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AN Lp HEISENBERG-PAULI-WEYL UNCERTAINTY PRINCIPLE
FOR THE DUNKL TRANSFORM

FETHI SOLTANI

Abstract. In this paper, we give a generalization of the Heisenberg-Pauli-
Weyl uncertainty inequality for the Dunkl transform on Rd in Lp-norm.

1. Introduction and preliminaries

In this paper, we consider Rd with the Euclidean inner product 〈., .〉 and norm
|y| :=

√
〈y, y〉. For α ∈ Rd\{0}, let σα be the reflection in the hyperplane Hα ⊂ Rd

orthogonal to α:

σαy := y − 2〈α, y〉
|α|2 α.

A finite set < ⊂ Rd\{0} is called a root system, if < ∩ R.α = {−α, α} and
σα< = < for all α ∈ <. We assume that it is normalized by |α|2 = 2 for all
α ∈ <. For a root system <, the reflections σα, α ∈ <, generate a finite group
G ⊂ O(d), the reflection group associated with <. All reflections in G, correspond
to suitable pairs of roots. For a given β ∈ Rd\⋃

α∈<Hα, we fix the positive
subsystem <+ := {α ∈ < : 〈α, β〉 > 0}. Then for each α ∈ < either α ∈ <+ or
−α ∈ <+.

Let k : < → C be a multiplicity function on < (that is, a function which is
constant on the orbits under the action of G). As an abbreviation, we introduce
the index γ = γk :=

∑
α∈<+

k(α).
Throughout this paper, we will assume that k(α) ≥ 0 for all α ∈ <. Moreover,

let wk denote the weight function wk(y) :=
∏

α∈<+
|〈α, y〉|2k(α), for all y ∈ Rd,

which is G-invariant and homogeneous of degree 2γ.
The Dunkl operators Dj ; j = 1, ..., d, on Rd associated with the finite reflection

group G and multiplicity function k are given, for a function f of class C1 on Rd,
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by

Djf(y) :=
∂

∂yj
f(y) +

∑

α∈<+

k(α)αj
f(y)− f(σαy)

〈α, y〉 .

For y ∈ Rd, the initial problem Dju(., y)(x) = yju(x, y), j = 1, ..., d, with
u(0, y) = 1 admits a unique analytic solution on Rd, which will be denoted by
Ek(x, y) and called Dunkl kernel [4, 7]. This kernel has a unique analytic extension
to Cd × Cd. In our case, |Ek(−ix, y)| ≤ 1, for all x, y ∈ Rd.

Let ck be the Mehta-type constant given by ck := (
∫
Rd e−|y|

2/2wk(y)dy)−1. We
denote by µk the measure on Rd given by dµk(y) := ckwk(y)dy; and by Lp(µk),
1 ≤ p ≤ ∞, the space of measurable functions f on Rd, such that

‖f‖Lp(µk) :=
(∫

Rd

|f(y)|pdµk(y)
)1/p

< ∞, 1 ≤ p < ∞,

‖f‖L∞(µk) := ess sup
y∈Rd

|f(y)| < ∞.

If f ∈ L1(µk) with f(x) = F (|x|), then

(1.1)
∫

Rd

f(x)dµk(x) =
1

2γ+ d
2−1Γ(γ + d

2 )

∫ ∞

0

F (t)t2γ+d−1dt.

The Dunkl kernel gives rise to an integral transform, which is called Dunkl
transform on Rd, and was introduced by Dunkl in [5], where already many basic
properties were established. Dunkl’s results were completed and extended later by
de Jeu [7]. The Dunkl transform of a function f in L1(µk), is

Fk(f)(x) :=
∫

Rd

Ek(−ix, y)f(y)dµk(y), x ∈ Rd.

Some of the properties of Dunkl transform Fk are collected bellow (see [5, 7]).
(a) L1 − L∞-boundedness. For all f ∈ L1(µk), Fk(f) ∈ L∞(µk) and

(1.2) ‖Fk(f)‖L∞(µk) ≤ ‖f‖L1(µk).

