
Konuralp Journal of Mathematics
Volume 2 No. 2 pp. 109 –119 (2014) c©KJM

KOÇAK’S ACCELERATION METHOD SMOOTHLY GEARS UP

ITERATIVE SOLVERS

MEHMET ÇETIN KOÇAK

Abstract. Consider a scalar repetitive scheme symbolically represented by
xk+1 = g(xk) where k is the iteration count. Let z and n respectively de-

note the target fixed-point and convergence order of g. Koçak’s method gK
accelerates g by actually solving a superior secondary solver obtained from a

fixed-point preserving transformation

gK = x + G(g − x) = (g −mx)/(1 −m),m = 1 − 1/G,G = 1/(1 −m)
where G is a gain and m is the slope of a straight line joining g and g = x

line. The method uses derivatives of g in local adjustment of m so as to push

gK towards the ideal solver g = z by annihilating derivatives of gK . If n is 1,
then gK is of third order. If n exceeds 1, then gK is of (n+1)th order. Variable

m improves remote behaviour also. The benefits of gK amply compensate the

cost of extra derivatives. A first-order solver with highly oscillatory divergence
shows that the resultant third-order gK renders a fast and smooth flight from

a remote point to z. Newton’s second-order, Chebyshev’s third-order, and

Ostrowski’s fourth-order solvers all spin off in contrast

1. INTRODUCTION

A nonlinear equation

(1.1) x = g(x)

can be solved by a repetitive scheme xk+1 = g(xk) where k is the iteration count.
If z satisfies (1.1), then z is called a fixed-point of g. (In this text, functions are
usually written without an argument list when it contains x only.) To find a z
is to locate an intersection of the curve g = g(x) with the straight line g = x.
Each scheme starts form one or more points supposedly in the vicinity of z and
usually ends when the absolute difference between successive iterates falls below a
pre-specified tolerance.

Date: January 1, 2013 and, in revised form, February 2, 2013.

2010 Mathematics Subject Classification. 65B99, 65H05.
Key words and phrases. Non-linear equations; Iterative methods; Newton’s method; Os-

trowski’s method; Convergence acceleration.

109

110 MEHMET ÇETIN KOÇAK

On a plot of x versus g, the iteration process follows a sequence of joined lines
which are vertical and horizontal in turn; the first is a vertical line originating from
the x-axis and ending on g, the second is a horizontal line extending to g = x, then
comes a vertical line to g again, and so on. The ”ideal” solver is the horizontal line
gid which needs just one trial from any starting point. Albeit, z is unavailable until
the end! gid can be harnessed however in post priori analysis, research, comparative
studies, and troubleshooting.

Let εk = xk− z. If there exist a real number n and nonzero constant c such that

lim
k→+∞

|εk+1|
|εk|n

= c,

then n and c are respectively called the convergence order and the asymptotic error
constant. According to Traub [9], if n is integral, then

c = lim
k→+∞

εk+1

εnk
=
g(n)(z)

n!
.

Linear or first order convergence (n = 1) means that g′(z) 6= 0. Quadratic con-
vergence (n = 2) means that g′(z) = 0 but g′′(z) 6= 0. Generalizing, an integral
convergence order n > 1 means that g′(z) = g′′(z) = . . . = g(n−1)(z) = 0 but
g(n)(z) 6= 0 and that εk+1 is proportional to εnk in the vicinity of z. (Thus, nth
order solvers are a subset of (n− 1)th order solvers.)

Many techniques reuse old information and/or harness new information at more
than one point. In Traub’s methodology [9], methods with memory are those which
utilize past values and multipoint solvers are those which harness new information
at a number of points. Furthermore, g ∈ In indicates that g belongs to the class of
solvers of order n. The condition for g to converge is that |g′| < 1 in the vicinity of
z [8].

