KONURALP JOURNAL OF MATHEMATICS Volume 2 No. 2 pp. 102-108 (2014) ©KJM

NEIGHBOURHOODS OF A SUBCLASS OF UNIFORMLY CONVEX FUNCTIONS

T. RAM REDDY AND P. THIRUPATHI REDDY

ABSTRACT. In this paper, we investigate the properties of neighbourhoods of functions for the classes $UCV(\alpha)$ and $Sp(\alpha)$. First we established an inclusion relationship between them and proved a necessary and sufficient condition interms of convolutions for a function f to be in $Sp(\alpha)$. Next we show that the class $Sp(\alpha)$ is closed under convolution with functions f(z) which are convex univalent. The results obtained in this which generalizes the results of Padmanabhan [8] and Ronning [9].

1. INTRODUCTION:

Let A denote the class of functions of the form

(1.1)
$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic in the unit disk $E = \{z: |z| < 1\}$. Further, let S be the subclass of A consisting of those functions that are univalent in E. Let CV and ST denote the subclasses of S consisting of convex and starlike functions respectively.

If $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ and $g(z) = z + \sum_{n=2}^{\infty} b_n z^n$ then the convolution or Hadamard product of f(z) and g(z) denoted by $f^* g$ is defined by $(f*g)(z) = z + \sum_{n=2}^{\infty} a_n b_n z^n$. Clearly $f(z) * \frac{z}{(1-z)^2} = zf'(z)$ and $f(z) * \frac{z}{(1-z)} = f(z)$

Goodman[3,4] defined the following subclasses of CV and ST. **Definition A:** A function f is uniformly convex (Starlike) in E if f is in CV(ST)and has the property that for every circular arc γ contained in E with centre ξ also in E, the arc $f(\gamma)$ is convex (Starlike w.r.t $f(\xi)$).

Goodman [3,4] then gave the following two variable analytic characterizations of these classes, denoted by UCV and UST.

²⁰⁰⁰ Mathematics Subject Classification. 30C45.

Key words and phrases. Neighbourhood, Subordination, Hadamard Product.

Theorem A: A function f of the form (1.1) is in UCV if and only if

(1.2)
$$Re \left\{ 1 + (z - \xi) \; \frac{f''(z)}{f'} \right\} \geq 0, \; (z, \; \xi) \; \in \; EXE$$

and is in UST if any only if

(1.3)
$$Re \left\{ \frac{f(z) - f(\xi)}{(z - \xi) f'(z)} \right\} \ge 0, \ (z, \xi) \in EXE$$

The classical Alexander result that $f \in CV$ if and only if $zf \in ST$ does not hold between the classes UCV and UST. Ronning [7] defined a subclass of starlike functions Sp with the property that a function $f \in UCV$ if and only if $zf \in Sp$. **Definition B:** Let $Sp = \{F \in ST/F(z) = zf'(z), f \in UCV\}$

Ma and Minda [6] and Ronning [10] independently found a more applicable one variable characterization for UCV.

Theorem B: A function f is in UCV if and only if

(1.4)
$$Re\left\{1 + \frac{zf''(z)}{f'(z)}\right\} \geq \left|\frac{zf''(z)}{f'(z)}\right|, \quad z \in E.$$

Ronning [10] proved a one variable characterization for Sp as follows: **Theorem C:** A function f is in Sp if and only if

(1.5)
$$\left|\frac{zf'(z)}{f(z)} - 1\right| \leq Re\left\{\frac{zf'(z)}{f(z)}\right\}, z \in E$$

A function $f \in A$ is uniformly convex of order α for $-1 \le \alpha < 1$ if and only if $1 + \frac{zf''(z)}{f'(z)}$ lies in the parabolic region

(??) $\operatorname{Re} \{\omega - \alpha\} > |\omega - 1|$

In other words, the function f is uniformly convex of order α if

(1.6)
$$1 + \frac{zf''(z)}{f'(z)} \prec 1 + \frac{2(1-\alpha)}{\pi^2} \left[\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right) \right]^2, z \in E$$

where the symbol \prec denotes subordination. This class was introduced by Ronning [9] and it is denoted by $UCV(\alpha)$. The class of all analytic functions $f(z) \in A$ for which $\frac{zf'(z)}{f(z)}$ lies in the parabolic region is denoted by $Sp(\alpha)$ and defined as follows. **Definition C:** A function f(z) is said to be in the class $Sp(\alpha)$ if for all $z \in E$,

