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SIMILAR RULED SURFACES WITH VARIABLE

TRANSFORMATIONS IN THE EUCLIDEAN 3-SPACE E3

MEHMET ÖNDER

Abstract. In this study, we define a family of ruled surfaces in the Euclidean

3-space E3 and called similar ruled surfaces. We obtain some properties of
these special surfaces and we show that developable ruled surfaces form a

family of similar ruled surfaces if and only if the striction curves of the surfaces

are similar curves with variable transformation.

1. Introduction

In local differential geometry, associated curves, the curves for which at the
corresponding points of the curves one of the Frenet vectors of a curve coincides
with one of the Frenet vectors of other curve, are very interesting and an impor-
tant problem of the fundamental theory and the characterizations of space curves.
The well-known pairs of such curves are Bertrand curves, Mannheim curves and
involute-evolute curves [4,9,10]. Recently, a new definition of the associated curves
was given by El-Sabbagh and Ali [1]. They have called these new curves as similar
curves with variable transformation and defined as follows: Let ψα(sα) and ψβ(sβ)
be two regular curves in E3 parametrized by arc lengths sα and sβ with curvatures

κα, κβ and torsions τα, τβ and Frenet frames
{
~Tα, ~Nα, ~Bα

}
and

{
~Tβ , ~Nβ , ~Bβ

}
, re-

spectively. ψα(sα) and ψβ(sβ) are called similar curves with variable transformation
λαβ if there exists a variable transformation

sα =

∫
λαβ(sβ)dsβ ,

of the arc lengths such that the tangent vectors are the same for two curves i.e.,
~Tα = ~Tβ for all corresponding values of parameters under the transformation λαβ .
All curves satisfying this condition is called a family of similar curves. Moreover,
they have obtained some properties of the family of similar curves.

Analogue to the special curve pairs, the surface pairs, especially ruled surface
pairs (called offset surfaces), have an important positions and applications in the
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study of design problems in spatial mechanisms and physics, kinematics and com-
puter aided design (CAD) [6,7]. So, these surfaces are one of the most important
topics of surface theory. In fact, ruled surface offsets are the generalization of the
notion of Bertrand curves and Mannheim curves to line geometry and these surface
pairs are called Bertrand offsets and Mannheim offsets [3,5,8]. In this work, we
consider the notion of similar curves for ruled surfaces. We introduce a family of
ruled surfaces in the Euclidean 3-space E3 and called similar ruled surfaces with
variable transformation. We give some theorems characterizing these special sur-
faces and we show that developable ruled surfaces form a family of similar ruled
surfaces if and only if the striction curves of the surfaces are similar curves with
variable transformation.

2. Ruled Surfaces in E3

In this section, we give a brief summary of the theory of ruled surface in E3. A
more detailed information can be obtained in ref. [2].

Let I be an open interval in the real line IR, ~f = ~f(u) be a curve in E3 defined
on I and ~q = ~q(u) be a unit direction vector of an oriented line in E3. Then we
have the following parametrization for a ruled surface N ,

(2.1) ~r(u, v) = ~f(u) + v ~q(u).

The curve ~f = ~f(u) is called base curve or generating curve of the surface and
various positions of the generating lines ~q = ~q(u) are called rulings. In particular,
if the direction of ~q is constant, then the ruled surface is said to be cylindrical, and
non-cylindrical otherwise.

The distribution parameter of N is given by

(2.2) d =

∣∣∣ ~̇f, ~q, ~̇q∣∣∣〈
~̇q, ~̇q
〉 ,

where ~̇f = d~f
du , ~̇q = d~q

du . If
∣∣∣ ~̇f, ~q, ~̇q∣∣∣ = 0, then normal vectors are collinear at

all points of same ruling and at nonsingular points of the surface N , the tangent
planes are identical. We then say that tangent plane contacts the surface along

a ruling. Such a ruling is called a torsal ruling. If
∣∣∣ ~̇f, ~q, ~̇q∣∣∣ 6= 0, then the tangent

planes of the surface N are distinct at all points of same ruling which is called
nontorsal.

