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Abstract.

In the present paper, the existence and uniqueness of solution of the analogue of
Frankl’s problem for the degenerated equation of the parabolic-hyperbolic type was
investigated. Uniqueness of solution of the investigated problem are proved with
principle an extremum and existence of solution with method of integral equations.
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1.Introduction.

As we know, in 1959 year in the first by I.M Gelfand [3] was offered to studying
of boundary value problems for the equations parabolic-hyperbolic type.

Since A.V.Bitsadze’s works, in the theory partial differential equations there
was a new direction, in which the problem of the type of Frankl for the first time
is formulated and investigated for the modeling equations of the mixed type. We
note following works that are connected with studying Frankl problem for the mixed
type equations. In the books [1],[2] the Frankl problem was discussed for the special
mixed type equation of second order: uxx + signyuyy = 0. The Frankl problem
for the mixed equation with parabolic degeneracy singy|y|muxx + uyy = 0 with is
a mathematical model of problem of gas dynamic, was discussed in the book of
M.M.Smirnov [8]. Existence of solution of Frankl problem for general Lavrent’ev-
Bitsadze equations was proved in work of Guo-chun Wen and H.Begehr [4].

The basic review of boundary value problems for the mixed type equations with
Frankl condition it is possible will receive in the work J. M. Rassias [9].

2. Initial necessary dates
12
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Definition. Let’s, the function f(x) is any function from a class L(a, b) a <
x < ∞. An operator in the form

Dα
axf(x) =





1
Γ(−α)

x∫

a

f(t)
(x− t)1+c

, α < 0,

dn+1

dxn+1
Dα−(n+1)

ax f(x), α > 0,

Dα
xbf(x) =





1
Γ(−α)

b∫

x

f(t)
(t− x)1+α

, α < 0,

(−1)n+1 dn+1

dxn+1
D

α−(n+1)
xb f(x), α > 0,

(2.1)

where Dα
ax and Dα

xb is called as the integral operator of fractionally integration α,
at α < 0, and the generalized derivatives in understand of Liuvill on the order α,
at α > 0, n = [α]; [α] the whole part of number α.

Some properties integral differential operators of fractionally order.
10. If f(x) ∈ L(a, b), then for all α > 0 almost for all x ∈ (a, b)

Dα
xbD

−α
xb f(x) = f(x), (2.2)

20. Lets f(x) ∈ L(a, b), then:
1) if β ≥ α > 0, then

Dα
axD−β

ax f(x) = D−(β−α)
ax f(x), Dα

xbD
−β
xb f(x) = D

−(β−α)
xb f(x), x ∈ (a, b);

2) if α > β ≥ 0 and the function f(x) have a derivative of Dα−β
ax f(x), Dα−β

xb f(x)
then

Dα
axD−β

ax f(x) = D(α−β)
ax f(x),

Dα
xbD

−β
xb f(x) = D

(α−β)
xb f(x), x ∈ (a, b);

30. Let 0 < 2β < 1 (b− x)−βf(x) ∈ L(a, b). then almost everywhere on (a, b) it
is fair identities:

Dβ
xb(b− x)2β−1Dβ−1

xb (b− x)−βf(x) = (b− x)β−1D2β−1
xb f(x). (2.3)

40. A principle of an extremum for the fractional derivative operations Dα
ax and

Dα
xb(0 < α < 1). Let positive not decreasing function ω(t) and a function f(t)

continuously in [a, b]. Then, if the function f(t) reaches the positive maximum (a
negative minimum) in the segment [a, b] on the point t = x, a < x < b and in as
much as small vicinity of this point derivative of function ω(t)f(t) satisfy Gelder
condition with an indicator γ > α, then Dα

axωf > 0, (Dα
xbωf < 0).

The similar remark takes place for the operator Dα
xb, if ω(t) positive not increas-

ing function on the [a, b].

3. The statement of problems F.

The given work is devoted research of non-local problem of the Frankl type for
the equation

0 =

{
ym0uxx − xn0uy, x > 0, y > 0,

(−y)nuxx − xnuyy, x > 0, y < 0,
(3.1)

where m0, n0, n = const, m0 > 0, n0 > 0, n > 0.
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Let’s Ω is, domain restricted at x < 0, y > 0, by the segments AB, BB0, A0B0,
A0A on the lines y = 0, x = 1, y = 1, x = 0 and at x > 0, y < 0, restricted by
line x = 0, (−1 ≤ y ≤ 0) and characteristics