1.1. A selection of iterative techniques. In numerous cases, the iterative solver
g actually comprises a long chain of equations involving many intermediate vari-
ables. If x = g(x) is a rearrangement of another equation f(x) = 0 , then the
fixed-points of g are identical with the zeroes (roots) of f . Sometimes g comes from
g = x− fu where u is finite. Newton’s popular second-order method [2,4]

gN = f − f

f ′
is an example of this type where u equals 1/f ′. (A subscript starting with a capital
letter is assigned in this paper to a solver g, convergence order n, and asymptotic
error c so as to indicate the person to whom the pertinent method is attributed.).
gN is a piecewise linearization of f since it extends the current tangent to in-

tersect the x-axis and suggests this value as the next approximation to z. (gN
is also called the variable tangent method.) As shown by Traub[9], nN = 2 and
cN = f ′′(z)/(2f ′(z)) for simple roots. Repetition of z demotes convergence of gN
from quadratic to superlinear or geometrical and slows down the iteration process.
If r is the multiplicity of z, then g′(z) = (r−1)/r 6= 0 and gNr = x− rf/f ′ restores
second order [4]. Direct differentiation of gN gives g′N = ff ′′/f ′2 = L where L is
called the logarithmic degree of convexity. So, the convergence condition of gN is
that |g′N | = |L| < 1 in the vicinity of z.

KOÇAK’S ACCELERATION METHOD SMOOTHLY GEARS UP ITERATIVE SOLVERS 111

1.1.1. Secondary solvers generated by partial substitution. Partial substitution (gps)
employs a variable gain G to amplify the correction to x, that is r

gps = x+G(g − x)

Applied to gN , partial substitution gives gNps = x − Gf/f ′. Note that gNr

defined above is a gNps with a fixed gain G = r. Besides gN , this article uses three
gNps methods for comparison with newly geared-up gK . They are Chebyshev’s
(gC ∈ I3), Halley’s (gH ∈ I3) and Ostrowski’s (gH ∈ I4) solvers whose respective
formulas are as follows:

gC = x−G f

f ′
, G = 1 +

L

2
,

gH = x−G f

f ′
= x− f f ′

f ′2 − 0.5ff ′′
, G =

(
1− L

2

)−1

,

gO = x−G f

f ′
, G = 1 +

f(gN)

f − 2f(gN)
=

f − f(gN)

f − 2f(gN)
.

1.1.2. Secondary solvers generated by piecewise linearization. Let K(x,g) be a point
on g and let M(p,p) be an arbitrary point on g = x . The slope m of the straight line
KM is given bym = (g−p)/(x−p). Conversely, given the slopem = (g−p)/(x−p) 6=
1, a straight line through K intersects the line g = x at M(p,p). Rearrangement
renders p = (g − mx)/(1 − m). A specified solver gpl = p may be regarded as a
piecewise linearization of g if p is used to approximate z. Hence,

(1.2) gpl =
g −mx
1−m

.

It is easy to show [5-7] that gpl and gps are uniquely linked. Indeed,

gpl = (g −mx)/(1−m) ≡ x+G(g − x) ≡ gps

if m = 1− 1/G or G = 1/(1−m).
Regardless of the multiplicity of z, the ideal slope for linearization of g is mid =

(g−z)/(x−z). If the chosen slope coincides with mid, then gpl = gid = z and M falls
upon Z(z,z). Two well-known one-point accelerators with memory, namely Aitken’s
[1] and Wegstein’s [3] methods, are examples of gpl. Wegstein’s approximating lines
are secants of g going through a previous iterate (xi,gi) and the current iterate
(xk,gk), that is

m =
gk − gi
xk − xi

, gW =
gkxi − gixk

xi − xk − (gi − gk))
.

gW is calculable first time at the end of the second iteration and is updated at each
iteration afterwards. Aitken’s technique similarly uses secants but its updates are
every other iteration. Since i = k − 1 and xk = gk−1 here,

gA =
gkxk−1 − g2

k−1

xk−1 − xk − (gk−1 − gk)
= gk −

(gk − gk−1)2

xk−1 − xk − (gk−1 − gk)
.

