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Abstract
In recent years, there has been increasing interest in interval analysis. Thanks to interval numbers, many real
world problems have been modeled and analyzed. Especially, complex intervals have an important place for
interval-valued data and interval-based signal processing. In this paper, firstly we introduce the notion of a
complex interval sequence and we present the complex interval sequence spaces I(w) and I(lp), 1 ≤ p < ∞.
Secondly, we show that these sequence spaces have an algebraic structure called quasilinear space. Further,
we construct an inner-product on I(l2) and we show that I(l2) is an inner-product quasilinear space.
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1. Introduction
In many real life situations, it is very difficult to deal with a process with reliable information about the properties of the

expected variations. This has naturally led to an increased interest in intervals. Because the most ideal way to represent the loss
of information is to use intervals.

An interval x is the compact-convex subset of real numbers and x is denoted by x = [x,x] where x and x are the left and right
endpoints of x, respectively [1]. Further, if x = x then we say that x is a degenerate interval and it can be shown by {x} or [x,x].
The set of all real intervals is denoted by IR.

The idea of using intervals has been highly preferred by many researchers recently [1]-[4]. The interval sequence spaces
have been studied by many authors [5, 6]. Also, we presented the notion of a complex interval which is significant for
interval-valued data and interval-based signal processing in [7]. A complex interval is defined by

X =
[
xr,xr

]
+ i
[
xs,xs

]
where

[
xr,xr

]
and

[
xs,xs

]
are real intervals and i =

√
−1 is the complex unit.

[
xr,xr

]
and

[
xs,xs

]
are called real and imaginary

part of X , respectively. Further,
[
xr,xr

]
and

[
xs,xs

]
are called real and imaginary part of X , respectively.

In this work, we introduce the notion of complex interval sequence and we analyze some sequence spaces of the complex
intervals, e.g., I(w) and I(lp), 1≤ p < ∞. However, each element of these sequence spaces does not have an inverse according
to the addition operation. These sequence spaces are not a linear space and the algebraic structure on these spaces is called as
”quasilinear space”. In 1986, Aseev defined the concept of quasilinear space [8]. Further, he present an approach for analysis of
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set-valued functions. This work has motivated a lot of authors the introduce new results on set-valued analysis [9]-[12]. Let us
give the definition:

A set X is called a quasilinear space on field K if a partial order relation ”�”, an algebraic sum operation, and an operation
of multiplication by real or complex numbers are defined in it in such a way that the following conditions hold for any elements
x,y,z,v ∈ X and any α,β ∈K:

x� x,

x� z if x� y and y� z,

x = y if x� y and y� x,

x+ y = y+ x,

x+(y+ z) = (x+ y)+ z,

there exists an element (zero) θ ∈X such that x+θ = x,

α(βx) = (αβ )x,

α(x+ y) = αx+αy,

1x = x,

0x = θ ,

(α +β )x� αx+βx,

x+ z� y+ v if x� y and z� v,

αx� αy if x� y.

The most popular examples are Ω(E) and ΩC(E) which are defined as the sets of all non-empty closed bounded and
non-empty convex closed bounded subsets of any normed linear space E, respectively. Both are a quasilinear space with the
inclusion relation“⊆”, the algebraic sum operation

A+B = {a+b : a ∈ A, b ∈ B}
where the closure is taken on the norm topology of E and the real-scalar multiplication

λA = {λa : a ∈ A} .
Actually, ΩC(R) is the set IR and for x,y ∈ IR and λ ∈ R, the Minkowski sum and scalar multiplication operations are defined
by

x+ y = [x,x]+
[
y,y
]
= [x+ y,x+ y]

and

λx =
{

[λx,λx]
[λx,λx]

,
,

λ ≥ 0
λ < 0,

respectively. Further, the product of two intervals x = [x,x] and y =
[
y,y
]

is given by

x · y = [x,x]
[
y,y
]
= [minS,maxS] (1.1)

where S = {xy,xy,xy,xy}, [1].
The Minkowski sum and scalar multiplication on IC are defined by

X +Y =
[
xr,xr

]
+ i
[
xs,xs

]
+
[
yr,yr

]
+ i
[
ys,ys

]
=
[
xr + yr,xr + yr

]
+ i
[
xs + ys,xs + ys

]
=
{

a+ ib : a ∈
[
xr + yr,xr + yr

]
, b ∈

[
xs + ys,xs + ys

]}
and

λX = λ
[
xr,xr

]
+ i
(
λ
[
xs,xs

])
=
{

λa+ iλb : a ∈
[
xr,xr

]
, b ∈

[
xs,xs

]}
on IC where i =

√
−1 and λ ∈ C. Further, the relation

X � Y iff
[
xr,xr

]
⊆
[
yr,yr

]
and

[
xs,xs

]
⊆
[
ys,ys

]
is a partial order relation on IC. Thus, IC is a quasilinear space [7].
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2. Preliminaries
Let us start with some main definitions, notions and theorems.