(b) Inversion theorem. Let f ∈ L1(µk), such that Fk(f) ∈ L1(µk). Then

f(x) = Fk

(
Fk(f)

)
(−x), a.e. x ∈ Rd.

(c) Plancherel theorem. The Dunkl transform Fk extends uniquely to an iso-
metric isomorphism of L2(µk) onto itself. In particular,

(1.3) ‖f‖L2(µk) = ‖Fk(f)‖L2(µk).

Using relations (1.2) and (1.3) with Marcinkiewicz’s interpolation theorem [10,
11], we deduce that for every 1 ≤ p ≤ 2, and for every f ∈ Lp(µk), the function
Fk(f) belongs to the space Lq(µk), q = p/(p− 1), and

(1.4) ‖Fk(f)‖Lq(µk) ≤ ‖f‖Lp(µk).

Many uncertainty principles have already been proved for the Dunkl transform,
namely by Rösler [8] and Shimeno [9] who established the Heisenberg-Pauli-Weyl
inequality for the Dunkl transform, by showing that for every f ∈ L2(µk),

(1.5) ‖f‖2L2(µk) ≤
2

2γ + d
‖ |x|f‖L2(µk)‖ |y|Fk(f)‖L2(µk).

Building on the techniques of Ciatti et al. [1] we show a general form of the
Heisenberg-Pauli-Weyl inequality for the Dunkl transform Fk. More precisely, we



AN Lp HEISENBERG-PAULI-WEYL UNCERTAINTY PRINCIPLE FOR THE DUNKL TRANSFORM3

prove that for all f ∈ Lp(µk), 1 < p ≤ 2, q = p/(p − 1) and 0 < a < (2γ + d)/q,
b > 0,

(1.6) ‖Fk(f)‖Lq(µk) ≤ C(a, b)‖ |x|af‖
b

a+b

Lp(µk)‖ |y|bFk(f)‖
a

a+b

Lq(µk),

where C(a, b) is a positive constant. This inequality generalizes the Heisenberg-
Pauli-Weyl inequality given by (1.5); and in the case k = 0 and q = 2, this inequality
is due to Cowling-Price [2] and Hirschman [6].

We shall use the Heisenberg-Pauli-Weyl principle (1.6); and building on the
techniques of Donoho and Stark [3], we show a continuous-time principle for the
Lp theory, when 1 < p ≤ 2.

This paper is organized as follows. In Section 2 we list some basic properties of
the Dunkl transform Fk. In Section 3 we prove a general form of the Heisenberg-
Pauli-Weyl inequality for Fk. The last section is devoted to Donoho-Stark’s uncer-
tainty principle for the Dunkl transform Fk in the Lp theory, when 1 < p ≤ 2.

2. Lp Heisenberg-Pauli-Weyl inequality

In this section, we extend the Heisenberg-Pauli-Weyl uncertainty principle (1.5)
to more general case. We need to use the method of Ciatti et al. [1], which is the
counterpart in the Euclidean case. We begin by the following lemma.

Lemma 2.1. Let 1 < p ≤ 2, q = p/(p − 1) and 0 < a < (2γ + d)/q. Then for all
f ∈ Lp(µk) and t > 0,

(2.1) ‖e−t|y|2Fk(f)‖Lq(µk) ≤
(
1 +

ak

(2q)(γ+ d
2 ) 1

q

)
t−a/2‖ |x|af‖Lp(µk),

where

ak =
[
(2γ + d− qa)2γ+ d

2−1Γ(γ +
d

2
)
]−1/q

.

Proof. Inequality (2.1) holds if ‖ |x|af‖Lp(µk) = ∞. Assume that ‖ |x|af‖Lp(µk) <

∞. For r > 0, let Br = {x : |x| < r} and Bc
r = Rd\Br. Denote by χBr and χBc

r

the characteristic functions. Let f ∈ Lp(µk), 1 < p ≤ 2 and let q = p/(p− 1).
Since |(fχBc

r
)(x)| ≤ r−a|x|a|f(x)|, then by (1.4),

‖e−t|y|2Fk(fχBc
r
)‖Lq(µk) ≤ ‖e−t|y|2‖L∞(µk)‖Fk(fχBc

r
)‖Lq(µk)

≤ ‖fχBc
r
‖Lp(µk) ≤ r−a‖ |x|af‖Lp(µk).

