertex at

the point
(
1+α
2 , 0

)
and the boundary of this is given by t2 + 1 − α2 + 2it(1−α)

2(1−α) for t

∈ R. So f ∈ Sp(α) only when

zf ′ (z)

f (z)
6= t2 + 1 − α2 + 2it (1− α)

2 (1− α)

Equivalently

f (z) ∗
[

z
(1−z)2 −

t2 + 1 − α2 + 2it(1−α)
2(1−α)

z
(1−z)

]
6= 0 for z 6= 0.

Normalizing the function within the brackets we get (f∗ hα)(z)
z 6= 0 in E where

hα(z ) is the function defined in (1.11).
To investigate the δ neighbourhoods of functions belonging to the class Sp(α),

we need the following lemmas.
Lemma 2.1: Let hα (z) = z +

∑∞
k=2 ck z

k ∈ S′p (α). Then

|ck| ≤
2k − (1 + α)

(1− α)
, k = 2, 3 . . . .

Proof: Let hα (z) ∈ S′p (α). Then for t ∈ R

hα (z) =
2 (1− α)

(1− α)
2 − t2 − 2it (1− α)

[
z

(1− z)2
− t2 + 1 − α2 + 2it (1− α)

2 (1− α)

z

(1− z)

]

=
2 (1− α)

(1− α)
2 − t2 − 2it (1− α)

[(
z + 2z2 + ......

)
− t2 + 1 − α2 + 2it (1− α)

2 (1− α)

(
z + z2 + .....

)]
= z +

∑∞
k=2 ckz

k

Now comparing the coefficients on either side we get
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ck =
2k (1− α) − t2 − 1 + α2 − 2it (1− α)

(1− α)
2 − t2 − 2it (1− α)

After simplication we get

|ck| ≤ Tk =
2k − (1 + α)

(1− α)
, for k = 2, 3 ...

Lemma 2.2: For f ∈ A and or every ε ∈ C such that |ε|< δ if

Fε(z )= f(z) + ε z
1+ε ∈ Sp(α) then for every hα(z ) ∈ S′p (α).∣∣∣∣ (f ∗ hα) (z)

z

∣∣∣∣ ≥ δ, z ∈ E.

Proof: Let Fε(z ) ∈ Sp(α). Then by Theorem 2.2, Fε(z)∗hα(α)
z 6= 0, for all hα(z )

∈ S′p (α) and z ∈ E.
Equivalently

(f ∗ hα) (z) + ε z

(1 + ε) z
6= 0 or

(f ∗ hα) (z)

z
6= − ε,

that is ∣∣∣∣ (f ∗ hα) (z)

z

∣∣∣∣ ≥ δ.

Theorem 2.3: Let f ∈ A, ε ∈ C and for |ε|< δ < 1, if Fε(z) ∈ Sp(α). Then
Nδ(f ) ⊂ Sp(α)
for the sequence

T = Tk =
2k − (1 + α)

(1 + α)

Proof: Let hα(z ) ∈ S′p (α) and g(z ) = z +
∑∞
k=2 bk z

k is in Nδ(f )
Then ∣∣∣∣ (g ∗ hα) (z)

z

∣∣∣∣ =

∣∣∣∣ (f ∗ hα) (z)

z
+

( (g − f) ∗ hα) (z)

z

∣∣∣∣
≥
∣∣∣∣ (f ∗ hα) (z)

z
− (g − f) (z) ∗ hα (z)

z

∣∣∣∣
≥ δ−

∣∣∣∑∞k=2
(bk − ak) ck zk

z

∣∣∣, by lemma 2.2.

We have ∣∣∣∣ (g ∗ hα) (z)

z

∣∣∣∣ ≥ δ − |z|
∞∑
k=2

|ck| |bk − ak|

> δ −
∑∞
k=2 Tk |bk − ak|, by lemma 2.1

> δ - δ = 0.

Thus
∣∣∣ (g ∗ hα)(z)z

∣∣∣ 6= 0 in E for all hα ∈ S′p (α) and then by Theorem 2.2, we have

g ∈ Sp(α). Hence we have Nδ (f ) ⊂ Sp(α).
Next we show that the class Sp(α) is closed under convolution with functions f

which are convex univalent in E.
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Theorem 2.4: Let f ∈ CV the class of convex functions and g(z ) ∈ Sp(α).
Then (f * g) (z ) ∈ Sp(α).
Proof: The proof of Theorem is similer result of T.N.Shanmugan [13], hence we
omitted.
Theorem 2.5: Let f ∈ ST

(
α+1
2

)
, g ∈ Sp(α). Then (f * g) (z ) ∈ Sp(α).