(1.7)
$$\left|\frac{zf'(z)}{f(z)} - 1\right| \leq Re\left\{\frac{zf'(z)}{f(z)}\right\} - \alpha, \text{ for } -1 < \alpha < 1.$$

This implies $f \in Sp(\alpha)$ for $z \in E$ if and only if $\frac{zf'(z)}{f(z)}$ lies in the region $\Omega\alpha$ bounded by a parabola with vertex at $(\frac{1+\alpha}{2}, 0)$ and parameterized by

$$\frac{t^2+1-\alpha^2+2 it (1-\alpha)}{2(1-\alpha)}$$
 for any real t.

It is known [9] that the function

(1.8)
$$P_{\alpha}(z) = 1 + \frac{2(1-\alpha)}{\pi^2} \left[\log \frac{1+\sqrt{z}}{1-\sqrt{z}} \right]^2$$

maps the unit disk E on to the parabolic region $\Omega \alpha$ (The branch \sqrt{z} is choosen in such a way that Im $\sqrt{z} \ge 0$). Then from the above definition $f \in A$ is in the class

Such a way that III $\sqrt{z} = 0$, the formula f(z) = 0, Z = 0, is defined by

(1.9)
$$N_{\delta}(f) = \left\{ g(z) = z + \sum_{n=2}^{\infty} b_n z^n : \sum_{n=2}^{\infty} n |a_n - b_n| \le \delta \right\}.$$

Recently Padmanabhan [8] has introduced the neighbourhoods of functions in the calss Sp and studied various properties.

In this paper we studied some related work on the neighbourhood problems for k-uniformly convex functions of Kanas[5]. The work of Ma and Minda [7] generalize many studies on subclasses of starlike and convex functions. we introduce a new class of functions and study the properties of neighbourhoods, of functions in this class which generalizes the recent results of Padmanabhan [8] and Ronning [9].

First let us state lammas which are needed to establish our results in the sequel. **Lemma A** [2]: Let $\beta, \gamma \in C$, let h(z) be analytic, univalent and convex in E with h(0) = 1 and Re $(\beta h(z) + \gamma) > 0, z \in E$ and let $p(z) = 1 + p1 z + \dots z \in E$, then

(1.10)
$$p(z) + \frac{z p'(z)}{\beta p(z) + \gamma} \prec h(z) \Rightarrow p(z) \prec h(z).$$

Lemma B [12]: Let $f(z) = \sum_{n=2}^{\infty} a_n z^n$ and $g(z) = \sum_{n=2}^{\infty} a_n z^n$ be in $ST\left(\frac{1+\alpha}{2}\right)$ denote by $f^* g$ the Hadamard product $(f^* g)(z) = \sum_{n=2}^{\infty} a_n b_n z^n$. Then for any function F(z) analytic in E, we have for $z \in E$ that

$$\frac{f\left(z\right) \,\ast\, g\left(z\right)\ F\left(z\right)}{f\left(z\right) \,\ast\, g\left(z\right)} \,\,\subset\,\, \overline{Co} \,\,\left(F\left(E\right)\right)$$

 \overline{Co} denotes the closed convex hull.

2. Main Results

First let us establish an inclusion relation. **Theorem 2.1:** Let $f \in UCV(\alpha)$. Then $f \in Sp(\alpha)$. **Proof:** Let $p(z) = \frac{zf'(z)}{f(z)}$. Then since $f \in UCV(\alpha)$

$$p(z) + \frac{zp'(z)}{p(z)} = 1 + \frac{zf''(z)}{f'(z)} \subset \Omega_{\alpha}$$

Since $\Omega \alpha$ is a convex damain, an application of Lemma A gives $\frac{zp'(z)}{p(z)} = p(z) \subset$ $\Omega_{\alpha}, z \in E$ which implies that $f \in Sp(\alpha)$.