112 MEHMET ÇETIN KOÇAK

2. KOÇAK’S ACCELERATOR

Koçak’s method accelerates a given g by actually solving a superior secondary
solver gK generated through the transformation

(2.1) gK = x+G(g − x) =
g −mx
1−m

, m = 1− 1

G
, G =

1

1−m
, m 6= 1

where G is a gain and m is a slope. Obviously, gK is piecewise linearization and
partial substitution, that is gK ≡ gpl ≡ gps. The transformation is the ultimate
result of three successive operations on the equation x = g(x), namely subtraction of
the productmx from both sides, collecting terms, and rearrangement. Symbolically:

x−mx = g −mx =⇒ (1−m)x = g −mx =⇒ x = gK = (g −mx)/(1−m)

The transformation obviously preserves fixed-points, that is gK(z) = g(z) = z.
Direct comparison of (2.1) and (1.2) shows that the varying slope is given by m =
(g − gK)/(x− gK).

Solver comparisons customarily focus on performance in the vicinity of z, paying
attention to the number of function evaluations, the number of derivative calcula-
tions, convergence order, and asymptotic error constants. As previously published
[5-7], if m is adjusted such that

m(i−1)(z) = g(i)(z)/i, i = 1, 2, . . . , nK − 1, nK ≥ 2, m(0)(z) = m(z) = g′(z),
then

g
(i)
K (z) = 0, i = 1, 2, . . . , nK − 1

and gK achieves an integral convergence order nK ≥ 2.
It is well known that, irrespective of its convergence order, an iterative method

is liable to unsatisfactory performance (because of oscillation or slowness) and even
to total failure if the starting point is not near enough the target z. The aim of
the present phase was to improve remote behavior of gK by successively zeroing as
many of its derivatives (gK ′, gK ′′,. . .) as possible. The action forces gK towards
the ideal curve gid = z. The case gK ′ = gK ′′ = 0 amply illustrates the approach.

Let h = gK − x . Taylor’s expansion of m around x is

m(gK) = m(x+ h) = m(x) +m′h+
m′′h2

2!
+
m′′′h3

3!
+ ...

Truncating after the third term results in

mh = m+m′h+
m′′h2

2!
w m(gK).

In order to attain gK ′ = gK ′′ = 0, the following conditions must be satisfied:

(2.2) m′ = −(m− 1)(m− g′)
g − x

,

(2.3) m′′ = 2(1−m)m′(m− 1− g′) +m′(g − x)

(1−m)2
− (g′′ − 2m′)(1−m)

g − x
.

KOÇAK’S ACCELERATION METHOD SMOOTHLY GEARS UP ITERATIVE SOLVERS 113

Suppose the set {g, g′, g′′} is available at x. Then {gK , h,m′,m′′} and hence mh

depend on m alone. Recall that the minimal condition for nK ≥ 2 is that lim
x→z

m =

g′(z). The problem now is to tune m so as to annihilate a discrepancy function
fm(m) = mh(m) − g′(z). The target is m w mid which makes gK w z, mh w
m(gK) w m(z) = g′(z), and hence fm(m) w 0. It seems convenient to set up
an inner loop to receive {g, g′, g′′} at x, iteratively solve fm for m (subject to a
tolerance), and deliver the pertinent gK to the outer loop as the new x value to
test.

It is easy to see that m = g′, m = g′(z) , or a weighted average

(2.4) m = wg′+ (1− w)g′(z) = g′(z) + w(g′ − g′(z))

fulfills the minimal requirement for nK ≥ 2 since lim
x→z

m = g′(z). The scheme can

be modified in this case such that having received {g, g′, g′′,g′′′} at x the inner loop
solves a corresponding discrepancy function fw(w) = wh(w)−wlim for w by locally
adjusting w subject to a specific end-point limit wlim and return the pertinent gK .
The value of wlim depends on n as explained later. The extra derivative g′′′ enters
the scene because differentiating (2.4) with respect to x renders

w′ = m′ − wg′′
g′ − g′(z)

w′′ = m′′ − (2w′g′′+ wg′′′)
g′ − g′(z)

.

Equations (2.2) and (2.3) supply m′ and m′′ as before. From truncated Taylor’s
expansion again,

wh = w + w′h+
w′′h2

2!
.