BC : x
n+2

2 + (−y)
n+2

2 = 1,

of equation (3.1), where A(0, 0), B(1, 0), A0(0, 1), B0(1, 1).
Let’s to put designations:

J = {(x, y) : 0 < x < 1, y = 0}, Ω1 = Ω ∩ {(x, y) : x > 0, y > 0},
Ω2 = Ω ∩ {(x, y) : x > 0, y < 0}, Ω21 = Ω2 ∩ {(x, y) : x + y > 0},

Ω22 = Ω2 ∩ {(x, y) : x + y < 0},Ω∗ = Ω1 ∪ Ω21 ∪ J, 2β =
n

n + 2
, α0 =

n0 + 1
n0 + 2

,

and
0 < 2β < 1, 1 < 2α0 < 2. (3.2)

we will designate, through

θ (x0) =
(

1 + x0

2

) 2
n+2

− ι̇

(
1− x0

2

) 2
n+2

, (3.3)

affix of the point of crossing characteristic BC0 by the characteristic leaving on the
point (x0, 0) ∈ J, parallel characteristic AC0, where C0

(
21/(n+2), 2−1/(n+2)

)
.

The Problem F. To find a function u(x, y) with following conditions:
1)u(x, y) ∈ C(Ω) ∩ C2,1(Ω1) ∩ C2(Ω21 ∪ Ω22);
2)u(x, y) satisfies equation (3.1) in the domain Ω1 ∪ Ω21 ∪ Ω22;
3)ux(x, y) ∈ C(Ω1 ∪ AA0) ∩ C(Ω22 ∪ AC), ux(+0, y) ∈ C(Ω22 ∪ AC), y−m0uy ∈
C(Ω1 ∪ J), uy ∈ C(Ω2 ∪ J) and on AB satisfied gluing condition:

lim
y→+0

y−m0uy(x, y) = lim
y→−0

uy(x, y), (x, y) ∈ J, (3.4)

4)u(x, y) satisfies boundary conditions :

u(x, y)|AA0 = τ0(y), u(x, y)|BB0 = ϕ0(y), 0 ≤ y ≤ 1, (3.5)

Dβ
x21(1− x2)2β−1u [θ(x)] = a(x)u

(
x

2
n+2 , 0

)
+

+b(x)(1− x2)β−1uy

(
x

2
n+2 , 0

)
+ c(x), x ∈ (0, 1), (3.6)

ux(0, +y) = ux(0,−y), 0 < y < 1, (3.7)
where ϕ0(y),τ0(y), a(x), b(x), c(x) are given continuous functions, at that

τ0(y), ϕ0(y) ∈ C[0, 1] ∩ C1(0, 1), (3.8)

a(x), b(x), c(x) ∈ C [0, 1] ∩ C3(0, 1). (3.9)

3.1. Reduction of main functional relations.
A solution of the Cauchy problem satisfying the following conditions τ−(x) =

u(x,−0), 0 ≤ x ≤ 1, ν−(x) = uy(x,−0), 0 < x < 1, for the equation(3.1) in the
domain of Ω21, looks like[7]:

u(x, y) = γ1

1∫

0

τ−
(

z
1

n+2
1

)
zβ−1(1− z)β−1dz−
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−γ2xy

1∫

0

z
− 1

n+2
1 ν−

(
z

1
n+2
1

)
z−β(1− z)−βdz, (3.10)

where , γ1 = Γ(2β)
Γ2(β) , γ2 = Γ(2−2β)

Γ2(1−β) , z1 = xn+2 + (−y)n+2 + 2x
n+2

2 (−y)
n+2

2 (2z − 1).
By virtue (3.3), from (3.10), we have

u [θ(x)] = γ1

1∫

0

τ−
[(

x2 + (1− x2)z
) 1

2−β
]
(z(1− z))β−1dz + γ2

(
1− x2

4

)1−2β

×

×
1∫

0

(
x2 + (1− x2)z

)β− 1
2 ν−

[
(x2 + (1− x2)z)

1
2−β

]
(z(1− z))−βdz.

From here, owing to replacement x2 + (1− x2)z = s, we will receive

u[θ(x)] = γ1(1− x2)1−2β

1∫

x2

(s− x2)β−1(1− s)β−1τ−
(
s

1
n+2

)
ds+

+γ242β−1

1∫

x2

(s− x2)−β(1− s)−βsβ− 1
2 ν−

(
s

1
n+2

)
ds.