On the other hand, by (1.2) and Hölder’s inequality,

‖e−t|y|2Fk(fχBr )‖Lq(µk) ≤ ‖e−t|y|2‖Lq(µk)‖Fk(fχBr )‖L∞(µk)

≤ ‖e−t|y|2‖Lq(µk)‖fχBr‖L1(µk)

≤ ‖e−t|y|2‖Lq(µk)‖ |x|−aχBr‖Lq(µk)‖ |x|af‖Lp(µk).

By (1.1), we have ‖e−t|y|2‖Lq(µk) = 1

(2q)
(γ+ d

2 ) 1
q
t−(γ+ d

2 ) 1
q and ‖ |x|−aχBr‖Lq

k
= akr−a+(2γ+d)/q.

Hence,

‖e−t|y|2Fk(fχBr )‖Lq
k
≤ ak

(2q)(γ+ d
2 ) 1

q

r−a+(2γ+d)/qt−(γ+ d
2 ) 1

q ‖ |x|af‖Lp(µk),
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and

‖e−t|y|2Fk(f)‖Lq(µk) ≤ ‖e−t|y|2Fk(fχBr
)‖Lq(µk) + ‖e−t|y|2Fk(fχBc

r
)‖Lq(µk)

≤ r−a
(
1 +

ak

(2q)(γ+ d
2 ) 1

q

r(2γ+d)/qt−(γ+ d
2 ) 1

q

)
‖ |x|af‖Lp(µk).

Choosing r = t1/2, we obtain (2.1). ¤

Theorem 2.1. Let 1 < p ≤ 2, q = p/(p− 1), 0 < a < (2γ + d)/q and b > 0, then
for all f ∈ Lp(µk),

(2.2) ‖Fk(f)‖Lq(µk) ≤ C(a, b)‖ |x|af‖
b

a+b

Lp(µk)‖ |y|bFk(f)‖
a

a+b

Lq(µk),

where C(a, b) is a positive constant.

Proof. Let f ∈ Lp(µk), 1 < p ≤ 2, such that ‖ |x|af‖Lp(µk)+‖ |y|bFk(f)‖Lq(µk) <
∞. Assume that 0 < a < (2γ + d)/q and b ≤ 2. By Lemma 2.1, for all t > 0,

‖Fk(f)‖Lq(µk) ≤ ‖e−t|y|2Fk(f)‖Lq(µk) + ‖(1− e−t|y|2)Fk(f)‖Lq(µk)

≤
(
1 +

ak

(2q)(γ+ d
2 ) 1

q

)
t−a/2‖ |x|af‖Lp(µk) + ‖(1− e−t|y|2)Fk(f)‖Lq(µk).

On the other hand,

‖(1− e−t|y|2)Fk(f)‖Lq(µk) = tb/2‖(t|y|2)−b/2(1− e−t|y|2)|y|bFk(f)‖Lq(µk).

Since (1− e−t)t−b/2 is bounded for t ≥ 0 if b ≤ 2. Hence,

‖Fk(f)‖Lq(µk) ≤ C
(
t−a/2‖ |x|af‖Lp(µk) + tb/2‖ |y|bFk(f)‖Lq(µk)

)
.

We choose t =
(

a
b

‖ |x|af‖Lp(µk)

‖ |y|bFk(f)‖Lq(µk)

) 2
a+b

, we obtain the result

(2.3) ‖Fk(f)‖Lq(µk) ≤ C‖ |x|af‖
b

a+b

Lp(µk)‖ |y|bFk(f)‖
a

a+b

Lq(µk), for all b ≤ 2.

If b > 2. For u ≥ 0, u ≤ 1 + ub which for u = |y|
ε gives the inequality |y|

ε ≤
1 +

(
|y|
ε

)b

, for all ε > 0. It follows that

‖ |y|Fk(f)‖Lq(µk) ≤ ε‖Fk(f)‖Lq(µk) + ε1−b‖ |y|bFk(f)‖Lq(µk).