Variable w is the distinguishing feature of the third version of gK . The forerunner
[5] employs constant w = 1/2 irrespective of n whereas the second [6] selects a
constant w appropriate to n, that is it couples w to n. These constant w values
which are coupled to n in the second version are now wlim in the third version and
lim
x→z

w = wlim. This means that both nK and cK remain unchanged in going from

the second version to the third. Three different situations exist:

a): If n = 1, then wlim = 1/2 is used with the result that nK = 3, cK =
g′′′K(z)/3!, and g′′′K(z) = −0.5g′′′(z)/(1− g′(z)).

b): If n = 2, then wlim = 1/2 is employed with the result that nK = 3,
cK = g′′′K(z)/3!, and g′′′K(z) = −0.5g′′′(z).

c): If n > 2 , then wlim = 1/n is harnessed which renders nK = n + 1,

cK = g
(n+1)
K (z)/(n+ 1)!, and g

(n+1)
K (z) = −g(n+1)(z)/n.

(Interesting results accrue [7] from the solution of g′K = 0 assuming that w′(g′ −
g′(z))(g − x) w 0 . The new approach described above is free from this restricting
assumption. There is more information in the appendix.)

2.1. The algorithm. The formulation hinged to w has been implemented. After
many revisions and runs, the final version of the accelerator is now housed in a
function that supervises the whole process once triggered by a call giving necessary

114 MEHMET ÇETIN KOÇAK

initial information, namely, n, g′(z), number of g derivatives, starting point, conver-
gence tolerance, iteration limit, and name of the function to supply {g, g′, g′′,g′′′}at
x. The supervisor function has two loops one inside the other. The outer loop is
started after setting wlim according to n. It sets w = wlim, gets {g, g′, g′′,g′′′}from
the named user function and begins the inner loop which employs gN to solve
fw(w) = 0 for w thereby fixing the pertinent m and gK . This gK is then used as x
for the next outer iteration.

The inner loop embeds an auxiliary function that takes {w, x,g, g′, g′′,g′′′} and
calculates {wh, gK}as follows. First, it obtains m from (2.4) and gK from (2.1). It
then accrues, m′,w′,m′′,w′′, and wh. If the returned wh exceeds 1.5 times wlim,
then the loop halves w and tries again. Otherwise, it checks |fw|. If this is suf-
ficiently small, then the current w and the resultant gK are accepted and the in-
ner loop is terminated. If not, then w is updated for the next iteration using
w = w − fw(w)/fw′(w) in accordance with gN formulation. The derivative fw′(w)
is calculated numerically which means an extra fw(w) per iteration here.

2.2. Links to other solvers. The accelerator naturally links to other solvers for
it is both gps and gpl. If w = 1, then m = g′ and the application [5] is equivalent
to utilizing gN to solve a secondary function g − x = 0. Indeed,

gN = x− g − x
g′ − 1

=
g′x− x+ g − x

g′ − 1
=
g − g′x
1− g′

=
g −mx
1−m

= gK , m = g′

In this case, nK = nN = 2. Piecewise linearization techniques gA and gW are
in fact a subclass of this case where the slope of a secant approximates g′. Alas,
their popular implementations nullify possible beneficial contribution of g′(z). Since
secants virtually tend to the tangent as x goes to z, it can be asserted that nA =
nW = nN = 2 (provided that z is not repeated). The application of gK converts [5]
gN to gH if w = 1/2 . With variable w tending to wlim = 1/2, the result should
be a smoother gH .

2.3. A highly oscillatory and divergent first-order test case. This bench-
mark is in fact a member of a difficult class of problems keyed to N . Let N = 7 and
s = 10N . Suppose that g = s/xN−1 is to be harnessed for the iterative solution of
f = xN − s. For this class, g′ = −(N − 1)s/xN , g′(z) = −(N − 1), g′′ = −Ng′/x
, and g′′′ = N(N + 1)g′/x2. The new gK with variable w will be applied to accel-
erate the process. The performance of gK will be compared with those of gN ∈ I2,
gC ∈ I3, gH ∈ I3, and gO ∈ I4. (Remember that Chebyshev’s, Halley’s and Os-
trowski’s solvers are partial substitution variants of gN .) The target fixed-point is
z = 10, of course.