Further,taking properties of integro-differential operators into account (2.1)[8],we
have

u[θ(x)] = γ1Γ(β)(1− x2)1−2βD−β
x21τ

−
(
x

2
n+2

)
(1− x2)β−1+

+γ2Γ(1− β)42β−1Dβ−1
x21 (1− x2)−βx2β−1ν−

(
x

2
n+2

)
. (3.11)

Substituting (3.11),(2.2) to the condition (3.6), and replacing x2 to x, we have
[
a(x)− γ1Γ(β)(1− x)β−1

]
τ−

(
x

1
n+2

)
+ c(x) = γ2Γ(1− β)42β−1×

×Dβ
x1(1− x)2β−1Dβ−1

x1 (1− x)−βxβ− 1
2 ν−

(
x

1
n+2

)
− (1− x)β−1b (x) ν−

(
x

1
n+2

)
.

(3.12)
From (3.12) and (2.3), we have

a1(x)τ̃−(x) = γ2Γ(1− β)42β−1D2β−1
x1 xβ− 1

2 ν̃−(x)−
−b (x) ν̃−(x)− c(x)(1− x)1−β , 0 < x < 1, (3.13)

where, τ̃−(x) = τ−
(
x

1
n+2

)
, ν̃−(x) = ν−

(
x

1
n+2

)
,

a1(x) = a(x)(1− x)1−β − γ1Γ(β), a(x) = a(
√

x), b(x) = b(
√

x), c(x) = c(
√

x).
(3.14)

Let’s consider three cases:
I. Let’s b(x) = 0, a(x) 6= 0. Then from (3.13), receive

γ2Γ(1− β)42β−1D2β−1
x1 xβ− 1

2 ν̃−(x) = a1(x)τ̃−(x) + (1− x)1−βc (x) . (3.15)

Applying the operator D1−2β
x1 [.] to both parts of equality (3.15), we will obtain

the basic functional relation between τ̃−(x) and ν̃−(x) :

γ2Γ(1− β)42β−1ν̃−(x) = x
1
2−βD1−2β

x1 a1(x)τ̃−(x)+
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+x
1
2−βD1−2β

x1 (1− x)1−βc (x) . (3.16)

Further, from the equation uxx−xn0y−m0uy = 0 at the y → +0 we have receive
ordinary differential equation

τ
′′+(x)− xn0ν+(x) = 0, 0 < x < 1, (3.17)

where τ+(x) = u(x,+0) and ν+(x) = lim
y→+0

y−m0uy(x, y).

Solving this equation with conditions τ+(0) = τ0(0) and τ+(1) = ϕ0(0), deduce
functional relation between τ+(x) and ν+(x) :

τ+(x) =

1∫

0

G(x, t)tn0ν+(t)dt + f(x), 0x1,

here

G(x, t) =
{

t(x− t), 0 ≤ t ≤ x,
(t− 1)x, x ≤ t ≤ 1.

(3.18)

f(x) = τ0(0) + x(ϕ0(0)− τ0(0)). (3.19)

Further, by virtue replace x ∼ x
1

n+2 and t ∼ t
1

n+2 receive functional relation
between τ̃+(x) ν̃+(x) :

τ̃+(x) =

1∫

0

G̃(x, t)ν̃+(t)dt + f̃(x), 0x1, (3.20)

where, f̃(x) = f
(
x

1
n+2

)
, τ̃+(x) = τ+

(
x

1
n+2

)
, ν̃+(t) = ν+

(
t

1
n+2

)
,

G(x, t) =
1

n + 2
t

n0+1
n+2 −1G

(
x

1
n+2 , t

1
n+2

)
. (3.21)

3.2. Uniqueness of the solution.

Theorem 1. If satisfying the conditions (3.2),b(x) = 0, a(x) 6= 0 and

a1(x) > 0, x ∈ (0, 1), (3.22)

then a solution u(x, y) of the problem F is unique.
The Proof. According to the extremum principle for the parabolic equations

[5], [10], the solution u(x, y) of the equation(3.1) cannot reach the positive maxi-
mum and negative minimum in the domain of Ω1 and on a piece A0B0. We will
denote, that the solution u(x, y) does not reach the positive maximum and negative
minimum on an interval AB.