Suppose that X is a quasilinear space and Y ⊆X . Then Y is called a subspace of X whenever Y is a quasilinear
space with the same partial order and the restriction to Y of the operations on X . Y is subspace of a quasilinear space X if
and only if for every x,y ∈ Y and α,β ∈K, αx+βy ∈ Y . Proof of this theorem is quite similar to its classical linear space
analogue. Let Y be a subspace of a quasilinear space X and suppose each element x in Y has an inverse in Y . Then the
partial order on Y is determined by the equality. In this case Y is a linear subspace of X , [14].

An element x in a quasilinear space X is said to be symmetric if−x = x and Xsym denotes the set of all symmetric elements.
Also, Xr stands for the set of all regular elements of X while Xs stands for the sets of all singular elements and zero in X .
Further, it can be easily shown that Xr, Xsym andXs are subspaces of X . They are called regular, symmetric and singular
subspaces of X , respectively. Furthermore, it isn’t hard to prove that summation of a regular element with a singular element
is a singular element and the regular subspace of X is a linear space while the singular one is nonlinear at all. Further, IC is a
closed subspace of Ω(C), [13].

A real-valued function ‖.‖ on the quasilinear space X is called a norm if the following conditions hold:

‖x‖> 0 if x 6= 0, (2.1)

‖x+ y‖ ≤ ‖x‖+‖y‖ , (2.2)

‖αx‖= |α|‖x‖ , (2.3)

if x� y, then ‖x‖ ≤ ‖y‖ , (2.4)

if for any ε > 0 there exists an element xε ∈X such that (2.5)
x� y+ xε and ‖xε‖ ≤ ε then x� y,

here x,y,xε are arbitrary element in X and α is any scalar. A quasilinear space X with a norm defined on it, is called normed
quasilinear space, [8].

For a normed linear space E, a norm on Ω(E) is defined by

‖A‖
Ω
= sup

a∈E
‖a‖E .

Hence ΩC(E) and Ω(E) are normed quasilinear spaces. A norm on IR is defined by

‖x‖= ‖[x,x]‖= sup
t∈[x,x]

|t| .

Moreover, IC is a normed quasilinear space with the norm

‖X‖IC = sup{|z| : z ∈ X}
= sup{|a+ ib| : a ∈

[
xr,xr

]
,b ∈

[
xs,xs

]
},

for X =
[
xr,xr

]
+ i
[
xs,xs

]
, [12].

Now we will give the notion of consolidate quasilinear space defined in [12]. Thanks to this definition, we were able to give
a representation to every element in a quasilinear space and we were able to define an inner-product quasilinear space.

Definition 2.1. [12] Let X be a quasilinear space and y ∈X . The floor of y is the set of all regular elements y of X such
that x� y. It is denoted by FX

y and FX
y ⊂X . Hence FX

y = {x ∈Xr : x� y}.
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Definition 2.2. [12] A quasilinear space X is called consolidate or Solid-Floored whenever

sup
�
{x ∈Xr : x� y}= sup

�
FX

y

exists and

y = sup
�
{x ∈Xr : x� y}

for each y ∈X . Otherwise, X is called a non-consolidate quasilinear space.

From above example immediately we can see that IR is consolidate while (IR)s is not. Analogous results are also true for
the spaces IC and (IC)s .

Definition 2.3. [13] Let X be a consolidate quasilinear space. A mapping 〈 , 〉 : X ×X →Ω(K) is called an inner product
on X if for any x,y,z ∈X and α ∈K the following conditions are satisfied :

If x,y ∈Xr then 〈x,y〉 ∈ΩC(K)r ≡K,

〈x+ y,z〉 ⊆ 〈x,z〉+ 〈y,z〉 ,

〈αx,y〉= α 〈x,y〉 ,

〈x,y〉= 〈y,x〉 ,

〈x,x〉 ≥ 0 for x ∈Xr and 〈x,x〉= 0⇔ x = 0,

‖〈x,y〉‖
Ω
= sup

{
‖〈a,b〉‖

Ω
: a ∈ FX

x ,b ∈ FX
y

}
,

if x� y and u� v then 〈x,u〉 ⊆ 〈y,v〉 ,

if for any ε > 0 there exists an element xε ∈X such that
x� y+ xε and 〈xε ,xε〉 ⊆ Sε (θ) then x� y.