Definition 2.1. ([2]) A ruled surface whose all rulings are torsal is called a devel-
opable ruled surface. The remaining ruled surfaces are called skew ruled surfaces.
From (2.2) it is clear that a ruled surface is developable if and only if at all its
points the distribution parameter is zero.

For the unit normal vector ~m of a ruled surface N we have

(2.3) ~m =
~ru × ~rv
‖~ru × ~rv‖

=
( ~̇f + v~̇q)× ~q√〈

~̇f + v~̇q, ~̇f + v~̇q
〉
−
〈
~̇f, ~q
〉2 .
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The unit normal of the surface along a ruling u = u1 approaches a limiting
direction as v infinitely decreases. This direction is called the asymptotic normal
(central tangent) direction and from (2.3) defined by

~a = lim
v→±∞

~m(u1, v) =
~q × ~̇q∥∥∥~̇q∥∥∥ .

The point at which the unit normal of N is perpendicular to ~a is called the
striction point (or central point) C and the set of striction points on all rulings
is called striction curve of the surface. The parametrization of the striction curve
~c = ~c(u) on a ruled surface is given by

(2.4) ~c(u) = ~f(u) + v0~q(u) = ~f −

〈
~̇q, ~̇f
〉

〈
~̇q, ~̇q
〉 ~q,

where v0 = −
〈
~̇q, ~̇f

〉
〈~̇q,~̇q〉 is called strictional distance.

The vector ~h defined by ~h = ~a × ~q is called central normal which is the surface

normal along the striction curve. Then the orthonormal system
{
C; ~q,~h,~a

}
is

called Frenet frame of the ruled surface N where C is the central point of ruling of

ruled surface N and ~q, ~h = ~a× ~q, ~a are unit vectors of ruling, central normal and
central tangent, respectively.

For the derivatives of the vectors of Frenet frame
{
C; ~q,~h,~a

}
of ruled surface

N with respect to the arc length s of striction curve we have

(2.5)

 d~q/ds

d~h/ds
d~a/ds

 =

 0 k1 0
−k1 0 k2
0 −k2 0

 ~q
~h
~a


where k1 = ds1

ds , k2 = ds3
ds and s1, s3 are the arc lengths of the spherical curves cir-

cumscribed by the bound vectors ~q and ~a, respectively. The ruled surfaces satisfying
k1 6= 0, k2 = 0 are called conoids (For details see [2]).

Now, we can represent and prove the following theorems which are necessary for
the following section.

Theorem 2.1. Let the striction curve ~c = ~c(s) of ruled surface N be unit speed
i.e., s is arc length parameter of ~c(s) and let ~c(s) be the base curve of the surface.
Then N is developable if and only if the unit tangent of the striction curve is the
same with the ruling along the curve.

Proof. Let s be arc length parameter of the striction curve. Then the unit tangent
of the striction curve is given by

~T (s) =
d~c

ds
= (cos θ)~q(s) + (sin θ)~a(s),

where θ = θ(s) is the angle between unit vectors ~T (s) and ~q(s). Since the striction
curve is base curve, then from (2.2) and (2.5) the distribution parameter of the
surface N is obtained as
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d =
sin θ

k1
.

Thus we have that N is developable if and only if sin θ = 0, i.e., ~T (s) = ~q(s)
satisfies. �

Theorem 2.2. Let the striction curve ~c = ~c(s) of ruled surface N be unit speed i.e.,
s is arc length parameter of ~c(s). Suppose that ~c = ~c(ϕ) is another parametrization
of striction curve by the parameter ϕ(s) =

∫
k1(s)ds. Then the ruling ~q satisfies a

vector differential equation of third order given by

(2.6)
d

dϕ

(
1

f(ϕ)

d2~q

dϕ2

)
+

(
1 + f2(ϕ)

f(ϕ)

)
d~q

dϕ
−
(

1

f2(ϕ)

df(ϕ)

dϕ

)
~q = 0,

where f(ϕ) = k2(ϕ)
k1(ϕ)

.