3. Results and discussion

Table 1 depicts the test results using x1 = 2 as starting point. Note that wh1 =
w + w′h and wh2 = w + w′h + w′′h2/2!. The use of wh = wh2 limits the extra
information needed to {g′′,g′′′}. (As can be expected, wh2 is better to use than
wh1.) It is obvious that gK with variable w superbly pilots the iteration process;
the flight from a remote point to z is so fast and smooth despite the fact that g is
a first-order solver with highly oscillatory divergence! Consider the first iteration
now. New gK accrues its largest correction here taking x from 2 to 7.950162903588.
Notice that there are 4 internal iterations where w respectively takes the values

KOÇAK’S ACCELERATION METHOD SMOOTHLY GEARS UP ITERATIVE SOLVERS 115

0.5, 0.25, 0.125, 0.056 compared with the ideal wid = 0.041652. (w is halved twice
before applying gN .) In contrast, the solvers {g, gN , gC , gO} all spin off at x = 2.
Only gH takes a small step in the right direction. (Note the previous two versions
use w = 1/2 when n = 1 and with this class of problems this is equivalent to
harnessing gH .) This proves the immense improvement of the third version over
its predecessors. gK continues to lead the other contestants in the second iteration,
taking x to 10.003627135093 which is very close to the target. Not surprisingly,
close to the finish gO ∈ I4 overtakes gK ∈ I3 !

Without doubt, gK with variable w amply compensates the extra cost of {g′′, g′′′}.
In fact, its contribution is invaluable since it converts a divergent solver to a flyer.
Needless to say, Koçak’s acceleration method is also an important tool to analyze
scalar iterative processes.

In summary, w reaches wlim as solely determined by n. Presently, gK needs
{g,g′,g′′,g′′′} and n. If preferred, gK ′ may be estimated numerically at the expense
of an extra g per iteration [5]. Alternatively [5], g′K may be replaced by the slope
of a secant when k ≥ 2. Note that this option envelops previously introduced
piecewise linearization techniques with memory, namely gA and gW . The original
formulations of these forego the beneficial contribution of g′(z) since they harness
w = 1 . However, hinging w to n as described above should improve both of them.
The requirement of g′(z) is a handicap only when n = 1 for g′(z) = 0 when n ≥ 2.

Table 1.gK provides a fast and smooth flight to z from a point where others fail.
k 1 2 3 4
x 2.000000000000 7.950162903588 10.003627135093 10.000000001908
g 156250 39.604436076333 9.978264790570 9.999999988554
gN 22323 12.472201928266 10.000003943018 10.000000000000
gC -747327804 4.755817803051 10.000000006190 10.000000000000
gH 2.666646755895 9.621034770843 10.000000001908 10.000000000000
gO 11162 10.431874480623 10.000000000002 10.000000000000
wid 0.041652 0.353391 0.500242 0.000000

Inner loop iterations
1st w 0.500 0.500 0.500 0.500
wh1 1.167 0.920 0.499 0.500
wh2 1.833 1.341 0.499 0.500
gK 2.666646755895 9.621034770843 10.000000001908 10.000000000000

2nd w 0.250 0.250
wh1 0.667 0.172
wh2 1.083 -0.269
gK 3.333253692267 10.390290953486

3rd w 0.125 0.339
wh1 0.417 0.460
wh2 0.708 0.408
gK 4.666348122867 10.047938453298

4th w 0.056 0.352
wh1 0.278 0.501
wh2 0.498 0.499
gK 7.950162903588 10.003627135093

116 MEHMET ÇETIN KOÇAK

4. Conclusions

Old gK needs g, g′, g′(z) and n. The previous two versions use constant w
throughout. The forerunner gK sets w to 1/2 for any g. The second version
couples w to the convergence order n. If n = 1, then w = 1/2 is used and gK is
of third order. If n > 1, then w = 1/n is harnessed and gK is of (n + 1)th order.
The notion in the third version is to get additional higher derivatives {g′′,g′′′,...} at
each step and deploy them within an embedded loop to fix {w,w′,w′′,...} at x such
that {gK ′, gK ′′, ...} are zero and the projected w at x = gK tends to its (constant)
value in the second version. This action forces gK towards the ideal solver g = z .
The resultant gK is of the same order as in the second version but the move to z is
now a fast and smooth flight even from a remote starting point where other solvers
fail.