A quasilinear space with an inner product is called as an inner-product quasilinear space.
X is a linear Hilbert space, then the space Ω(X ) is a Hilbert quasilinear space with the inner product defined by

〈A,B〉
Ω
= {〈a,b〉X : a ∈ A,b ∈ B}

for A,B ∈Ω(X ). Especially, the inner product on Ω(C) given by

〈A,B〉
Ω
= {〈a,b〉C : a ∈ A,b ∈ B} . (2.6)

If A,B ∈ IC then the inner-product (2.6) is equivalent to the following:

〈A,B〉=
[
a1,a1

][
b1,b1

]
+
[
a2,a2

][
b2,b2

]
+ i(
[
a2,a2

][
b1,b1

]
−
[
a1,a1

][
b2,b2

]
)

where A =
[
a1,a1

]
+ i
[
a2,a2

]
, B =

[
b1,b1

]
+ i
[
b2,b2

]
and the product of two intervals is given in (1.1). Namely, the above

equality is the reduction of the inner-product on Ω(C) to the inner-product on IC.
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3. Complex Interval Sequence Spaces

In this section, firstly we present the complex interval sequence spaces I(w) and I(lp), 1≤ p < ∞ and we show that these
spaces are the normed quasilinear spaces. Later, we construct a set-valued inner-product on I(l2).

The sequence X = (Xi)
∞
i=1 is called as complex interval sequence if Xi ∈ IC, i = 1,2, .... The set I(lw) denotes the set of all

complex interval sequences X = (Xi)
∞
i=1. The addition and multiplication operations I(w) are defined by

X +Y = (X1,X2, ...)+(Y1,Y2, ...)

= (X1 +Y1,X2 +Y2, ...)

and

αX = α(X1,X2, ...) = (αX1,αX2, ...),

respectively where Xi +Yi is the sum of two complex intervals and αXi is the multiplication of a complex interval with the
scalar α . Further, the partial order relation on I(w) is that

X � Y iff Xi � Yi, i = 1,2, ...

where the relation ”�” is the partial order relation on IC. Thus, I(lw) is a quasilinear space with the above operations and the
partial order relation.

For 1≤ p < ∞, I(lp) is the set of all complex interval sequences X = (Xi)
∞
i=1 such that

∞

∑
i=1
‖Xi‖p

IC < ∞.

The space I(lp) is a quasilinear space with the operations and the partial order relation on I(lw). Really, for X ,Y ∈ I(lp) we
write that by the Minkowski inequality

∞

∑
i=1

(‖Xi +Yi‖p
IC)

1/p ≤
∞

∑
i=1

(‖Xi‖p
IC +‖Yi‖p

IC)
1/p

≤
∞

(∑
i=1
‖Xi‖p

IC)
1/p +

∞

(∑
i=1
‖Yi‖p

IC)
1/p < ∞.

Further,
∞

∑
i=1
‖λXi‖p

IC = |λ |p (
∞

∑
i=1
‖Xi‖p

IC)< ∞

for X ∈ I(lp) and λ ∈ C.

Proposition 3.1. I(lp), 1≤ p < ∞ is a normed quasilinear space with the norm defined by

‖X‖=
∞

(∑
i=1
‖Xi‖p

IC)
1/p.

Proof. It is obvious that ‖X‖ ≥ 0 for any X ∈ I(lp). Further, for any X ,Y ∈ I(lp) and λ ∈ C by the triangle inequality and
Minkowski inequality we write that

‖X +Y‖=
∞

∑
i=1

(‖Xi +Yi‖p
IC)

1/p ≤
∞

(∑
i=1
‖Xi‖p

IC)
1/p +

∞

(∑
i=1
‖Yi‖p

IC)
1/p = ‖X‖+‖Y‖

and

‖λX‖=
∞

(∑
i=1
‖λXi‖p

IC)
1/p = |λ |

∞

(∑
i=1
‖Xi‖p

IC)
1/p = |λ |‖X‖ .