Proof. If we write derivatives given in (2.5) according to ϕ, we have

d~q

dϕ
=
d~q

ds

ds

dϕ
= (k1~h)

1

k1
= ~h,

d~h

dϕ
=
d~h

ds

ds

dϕ
= (−k1~q + k2~a)

1

k1
= −~q + f(ϕ)~a,

d~a

dϕ
=
d~a

ds

ds

dϕ
= (−k2~h)

1

k1
= −f(ϕ)~h,

respectively, where f(ϕ) = k2(ϕ)
k1(ϕ)

. Then corresponding matrix form of (2.5) can be

given

(2.7)

 d~q/dϕ

d~h/dϕ
d~a/dϕ

 =

 0 1 0
−1 0 f(ϕ)
0 −f(ϕ) 0

 ~q
~h
~a

 .
From the first and second equations of new Frenet derivatives (2.7) we have

(2.8) ~a =
1

f(ϕ)

(
d2~q

dϕ2
+ ~q

)
.

Substituting the above equation in the last equation of (2.7) we have desired
equation (2.6). �

3. Similar Ruled Surfaces with Variable Transformations

In this section we introduce the definition and characterizations of similar ruled
surfaces with variable transformation in E3. First, we give the following definition.

Definition 3.1. LetNα andNβ be two ruled surfaces in E3 given by the parametriza-
tions

(3.1)

{
~rα(sα, v) = ~α(sα) + v ~qα(sα), ‖~qα(sα)‖ = 1,

~rβ(sβ , v) = ~β(sβ) + v ~qβ(sβ), ‖~qβ(sβ)‖ = 1,
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respectively, where ~α(sα) and ~β(sβ) are striction curves of Nα and Nβ and sα, sβ
are arc length parameters of ~α(sα) and ~β(sβ), respectively. Let the Frenet frames

and invariants of Nα and Nβ be
{
~qα,~hα,~aα

}
, kα1 , k

α
2 and

{
~qβ ,~hβ ,~aβ

}
, kβ1 , k

β
2 ,

respectively. Then, Nα and Nβ are called similar ruled surfaces with variable trans-
formation λαβ if there exists a variable transformation

(3.2) sα =

∫
λαβ(sβ)dsβ ,

of the arc lengths of striction curves such that the rulings are the same for two
ruled surfaces i.e.,

(3.3) ~qα(sα) = ~qβ(sβ),

for all corresponding values of parameters under the transformation λαβ . All ruled

surfaces satisfying equation (3.3) are called a family of similar ruled surfaces with
variable transformation.

Then we can give the following theorems characterizing similar ruled surfaces.
Whenever we talk aboutNα andNβ we mean that these surfaces have the parametriza-
tions as given in (3.1).

Theorem 3.1. Let Nα and Nβ be two ruled surfaces in E3. Then Nα and Nβ are
similar ruled surfaces with variable transformation if and only if the central normal
vectors of the surfaces are the same, i.e.,

(3.4) ~hα(sα) = ~hβ(sβ),

under the particular variable transformation

(3.5) λαβ =
dsα
dsβ

=
kβ1
kα1
,

of the arc lengths.

Proof. Let Nα and Nβ be two similar ruled surfaces in E3 with variable transfor-
mation. Then differentiating (3.3) with respect to sβ it follows

(3.6) kα1 λ
α
β
~hα = kβ1

~hβ .

From (3.6) we obtain (3.4) and (3.5) immediately.
Conversely, let Nα and Nβ be two ruled surfaces in E3 satisfying (3.4) and (3.5).

By multiplying (3.4) with kβ1 and differentiating the result equality with respect to
sβ we have

(3.7)

∫
kβ1 (sβ)~hβ(sβ)dsβ =

∫
kβ1 (sβ)~hβ(sβ)

dsβ
dsα

dsα.