A highly oscillatory and divergent first-order case demonstrated the super per-
formance of gKwith variable w. The rewards of utilizing a variable w amply com-
pensate the cost of the extra derivative information. It seems sufficient to get {g′′,
g′′′} only, iteratively determine the appropriate set {w,w′,w′′} at x which zeroes
gK ′ and gK ′′ simultaneously and projects w to its expected limit at gK .

Koçak’s accelerator gK has been upgraded with great success; it is now faster,
smoother, and more robust. As implemented, gK is a powerful one-point solver
without memory. Ramifications are possible. For instance, just two iterations with
gK may be sufficient to reach a safe point from which other solvers may take over. If
higher derivatives are difficult or expensive to calculate, then they may be replaced
by finite difference formulae leading to one-point solvers with memory. Extension
to multivariable solvers is another opening to investigate in the future. It is clear
that Koçak’s method provides a super tool for numerical analysis.

References

[1] Atkinson, K.E., An introduction to numerical analysis, John Wiley and Sons, New York,
1978.

[2] Fausette, L.V. Numerical methods: algorithms and applications, Prentice-Hall, New Jersey,

2003.
[3] Franks, R.G.E., Modeling and simulation in chemical engineering, John Wiley Interscience,

New York, 1972.
[4] Fröberg, C-E., Introduction to numerical analysis, (Second ed.) Addison-Wesley Publishing

Co., Reading, 1972.

[5] Koçak, M.Ç., Simple geometry facilitates iterative solution of a nonlinear equation via a
special transformation to accelerate convergence to third order, The Proceedings of the Twelfth

International Congress on Computational and Applied Mathematics (ICCAM2006), 10-14 July

2006, Leuven, Belgium. Goovaerts, M.J., Vandewalle, S., Van Daele, M., Wuytack, L. (eds) J.
Comput. Appl. Math. Vol:218, (2008),350-363.

[6] Koçak, M.Ç., Acceleration of iterative methods, in Reports of the Third Congress of the World

Mathematical Society of Turkic Countries, Almaty, June 30-July 4, 2009, Kazakhstan (B.T.
Zhumagulov, Ed.), ISBN 978-601-240-063-2 (2009)

[7] Koçak, M.Ç., Second derivative of an iterative solver boosts its acceleration by Koçak’s method,

AMC, Vol: 218, No.3 (2011), 893-898.
[8] Quarteroni, A.F. , Sacco, R., Saleri, F., Numerical mathematics, Springer-Verlag, New York,

2000.
[9] Traub, J.F., Iterative methods for solution of equations, Prentice-Hall, Englewood Cliffs, NJ,

1964.

5. Appendix

KOÇAK’S ACCELERATION METHOD SMOOTHLY GEARS UP ITERATIVE SOLVERS 117

Koçak’s acceleration method relies on the fixed-point preserving transformation

gK = gps = x+G(g− x) = (g−mx)/(1−m) = gpl, m = 1− 1/G, G = 1/(1−m)

where G is a gain and m is the slope of a straight line joining g and g = x line.
Consider the link between gid = z and gK . Regardless of the multiplicity of z [5],
the ideal slope for linearization at the kth iteration is mid = (gk − z)/(xk − z) =
εk+1/εk where εk = xk − z. On the other hand, according to the mean value
theorem for derivatives [5],

mid =
g − z
x− z

=
g − g (z)

x− z
= g′ (ξ) , ξ ∈ (x, z)

Note that this does not necessarily mean that g′(ξ) ∈ (g′(x), g′(z)).
As previously published [5-7], if m is adjusted such that

m(i−1) (z) = g(i) (z) /i, i = 1, 2, ...nK−1 , nK ≥ 2, m(0) (z) = m (z) = g
′

(z) ,

then g
(i)
K (z) = 0, i = 1, 2, ...nK − 1 and gK achieves an integral convergence order

nK ≥ 2. It is easy to see that a weighted average m = wg′+ (1−w)g′(z) = g′(z) +
w(g′ − g′(z)) fulfills the minimal requirement for nK ≥ 2, that is limx→zm = g′(z)
. In this case, symbolic computations show that

(5.1) mid −m =
∑
i

(
1

(i+ 1)!
− w

i!

)
g(i+1) (z) εik.