Let us assume that X � Y for any X ,Y ∈ I(lp). Then ‖Xi‖IC ≤ ‖Yi‖IC for i = 1,2, ... since Xi � Yi , i = 1,2, ... and IC is a
normed quasilinear space. This implies that

‖X‖=
∞

(∑
i=1
‖Xi‖p

IC)
1/p ≤

∞

(∑
i=1
‖Yi‖p

IC)
1/p = ‖Y‖ .
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Now suppose that there exists an element Xε ∈ I(lp) such that X � Y +Xε and ‖Xε‖ ≤ ε for any ε > 0. Then we have that
Xi ⊆ Yi +Xε

i and for i = 1,2, ... and

‖Xε‖=
∞

(∑
i=1
‖Xε

i ‖
p
IC)

1/p ≤ ε.

Hence, we obtain that ‖Xi‖IC < ε for i = 1,2, .... By the fourth condition of norm on IC we write that Xi � Yi for i = 1,2, ...
and so X � Y .

Example 3.2. Let us take the complex interval sequence X = (Xk)
∞
k=1 given as follows:

(Xk)
∞
k=1 = (

1
2k + i[0,

1
2k ])

∞
k=1 = (

1
2
+ i[0,

1
2
],

1
22 + i[0,

1
22 ], ...).

We can say that X = (Xk)
∞
k=1 ∈ I(l2) since

‖X‖2 =
∞

∑
k=1

∥∥∥∥ 1
2k + i[0,

1
2k ]

∥∥∥∥2

IC

=
∞

∑
k=1

(sup{|a+ ib| : a =
1
2k ,b ∈ [0,

1
2k ]})

2

=
∞

∑
k=1

(
1

22k +
1

22k ) = 2
∞

∑
k=1

1
4k =

1
2

1
1−1/4

= 2/3.

Hence, the norm of the sequence X = (Xk)
∞
k=1 is that

‖X‖=
∞

(∑
k=1
‖Xk‖2

IC)
1/2 =

√
2
3
.

Among the I(lp) spaces, I(l2) has an important place. Because I(l2) is an inner-product quasilinear space. Before we
construct an inner-product on I(l2), we must show that it is a consolidate space.

Lemma 3.3. The space I(lp), 1≤ p < ∞ is a consolidate quasilinear space.

Proof. To complete the proof we will show that

X = sup
”�”
{Y ∈ (I(lp))r : Y � X}.

If Y � X for Y ∈ (I(lp))r then we write that Yi � Xi for i = 1,2, ... and Xi ∈ IC. Since IC is a consolidate quasilinear space, we
obtain that

Xi = supFXi = sup{Yi ∈ IC : Yi � Xi}

for each i = 1,2, .... This means that supFX = X for X = (Xi)
∞
i=1 ∈ I(lp).

Theorem 3.4. The quasilinear space I(l2) with the inner-product

〈X ,Y 〉=
∞

∑
i=1
〈Xi,Yi〉IC (3.1)

is an inner-product quasilinear space where

〈Xi,Yi〉IC =
〈[

xr
i ,xr

i

]
+ i
[
xi

s,xs
i

]
,
[
yr

i ,yr
i

]
+ i
[
yi

s,ys
i

]〉
=
[
xr

i ,xr
i

]
+
[
yi

s,ys
i

]
+ i(
[
xi

s,xs
i

][
yr

i ,yr
i

]
−
[
xr

i ,xr
i

][
yi

s,ys
i

]
).
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Proof. Firstly, we will show that the equality (3.1) is well-defined, i.e., 〈X ,Y 〉 ∈Ω(C):
By the Hölder and Schwartz inequalities we observe that

‖〈X ,Y 〉‖=

∥∥∥∥∥ ∞

∑
i=1
〈Xi,Yi〉IC

∥∥∥∥∥≤ ∞

∑
i=1

∥∥∥〈Xi,Yi〉IC
∥∥∥

Ω

≤
∞

∑
i=1

(‖Xi‖IC ‖Yi‖IC)≤
∞

(∑
i=1
‖Xi‖2

IC)
1/2

∞

(∑
i=1
‖Yi‖2

IC)
1/2

= ‖X‖‖Y‖

for X ,Y ∈ I(l2). This means that the set 〈X ,Y 〉 is bounded. Now let us take a sequence (Xn)
∞
n=1 in the set 〈X ,Y 〉 such

that Xn → X0. Then {Xn} → {X0} for n = 1,2, ... in Ω(C) since Xn ∈ 〈X ,Y 〉 for n = 1,2, .... Further, we can say that
〈Xn,Yn〉 → 〈X ,Y 〉. The Lemma 4-a in [8] implies {X0} ⊆ 〈X ,Y 〉. Consequently, we obtain that X0 ∈ 〈X ,Y 〉.