We choose ε = (b− 1)1/b

(
‖ |y|bFk(f)‖Lq(µk)

‖Fk(f)‖Lq(µk)

)1/b

, we get

(2.4) ‖ |y|Fk(f)‖Lq(µk) ≤
b

b− 1
(b− 1)1/b‖Fk(f)‖

b−1
b

Lq(µk)‖ |y|bFk(f)‖1/b
Lq(µk)

Then, by (2.3) and (2.4) we obtain

‖Fk(f)‖Lq(µk) ≤ C‖ |x|af‖
1

a+1

Lp(µk)‖ |y|Fk(f)‖
a

a+1

Lq(µk)

≤ C‖Fk(f)‖
a(b−1)
b(a+1)

Lq(µk)‖|x|af‖
1

a+1

Lp(µk)‖ |y|bFk(f)‖
a

b(a+1)

Lq(µk).

Thus,

‖Fk(f)‖
a+b

b(a+1)

Lq(µk) ≤ C‖ |x|af‖
1

a+1

Lp(µk)‖ |y|bFk(f)‖
a

b(a+1)

Lq(µk),

which gives the result for b > 2. ¤
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Remark 2.1. When q = 2, by (1.3) we obtain

‖f‖L2(µk) ≤ C(a, b)‖ |x|af‖
b

a+b

L2(µk)‖ |y|bFk(f)‖
a

a+b

L2(µk),

which is the general case of the inequality (1.5) proved by Rösler [8] and Shimeno
[9].

Now, we give application of the Lp Heisenberg-Pauli-Weyl inequality to the
Donoho-Stark uncertainty principle.

Let E be measurable subset of Rd. We introduce the partial sum operator SE

by

(2.5) Fk(SEf) = Fk(f)χE

Let b > 0. We say that a function f ∈ Lp(µk), 1 ≤ p ≤ 2, is |y|bFk(f) is
ε-concentrated to E in Lq(µk)-norm, q = p/(p − 1), if there is a function h(y)
vanishing outside E with ‖ |y|bFk(f)− h‖Lq(µk) ≤ ε‖ |y|bFk(f)‖Lq(µk).

From (2.5) it follows that |y|bFk(f) is εE-concentrated to E in Lq(µk)-norm,
q = p/(p− 1), if and only if

(2.6) ‖ |y|bFk(f)− |y|bFk(SEf)‖Lq(µk) ≤ εE‖ |y|bFk(f)‖Lq(µk)

It is useful to have uncertainty principle for the Lp(µk)-norm.

Theorem 2.2. Let E be measurable subset of Rd; and let 1 < p ≤ 2, q = p/(p−1),
f ∈ Lp(µk) and b > 0. If |y|bFk(f) is εE-concentrated to E in Lq(µk)-norm, then
for 0 < a < (2γ + d)/q:

‖Fk(f)‖Lq(µk) ≤
C(a, b)

(1− εE)
a

a+b
‖ |x|af‖

b
a+b

Lp(µk)‖ |y|bFk(f)χE‖
a

a+b

Lq(µk),

where C(a, b) is the constant given by (2.2).

Proof. Let f ∈ Lp(µk), 1 < p ≤ 2. Since |y|bFk(f) is εE-concentrated to E in
Lq(µk)-norm, q = p/(p− 1), then by (2.6),

‖ |y|bFk(f)‖Lq(µk) ≤ εE‖ |y|bFk(f)‖Lq(µk) + ‖ |y|bFk(f)χE‖Lq(µk).

Thus,

‖ |y|bFk(f)‖
a

a+b

Lq(µk) ≤
1

(1− εE)
a

a+b
‖ |y|bFk(f)χE‖

a
a+b

Lq(µk).

Multiply this inequality by C(a, b)‖ |x|af‖
b

a+b

Lp(µk) and applying Theorem 2.1 we de-
duce the desired inequality. ¤
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