Now we give a characterization of the class $Sp(\alpha)$ in terms of convolution. **Definition 2.1:** Let $S'_{p}(\alpha)$ be the class of all functions $h\alpha(z)$ in A of the form

$$h_{\alpha}(z) = \frac{2(1-\alpha)}{(1-\alpha)^{2} - t^{2} - 2it(1-\alpha)} \left[\frac{2}{(1-z)^{2}} - \frac{t^{2} + 1 - \alpha^{2} + 2it(1-\alpha)}{2(1-\alpha)} \frac{z}{(1-z)} \right]$$

for $-1 \leq \alpha < 1$ and for all real t.

Theorem 2.2: A function f(z) in A is in $Sp(\alpha)$ if and only if for all z in E ($z \neq 0$) there exists a function $h\alpha(z)$ in $S'_p(\alpha)$ such that $\frac{(f*h_\alpha)(z)}{z} \neq 0$. **Proof:** Let us assume that $\frac{(f*h_\alpha)(z)}{z} \neq 0$, then for all $h\alpha(z) \in S'_p(\alpha)$ and for $z \in E$ ($z \neq 0$). From the definition of $h\alpha(z)$ it follows that

$$\frac{f(z) * h_{\alpha}(z)}{z} = \frac{2(1-\alpha)}{z \left[(1-\alpha)^2 - t^2 - 2it(1-\alpha) \right]} \left[f(z) * \frac{z}{(1-z)^2} - \frac{t^2 + 1 - \alpha^2 + 2it(1-\alpha)}{2(1-\alpha)} f * \frac{z}{1-z} \right]$$
$$= \frac{2(1-\alpha)}{z \left[(1-\alpha)^2 - t^2 - 2it(1-\alpha) \right]} \left[zf'(z) - \frac{t^2 + 1 - \alpha^2 + 2it(1-\alpha)}{2(1-\alpha)} f(z) \right]$$

$$\neq 0.$$

Equivalently $\frac{zf'(z)}{f(z)} \neq \frac{t^2 + 1 - \alpha^2 + 2it(1-\alpha)}{2(1-\alpha)}, t \in \mathbb{R}$. This means that $\frac{zf'(z)}{f(z)}$ lies completely either inside $\Omega \alpha$ or complement of $\Omega \alpha$ for all z in E . At $z = 0, \frac{zf'(z)}{f(z)} = 1 \in \Omega \alpha$, so $\frac{zf'(z)}{f(z)} \subset \Omega \alpha$ which means $f \in Sp(\alpha)$.

Conversely let $f \in Sp(\alpha)$. Hence $\frac{zf'(z)}{f(z)}$ lies with in the parabola with vertex at the point $\left(\frac{1+\alpha}{2}, 0\right)$ and the boundary of this is given by $\frac{t^2+1-\alpha^2+2it(1-\alpha)}{2(1-\alpha)}$ for $t \in R$. So $f \in Sp(\alpha)$ only when

$$\frac{zf'(z)}{f(z)} \neq \frac{t^2 + 1 - \alpha^2 + 2it(1 - \alpha)}{2(1 - \alpha)}$$

Equivalently

$$f(z) * \left[\frac{z}{(1-z)^2} - \frac{t^2 + 1 - \alpha^2 + 2it(1-\alpha)}{2(1-\alpha)} \frac{z}{(1-z)} \right] \neq 0 \text{ for } z \neq 0.$$

Normalizing the function within the brackets we get $\frac{(f * h_{\alpha})(z)}{z} \neq 0$ in E where $h\alpha(z)$ is the function defined in (1.11).

To investigate the δ neighbourhoods of functions belonging to the class $Sp(\alpha)$, we need the following lemmas.