1. If X ,Y ∈ (I(l2))r then

〈X ,Y 〉=
∞

∑
i=1
〈Xi,Yi〉IC ∈ (Ω(C))r ≡ C

since Xi,Yi ∈ C for i = 1,2, ....

2. By the second condition of inner-product on IC we write that

〈X +Y,Z〉=
∞

∑
i=1
〈Xi +Yi,Zi〉IC

⊆
∞

∑
i=1

(〈Xi,Zi〉IC + 〈Yi,Zi〉IC)

=
∞

∑
i=1
〈Xi,Zi〉IC +

∞

∑
i=1
〈Yi,Zi〉IC

= 〈X ,Z〉+ 〈Y,Z〉 .

3. By the third condition of inner-product on IC we obtain that

〈αX ,Y 〉=
∞

∑
i=1
〈αXi,Yi〉IC =

∞

∑
i=1

α 〈Xi,Yi〉IC = α

∞

∑
i=1
〈Xi,Yi〉IC = α 〈X ,Y 〉 .

Further, it can be easily shown that 〈X ,αY 〉= ᾱ 〈X ,Y 〉.

4. By the fourth condition of inner-product on IC,

〈X ,Y 〉=
∞

∑
i=1
〈Xi,Yi〉IC = 〈X ,Y 〉=

∞

∑
i=1
〈Yi,Xi〉IC = 〈Y,X〉 .

5.

〈X ,X〉= {0}⇔
∞

∑
i=1
〈Xi,Xi〉IC = {0}⇔ Xi = θ , i = 1,2, ...⇔ X = θ .

and for any X ∈ (I(l2))r we write that

〈X ,X〉=
∞

∑
i=1
〈Xi,Xi〉IC =

∞

∑
i=1
|Xi|2 ≥ 0.



On the Inner-Product Spaces of Complex Interval Sequences — 187/188

6.

‖〈X ,Y 〉‖
Ω
=

∥∥∥∥∥ ∞

∑
i=1
〈Xi,Yi〉IC

∥∥∥∥∥
Ω

= sup{|z| : z ∈
∞

∑
i=1
〈Xi,Yi〉IC}

= sup{|z| : z ∈
∞

∑
i=1

(
[
xr

i ,xr
i

]
+
[
yi

s,ys
i

]
+ i(
[
xi

s,xs
i

][
yr

i ,yr
i

]
−
[
xr

i ,xr
i

][
yi

s,ys
i

]
)

= sup{|〈x,y〉| : x ∈ FX ,y ∈ FY}.

7. If X � Y and Z� T then Xi � Yi and Zi � Ti for i = 1,2, .... By the seventh condition of inner-product on IC we write
that 〈Xi,Zi〉IC ⊆ 〈Yi,Ti〉IC for i = 1,2, ... and so 〈X ,Z〉 ⊆ 〈Y,T 〉.

8. Suppose that for any ε > 0 there exists an element Xε ∈ I(l2) such that X � Y +Xε and 〈Xε ,Xε〉 ⊆ Sε(θ). Then we say
that Xi ⊆ Yi +Xε

i for i = 1,2, .... By the hypotesis we write that

∞

∑
i=1
〈Xε

i ,X
ε
i 〉IC ⊆ Sε(θ).

Since IC is an inner-product quasilinear space, if Xi ⊆ Yi +Xε
i for i = 1,2, ... and ‖Xε

i ‖Ω
≤ ε then Xi ⊆ Yi for i = 1,2, ...

This implies X � Y.

4. Conclusion
In this paper, we have presented the notion of complex interval sequence and some important complex interval sequence spaces.
In this way, we brought a new perspective to sequence spaces with the help of interval analysis and quasilinear functional
analysis. We also have defined the inner product function on the complex interval sequence space I(l2) , which is one of the
most important sequence spaces. Thus, by using quasilinear functional analysis techniques, we have introduced a new type of
space to the literature.
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