From (3.4) and (3.5) we obtain

(3.8) ~qβ(sβ) =

∫
kβ1 (sβ)~hβ(sβ)dsβ =

∫
kα1 (sα)~hα(sα)dsα = ~qα(sα),
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which means that Nα and Nβ are similar ruled surfaces with variable transforma-
tion. �

Theorem 3.2. Let Nα and Nβ be two ruled surfaces in E3. Then Nα and Nβ
are similar ruled surfaces with variable transformation if and only if the asymptotic
normal vectors of the surfaces are the same, i.e.,

(3.9) ~aα(sα) = ~aβ(sβ),

under the particular variable transformation

(3.10) λαβ =
dsα
dsβ

=
kβ2
kα2
,

of the arc lengths.

Proof. Let Nα and Nβ be two similar ruled surfaces in E3 with variable trans-
formation. Then from Definition 3.1 and Theorem 3.1, there exists a variable
transformation of the arc lengths such that the rulings and central normal vectors
are the same. Then from (3.3) and (3.4) we have

(3.11) ~aα(sα) = ~qα(sα)× ~hα(sα) = ~qβ(sβ)× ~hβ(sβ) = ~aβ(sβ).

Conversely, let Nα and Nβ be two ruled surfaces in E3 satisfying (3.9) and (3.10).
By differentiating (3.9) with respect to sβ we obtain

(3.12) kα2 (sα)~hα(sα)
dsα
dsβ

= kβ2 (sβ)~hβ(sβ),

which gives us

(3.13) λαβ =
kβ2
kα2
, ~hα(sα) = ~hβ(sβ).

Then from (3.9) and (3.13) we have

(3.14) ~qα(sα) = ~hα(sα)× ~aα(sα) = ~hβ(sβ)× ~aβ(sβ) = ~qβ(sβ),

which completes the proof. �

Theorem 3.3. Let Nα and Nβ be two ruled surfaces in E3. Then Nα and Nβ
are similar ruled surfaces with variable transformation if and only if the ratio of
curvatures are the same i.e.,

(3.15)
kβ2 (sβ)

kβ1 (sβ)
=
kα2 (sα)

kα1 (sα)
,

under the particular variable transformation keeping equal total curvatures, i.e.,

(3.16) ϕβ(sβ) =

∫
kβ1 (sβ)dsβ =

∫
kα1 (sα)dsα = ϕα(sα)

of the arc lengths.
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Proof. Let Nα and Nβ be two similar ruled surfaces in E3 with variable transforma-
tion. Then from (3.10) and (3.13), we have (3.15) under the variable transformation
(3.16), and this transformation is also leads from (3.10) by integration.

Conversely, let Nα and Nβ be two ruled surfaces in E3 satisfying (3.15) and
(3.16). From Theorem 2.2, the rulings ~qα and ~qβ of the surfaces Nα and Nβ satisfy
the following vector differential equations of third order

(3.17)
d

dϕα

(
1

fα(ϕα)

d2~qα
dϕ2

α

)
+

(
1 + f2α(ϕα)

fα(ϕα)

)
d~qα
dϕα

−
(

1

f2α(ϕα)

dfα(ϕα)

dϕα

)
~qα = 0,

(3.18)
d

dϕβ

(
1

fβ(ϕβ)

d2~qβ
dϕ2

β

)
+

(
1 + f2β(ϕβ)

fβ(ϕβ)

)
d~qβ
dϕβ

−

(
1

f2β(ϕβ)

dfβ(ϕβ)

dϕβ

)
~qβ = 0,

where fα(ϕα) =
kα2 (ϕα)
kα1 (ϕα) , fβ(ϕβ) =

kβ2 (ϕβ)

kβ1 (ϕβ)
, ϕα(sα) =

∫
kα1 (sα)dsα, ϕβ(sβ) =∫

kβ1 (sβ)dsβ . From (3.15) we have fα(ϕα) = fβ(ϕβ) under the variable trans-
formation ϕα = ϕβ . Thus under the equation (3.15) and transformation (3.16),
the equations (3.17) and (3.18) are the same, i.e., they have the same solutions. It
means that the rulings ~qα and ~qβ are the same. Then Nα and Nβ are two similar
ruled surfaces in E3 with variable transformation. �

Theorem 3.4. Let the ruled surfaces Nα and Nβ be developable. Then Nα and Nβ
are similar ruled surfaces with variable transformation if and only if the striction
curves of the surfaces are similar curves with variable transformation.