Lemma 2.1: Let $h_{\alpha}(z) = z + \sum_{k=2}^{\infty} c_k z^k \in S'_p(\alpha)$. Then

$$|c_k| \le \frac{2k - (1 + \alpha)}{(1 - \alpha)}, \quad k = 2, 3....$$

Proof: Let $h_{\alpha}(z) \in S'_{p}(\alpha)$. Then for $t \in R$

$$h_{\alpha}(z) = \frac{2(1-\alpha)}{(1-\alpha)^2 - t^2 - 2it(1-\alpha)} \left[\frac{z}{(1-z)^2} - \frac{t^2 + 1 - \alpha^2 + 2it(1-\alpha)}{2(1-\alpha)} \frac{z}{(1-z)} \right]$$

$$= \frac{2(1-\alpha)}{(1-\alpha)^2 - t^2 - 2it(1-\alpha)} \left[\left(z + 2z^2 + \dots \right) - \frac{t^2 + 1 - \alpha^2 + 2it(1-\alpha)}{2(1-\alpha)} \left(z + z^2 + \dots \right) \right]$$
$$= z + \sum_{k=2}^{\infty} c_k z^k$$

Now comparing the coefficients on either side we get

$$c_{k} = \frac{2k(1-\alpha) - t^{2} - 1 + \alpha^{2} - 2it(1-\alpha)}{(1-\alpha)^{2} - t^{2} - 2it(1-\alpha)}$$

After simplication we get

(

$$|c_k| \leq T_k = \frac{2k - (1 + \alpha)}{(1 - \alpha)}, \text{ for } k = 2, 3 \dots$$

Lemma 2.2: For $f \in A$ and or every $\epsilon \in C$ such that $|\epsilon| < \delta$ if $F\epsilon(z) = \frac{f(z) + \varepsilon z}{1 + \varepsilon} \in Sp(\alpha) \text{ then for every } h\alpha(z) \in S'_p(\alpha).$

$$\left|\frac{(f * h_{\alpha})(z)}{z}\right| \ge \delta, \ z \in E.$$

Proof: Let $F\epsilon(z) \in Sp(\alpha)$. Then by Theorem 2.2, $\frac{F_{\varepsilon}(z)*h_{\alpha}(\alpha)}{z} \neq 0$, for all $h\alpha(z)$ $\in S'_p(\alpha)$ and $z \in E$.

Equivalently

$$\frac{(f * h_{\alpha})(z) + \varepsilon z}{(1+\varepsilon) z} \neq 0 \text{ or } \frac{(f * h_{\alpha})(z)}{z} \neq -\varepsilon,$$

that is

$$\left|\frac{\left(f * h_{\alpha}\right)(z)}{z}\right| \geq \delta.$$

Theorem 2.3: Let $f \in A$, $\epsilon \in C$ and for $|\epsilon| < \delta < 1$, if $F\epsilon(z) \in Sp(\alpha)$. Then $N\delta(f) \subset Sp(\alpha)$ for the sequence

$$T = T_k = \frac{2k - (1+\alpha)}{(1+\alpha)}$$

Proof: Let $h\alpha(z) \in S'_p(\alpha)$ and $g(z) = z + \sum_{k=2}^{\infty} b_k z^k$ is in $N\delta(f)$ Then

$$\left|\frac{\left(g * h_{\alpha}\right)(z)}{z}\right| = \left|\frac{\left(f * h_{\alpha}\right)(z)}{z} + \frac{\left(\left(g - f\right) * h_{\alpha}\right)(z)}{z}\right|$$
$$\geq \left|\frac{\left(f * h_{\alpha}\right)(z)}{z} - \frac{\left(g - f\right)(z) * h_{\alpha}(z)}{z}\right|$$
$$\geq \delta - \left|\sum_{k=2}^{\infty} \frac{\left(b_{k} - a_{k}\right)c_{k}z^{k}}{z}\right|, \text{ by lemma 2.2.}$$

We

>>

$$\left|\frac{\left(g \ast h_{\alpha}\right)(z)}{z}\right| \ge \delta - |z| \sum_{k=2}^{\infty} |c_{k}| |b_{k} - a_{k}|$$

$$\delta - \sum_{k=2}^{\infty} T_{k} |b_{k} - a_{k}|, \text{ by lemma } 2.1$$

$$\delta - \delta = 0.$$

Thus $\left| \frac{(g * h_{\alpha})(z)}{z} \right|$ $\neq 0$ in E for all $h\alpha \in S'_{p}(\alpha)$ and then by Theorem 2.2, we have $g \in Sp(\alpha)$. Hence we have $N\delta(f) \subset Sp(\alpha)$.

Next we show that the class $Sp(\alpha)$ is closed under convolution with functions f which are convex univalent in E.