Proof: Let g ∈ Sp(α). Assume f ∈ ST
(
α+1
2

)
and zg′(z)

g(z) play in the role of F in

Lemma B, and let Ωα = {|ω-1|Re (ω-α)}. Using the Lemma B, we get for z ∈ E
that
z(f ∗ g)

′
(z)

(f ∗ g)(z) = f(z) ∗ zg′(z)
(f ∗ g)(z) =

f(z) ∗ g(z) zg
′(z)
g(z)

(f ∗ g)(z) ⊂ Co zg′(z)
g(z) ⊂ Ωα. Since Ωα is

convex and g ∈ Sp(α). This proves that (f * g) (z ) ∈ Sp(α).
Setting α = 0, the following result of Ronning [9] follows.

Corollary 2.1: Let f ∈ ST (1/2), g ∈ Sp(0) = Sp, then (f * g) (z ) ∈ Sp.
Theorem 2.6: Let g∈ UCV (α) and h(z ) ∈ ST

(
α+1
2

)
. Then (g * h) (z ) ∈

UCV (α).
Proof: If g ∈ UCV (α), then z g ′(z ) ∈ Sp(α). By Theorem 2.4 it follows that h *
zg′ ∈ Sp(α). So

z (h * g)′ (z ) = h(z ) * zg ′ (z ) ∈ Sp(α).
This proves that (h * g) (z ) ∈ UCV (α).

Setting α = 0, the following result of Padmanabhan [8] follows.
Corollary 2.2: Let g ∈ UCV and h(z ) ∈ ST (1/2). Then (g * h) (z ) ∈ UCV(α).

Theorem 2.7 : Let f ∈ UCV (α). Then f(z) + ε z
1 + ε ∈ Sp (α) for |ε|< .

Proof: Let f (z) = z +
∑∞
n=2 anz

n then

f (z) + ε z

1 + ε
=

z (1 + ε) +
∑∞
n=2 anz

n

1 + ε
=

f (z) ∗ [z (1 + ε) +
∑∞
n=2 z

n]

1 + ε

= f (z) ∗

(
z − ε

1+ε z
2
)

(1− z)
= f (z) ∗ h (z)

where h (z) =
[z − ε

1+ε z
2]

(1−z)
Now

zh′ (z)

h (z)
=

[
z − 2ε

1+εz
2
]

[
z − ε

1+εz
2
] +

z

1− z
=
−ρ z

1− ρ z
+

1

1− z

where ρ = ε
1+ε . Hence |ρ| < ε

1−|ε| < 1/3 gives |ε|< 1/4

Thus

Re

{
zh′ (z)

h (z)

}
≥ 1− 2 |ρ| |z| − |ρ| |z|2

(1− |ρ| |z|) (1 + |z|)
> 0

if |ρ|(|z |2 + 2 |z |) -1 < 0. This inequality holds for all ρ < 1/3 and |z |< 1, which

is true for |ε|< 1/4. Therefore h(z ) is starlike in the unit disk and so
∫ z
0
h(t)
t dt is

convex.

But h(z ) * log
(

1
1−z

)
=

∫ z

0
h(t)
t dt and so h(z ) * log

(
1

1−z

)
is convex in E

and

(f * h) (z ) = (h * f ) (z ) = h(z ) *
[
zf ′ (z) ∗ log

(
1

1−z

)]
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= zf ′(z) *
[
h (z) ∗ log

(
1

1−z

)]
f (z ) ∈ UCV (α) implies zf′ (z ) ∈ Sp(α) and h(z ) * log

(
1

1−z

)
∈ CV. Now

by Theorem 2.4 h(z ) *
[
zf ′ (z) ∗ log

(
1

1−z

)]
is in Sp(α). Thus (f ∗ h) (z) =

f(z) + ε z
1+ε ∈ Sp (α) for |ε|< 1/4.

Corollary 2. 3: If f ∈ UCV (α), then f ∈ Sp(α).
Proof: Choosing ε = 0 in the Theorem 2.7 we get the result.

Corollary 2. 4: If f ∈ UCV (α) then
∫ z
0
f(t)
t dt ∈ UCV (α).

Proof: f ∈ UCV (α) implies f ∈ Sp(α) by corollary2.3,so we can write f (z ) = zg′
(z ) for some g ∈ UCV (α) and g′ (z ) = f(z)

z gives g (z) =
∫ z
0
f(t)
t dt ∈ UCV (α).
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