Proof. Let developable ruled surfaces Nα and Nβ be two similar ruled surfaces in
E3 with variable transformation. Since the surfaces are developable, from Theorem
2.1 we have

(3.19)
d~α

dsα
= ~Tα(sα) = ~qα(sα),

d~β

dsβ
= ~Tβ(sβ) = ~qβ(sβ).

where ~Tα(sα) and ~Tβ(sβ) are unit tangents of the curves ~α(sα) and ~β(sβ), respec-
tively. From (3.3) and (3.19) we have

(3.20)
d~α

dsα
= ~qα(sα) = ~qβ(sβ) =

d~β

dsβ

which shows that striction curves ~α(sα) and ~β(sβ) are similar curves.

Conversely, if the striction curves ~α(sα) and ~β(sβ) are similar curves, then there
exists a variable transformation between arc lengths such that

(3.21)
d~α

dsα
= ~Tα(sα) = ~Tβ(sβ) =

d~β

dsβ
.

Since the ruled surfaces are developable, from Theorem 2.1 we have ~Tα(sα) =

~qα(sα) and ~Tβ(sβ) = ~qβ(sβ). Then from (3.21) we have that ~qα(sα) = ~qβ(sβ), i.e.,
Nα and Nβ are similar ruled surfaces with variable transformation.

�
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Let now consider some special cases. From (3.5) and (3.10) we have

(3.22) kβ1 = λαβk
α
1 , kβ2 = λαβk

α
2 ,

respectively. From (3.22) it is clear that if Nα is a cylindrical surface i.e., kα1 = 0,
then under the variable transformation the curvature does not change. So we have
the following corollary.

Corollary 3.1. The family of cylindrical surfaces forms a family of similar ruled
surfaces with variable transformation.

If Nα is a conoid surface i.e., kα2 = 0, then under the variable transformation the
curvature does not change. So we have the following corollary.

Corollary 3.2. The family of conoid surfaces forms a family of similar ruled
surfaces with variable transformation.

Example 3.1. Let consider the ruled surface Nβ given by the parametrization

~rβ(sβ , v) = ~β(sβ) + v ~qβ(sβ)
= (0, 0, sβ) + v (cos sβ , sin sβ , 0)

which is plotted in Fig. 1. The Frenet vectors of Nβ are

~qβ = (cos sβ , sin sβ , 0),
~hβ = (− sin sβ , cos sβ , 0),
~aβ = (0, 0, 1),

and curvatures are obtained as kβ1 = 1, kβ2 = 0. A similar ruled surfaces of Nβ is
the surface Nα given by the parametrization

~rα(sα, v) = ~α(sα) + v ~qα(sα)

=
(
− sin sα√

2
, cos sα√

2
, sα√

2

)
+ v

(
cos sα√

2
, sin sα√

2
, 0
)

which is plotted in Fig. 2. The Frenet vectors of Nα are

~qα =
(

cos sα√
2
, sin sα√

2
, 0
)
,

~hα = (− sin sα√
2
, cos sα√

2
, 0),

~aα = (0, 0, 1),

and curvatures are obtained as kα1 = 1√
2
, kα2 = 0. From Theorem 3.1 we have the

particular variable transformation

λαβ =
dsα
dsβ

=
kβ1
kα1

=
√

2,

which means that sα =
√

2sβ .



SIMILAR RULED SURFACES WITH VARIABLE TRANSFORMATIONS IN THE EUCLIDEAN 3-SPACE E3135

Figure 1. Helicoid surface Nβ

Figure 2. Similar surface Nα of Nβ

4. Conclusions

A family of ruled surfaces in the Euclidean 3-space E3 are defined and called
similar ruled surfaces. Some properties of these special surfaces are obtained and
it is showed that developable ruled surfaces form a family of similar ruled surfaces
if and only if the striction curves of the surfaces are similar curves with variable
transformation. By considering the importance of the offset surfaces we hope this
paper leads new characterizations of ruled surfaces in different spaces.
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