106

Theorem 2.4: Let $f \in CV$ the class of convex functions and $q(z) \in Sp(\alpha)$. Then $(f * g) (z) \in Sp(\alpha)$.

Proof: The proof of Theorem is similar result of T.N.Shanmugan [13], hence we omitted.

Theorem 2.5: Let $f \in ST\left(\frac{\alpha+1}{2}\right)$, $g \in Sp(\alpha)$. Then $(f * g)(z) \in Sp(\alpha)$. **Proof:** Let $g \in Sp(\alpha)$. Assume $f \in ST\left(\frac{\alpha+1}{2}\right)$ and $\frac{zg'(z)}{g(z)}$ play in the role of F in Lemma B, and let $\Omega\alpha = \{|\omega-1| \text{Re } (\omega-\alpha)\}$. Using the Lemma B, we get for $z \in E$ that

 $\frac{z(f \ast g)'(z)}{(f \ast g)(z)} = \frac{f(z) \ast zg'(z)}{(f \ast g)(z)} = \frac{f(z) \ast g(z) \frac{zg'(z)}{g(z)}}{(f \ast g)(z)} \subset \overline{Co} \frac{zg'(z)}{g(z)} \subset \Omega_{\alpha}.$ Since $\Omega \alpha$ is convex and $g \in Sp(\alpha)$. This proves that $(f \ast g) (z) \in Sp(\alpha)$.

Setting $\alpha = 0$, the following result of Ronning [9] follows.

Corollary 2.1: Let $f \in ST(1/2)$, $g \in Sp(0) = Sp$, then $(f * g)(z) \in Sp$. **Theorem 2.6:** Let $g \in UCV(\alpha)$ and $h(z) \in ST(\frac{\alpha+1}{2})$. Then $(g * h)(z) \in$

 $UCV(\alpha).$

Proof: If $q \in UCV(\alpha)$, then $z q'(z) \in Sp(\alpha)$. By Theorem 2.4 it follows that h^* $zq' \in Sp(\alpha)$. So

 $z(h * g)\prime(z) = h(z) * zg\prime(z) \in Sp(\alpha).$

This proves that $(h * g) (z) \in UCV (\alpha)$.

Setting $\alpha = 0$, the following result of Padmanabhan [8] follows. **Corollary 2.2:** Let $g \in UCV$ and $h(z) \in ST(1/2)$. Then $(g * h)(z) \in UCV(\alpha)$. **Theorem 2.7 :** Let $f \in UCV(\alpha)$. Then $\frac{f(z) + \varepsilon z}{1 + \varepsilon} \in S_p(\alpha)$ for $|\varepsilon| <$. **Proof:** Let $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ then

$$\frac{f(z) + \varepsilon z}{1 + \varepsilon} = \frac{z (1 + \varepsilon) + \sum_{n=2}^{\infty} a_n z^n}{1 + \varepsilon} = \frac{f(z) * [z (1 + \varepsilon) + \sum_{n=2}^{\infty} z^n]}{1 + \varepsilon}$$
$$= f(z) * \frac{\left(z - \frac{\varepsilon}{1 + \varepsilon} z^2\right)}{(1 - z)} = f(z) * h(z)$$

where $h(z) = \frac{\left[z - \frac{\varepsilon}{1+\varepsilon} z^2\right]}{(1-z)}$ Now

$$\frac{zh'(z)}{h(z)} = \frac{\left[z - \frac{2\varepsilon}{1+\varepsilon}z^2\right]}{\left[z - \frac{\varepsilon}{1+\varepsilon}z^2\right]} + \frac{z}{1-z} = \frac{-\rho z}{1-\rho z} + \frac{1}{1-z}$$

where $\rho = \frac{\varepsilon}{1+\varepsilon}$. Hence $|\rho| < \frac{\varepsilon}{1-|\varepsilon|} < 1/3$ gives $|\varepsilon| < 1/4$ Thus

$$Re\left\{\frac{zh'(z)}{h(z)}\right\} \geq \frac{1-2|\rho| |z| - |\rho| |z|^{2}}{(1-|\rho| |z|) (1+|z|)} > 0$$

if $|\rho|(|z|^2 + 2|z|) - 1 < 0$. This inequality holds for all $\rho < 1/3$ and |z| < 1, which is true for $|\varepsilon| < 1/4$. Therefore h(z) is starlike in the unit disk and so $\int_0^z \frac{h(t)}{t} dt$ is convex.