Suppose that n = 1 . The use of w = 1/2 makes m = (g′ + g′(z)), annihilates the
coefficient in the first summand here, and leads to the results

nK = 3, cK =
g′′′K (z)

3!
, g′′′K (z) = −0.5

g′′′ (z)

1− g′ (z)
The improvement is remarkable since the convergence order is raised from n = 1
to nK = 3. Amelioration is even better if g′(z) < 0 or g′(z) > 2 .

If n = 2 , then g′(z) = 0 and so w = 1/2 renders

nK = 3, cK =
g′′′K (z)

3!
, g′′′K (z) = −0.5g′′′ (z) .

If n = 3, then g′′(z) = 0 and the first summand above is already zero and the
second summand can be annihilated by choosing to employ w = 1/3 which makes
nK = 4 . Similar reasoning leads to the deduction that if n ≥ 2 , then w = 1/n
makes nK = n+ 1 . In fact, symbolic computations reveal [6] that if n ≥ 2, then

g
(i)
K (z) = g(i) (z) (1− wi) , i = 3, 4, ...

This equation not only corroborates that w = 1/2 gives a gK ∈ I3 when n was 1 or
2, but also shows if w = 1/2 is used when n > 2, then

(5.2) nK = n, g
(n)
K (z) = (1− n

2
) g(n) (z) , cK =

g
(n)
K (z)

n!
= (1− n

2
) c.

So, it is unwise to harness w = 1/2 when n > 3. If w = 1/n instead of w = 1/2,
then

(5.3) nK = n+ 1, cK =
g

(n+1
K (z)

(n+ 1)!
, g

(n+1)
K (z) = −g

(n+1)(z)

n!
.

118 MEHMET ÇETIN KOÇAK

Clearly, (5.3) is better than (5.2) when n > 3 since it increases nK by 1 and greatly
diminishes cK .

The forerunner of gK [5] employs constant w = 1/2 irrespective of n. The second
version is identical with the first when n was 1 or 2. They differ when n > 2 since the
second version begins to employ w = 1/n (instead of w = 1/2) thereby improving
both nK and cK . Variable w is the distinguishing feature of the third version of
gK . It locally tunes w so as to annihilate derivatives of gK subject to the condition
that w tend to its value in the second version as x approaches z. This means that
the remote behavior is greatly improved but both nK and cK remain unchanged.

An ideal w, symbolized by wid, annihilates the sum on the right-hand side of
(5.1) and renders m = mid. The definition of mid directly leads to wid = (mid −
g′ (z) /(g′ − g′ (z)). Therefore, with the help of Hospital’s rule [6],

wlim = lim
x→z

wid =

{
1/2, n = 1
1/n, n > 1

This fact can be coupled to a simple problem with a known z to estimate integer
convergence orders if n ≥ 2 . In the neighborhood of z:

n =
1

wlim
, wlim ≈ mid − g′ (z)

g′ − g′ (z)
, mid =

g − z
x− z

.

6. Abbreviations

KOÇAK’S ACCELERATION METHOD SMOOTHLY GEARS UP ITERATIVE SOLVERS 119

c Asymptotic error constant
cK Asymptotic error constant of Koçak’s solver
f Nonlinear function to be solved
fw Discrepancy function, fw = wz − wlim

g Nonlinear solver
gA Aitken’s solver (accelerator)
gid Ideal solver, gid = z
gC Chebyshev’s third-order solver
gH Halley’s third-order solver
gK Koçak’s solver
gN Newton’s solver
gNps Newton’s solver with partial substitution
gNr Newton’s solver for repeated roots
gO Ostrowski’s fourth-order solver
gpl Piecewise linearization
gps Partial substitution
gW Wegstein’s solver (accelerator)
k iteration counter
L Logarithmic degree of convexity, L = ff ′′/f ′2

m Linearization slope
mid Ideal linearization slope
n Convergence order
nK Convergence order
r Multiplicity of z
x (Default) independent variable
w Weight for derivative
wh Weight projected to gK
wlim Limit for w at z
z Fixed-point
εk Eror at the kth iteration, εk = xk − z

Chemical Engineering Department, Engineering Faculty, Ankara University, 06100

Tandoğan, Ankara, Turkey
E-mail address: mckocak@ankara.edu.tr