But $h(z) * \log\left(\frac{1}{1-z}\right) = \int_0^z \frac{h(t)}{t} dt$ and so $h(z) * \log\left(\frac{1}{1-z}\right)$ is convex in E $(f^* h) (z) = (h^* f) (z) = h(z)^* \left[zf'(z) * \log \left(\frac{1}{1-z}\right) \right]$

 $= zf'(z) * \left[h(z) * \log\left(\frac{1}{1-z}\right)\right]$ $f(z) \in UCV(\alpha) \text{ implies } zf'(z) \in Sp(\alpha) \text{ and } h(z) * \log\left(\frac{1}{1-z}\right) \in CV. \text{ Now}$ by Theorem 2.4 $h(z) * \left[zf'(z) * \log\left(\frac{1}{1-z}\right)\right]$ is in $Sp(\alpha)$. Thus $(f*h)(z) = \frac{f(z) + \varepsilon z}{1+\varepsilon} \in S_p(\alpha)$ for $|\varepsilon| < 1/4$. **Corollary 2. 3:** If $f \in UCV(\alpha)$, then $f \in Sp(\alpha)$. **Proof:** Choosing $\varepsilon = 0$ in the Theorem 2.7 we get the result. **Corollary 2. 4:** If $f \in UCV(\alpha)$ then $\int_0^z \frac{f(t)}{t} dt \in UCV(\alpha)$. **Proof:** $f \in UCV(\alpha)$ implies $f \in Sp(\alpha)$ by corollary 2.3, so we can write f(z) = zg'(z) for some $g \in UCV(\alpha)$ and $g'(z) = \frac{f(z)}{z}$ gives $g(z) = \int_0^z \frac{f(t)}{t} dt \in UCV(\alpha)$.

Acknowledgements The authors would like to thank the referee of the paper for his helpful comments.

References:

1. R.M.Ali and V.Ravichandran, Uniformly Convex and Uniformly Starlike functions Mathematics Newspaper, Vol. No 1, (2011),16-30.

2. P. Eenigenburg, S.S. Miller, P.T. Mocanu and M.O. Reade, On a Briot – Boquet Differential Subardination, General Inequalities 3, Birkhauser Verlag-Basel, (1983) 339-348.

3. A.W. Goodman. On uniformly convex functions. Ann.Polon. Math 56(1991), 87-92.

4. A.W. Goodman, On uniformly starlike functions, J. Math. Anal. Appl.155(1991), 364-370.

5. S.Kanas, Staility of convolution and dual sets for the class k- uniformly convex and k- starlike functions functions, Zeszyty Nauk.Politech. Rzeszowskiej Mat., (??) (1998) 51-64.

6. W.C. Ma and D. Minda, Uniformly convex functions, Ann. Polon, Math.

57(1992), 165 - 175.

7. W.C.Ma and D.Minda, A unified treatment of some special classes of univalent functions, in Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157-169, Conf.Proc.Lecture Notes Anal., I Int.Press, Combridgema.MA.

8. K.S. Padmanabhan, On uniformly convex functions in the unit disk. J. Analysis, 2 (1994), 87-96.

9. F. Ronning, on starlike functions associated with parabolic regions, Ann. Univ. Mariae Curie-Sklodowska. Sect. A, 45 (1991), 117-122.

10. F. Ronning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118 No.1 (1993), 189-196.

11. St. Ruscheweyh, Neighbourhoods of univalent functions, Proc. Amer Math. Soc. 81 (1981), 521-527.

12. St. Ruscheweyh, Convolutions in Geometric functions theory, Sem. Math. Sup. Vol.83, Presses Univ. de Montreal, placeCityMontreal 1982.

13. T.N.Shanmugam, Convolution and Differential subordination, Internat.J.Math & Math. Sci, 12 (??) (1989), 333-340.

E-mail address: reddypt2@yahoo.com

DEPARTMENT OF MATHEMATICS, KAKATIYA UNIVERSITY, WARANGAL - 506 009, INDIA.