Let’s assume the return, i.e. let in some point E(x0, 0) function u(x, y) reaches
the positive maximum (negative minimum). Then from (3.16), at c(x) ≡ 0 we have:

γ2Γ(1− β)42β−1ν̃− (x0) = x
1
2−β
0 D1−2β

x01
a1(x0)τ̃− (x0) . (3.23)

From here, owing to a principle for the differential operators fractional order
[8], on the point of positive maximum (negative minimum) strictly positively (neg-
atively) D1−2β

x01
a1(x0)τ̃− (x0) > 0,

(
D1−2β

x01
a1(x0)τ̃− (x0) < 0

)
. Accordingly, owing

to that x0 > 0, γ2 > 0 from (3.23), receive, ν̃− (x0) > 0, (ν̃− (x0) < 0) . From here,
by virtue (3.4) we have ν̃+ (x0) > 0, (ν̃+ (x0) < 0) . This inequality contradicts an
inequality ν̃+ (x0) 0, (ν̃+ (x0) ≥ 0), which is direct appears from (3.17).
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Thus, the solution u(x, y) of equation (3.1) can’t reach the positive maximum
and negative minimum on an interval AB. Hence, u(x, y) can to reach the positive
maximum (a negative minimum) on the piece of AA0 and BB0.

From here owing to (3.5), considering continuity of the function u(x, y) in Ω1, a
solution of the first boundary value problem for the equation (3.1) in the domain
of Ω1 to identically equally zero at ϕ0(y) ≡ τ0(y) ≡ 0.

As u(x, y) ≡ 0 in domain Ω1 we have τ̃ (x) ≡ 0, and by virtue (3.23), ν̃ (x) ≡ 0.
Hence, owing to unequivocal solvability of Cauchy problem it is had u(x, y) ≡ 0 in
the domain Ω21, from here u(x,−x) ≡ 0.

Further, from solution homogeneous first boundary value problem for the equa-
tion (3.1) in domain of Ω1 taking into account a condition (3.7), we will receive
ux(0, y) = ux(0,−y) = 0, 0 < y < 1. Hence, the solution of the Cauchy-Gaursat
problem for the equation (3.1) with zero given identically equally to zero in the
domain of Ω22, i.e. u(x, y) ≡ 0 in the domain Ω22.

Thus, from the above-stated we will receive, that u(x, y) ≡ 0 in the domain Ω.
Hence, the solution of a problem F in the domain of Ω is unique. The theorem 1
was proved.

3.3. Existence of the solution.

Theorem 2. If satisfying the conditions (3.2), (3.8), (3.9) and b(x) = 0, a(x) 6= 0
then a solution u(x, y) of the problem F is exist in the domain of Ω.

Proof. Considering a continuity of the solution of a problem F, excluding τ̃(x) =
τ̃− (x) = τ̃+ (x) from (3.16) and (3.20), we have

γ242β−1Γ(1− β)ν̃(x) = x
1
2−βD1−2β

x1 a1(x)




1∫

0

G̃(x, t)ν̃(t)dt + f̃(x)


 +

+x
1
2−βD1−2β

x1 c(x)(1− x)1−β .

Further, taking into account properties of integro-differential operators (2.1) [11],
we find

ν̃(x) = k1x
1
2−β d

dx




1∫

x

(t− x)2β−1
a1(t)dt

1∫

0

G̃(t, s)ν̃(s)ds


+

+k1x
1
2−β d

dx




1∫

x

(t− x)2β−1
a1(t)f̃(t)dt +

1∫

x

(t− x)2β−1(1− t)1−βc(t)dt


 ,

(3.24)
where, k1 = 1/γ242β−1Γ(1− β)Γ(2β)

Having executed replacement t = x+(1−x)σ and changing an order of integration
from (3.24), we have

ν̃(x) = k1x
1
2−β d

dx


(1− x2β

1∫

0

σ2β−1a1(x + (1− x)σ)dσ

1∫

0

G̃ (x + (1− x)σ, s))ν̃(s)ds


+

+k1x
1
2−β d

dx


(1− x)2β

1∫

0

σ2β−1a1(x + (1− x)σ)f̃(x + (1− x)σ)dσ


+
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+k1x
1
2−β d

dx


(1− x)1+β

1∫

0

σ2β−1(1− σ)1−βc(x + (1− x)σ)dσ


 .

From here, after some evaluations, we will obtain the integral equation

ν̃(x) =

1∫

0

K̃(x, s)ν̃(s)ds + Φ̃(x), (3.25)

where
K̃(x, s) = K̃1(x, s) + K̃2(x, s), (3.26)

K̃1(x, s) = −2βk1x
1
2−β (1− x)2β−1

1∫

0

σ2β−1a1 (x + (1− x)σ)×

×G̃ (x + (1− x)σ, s) dσ, (3.27)

K̃2(x, s) = k1x
1
2−β (1− x)2β d

dx

1∫

0

σ2β−1a1(x + (1− x)σ)×

×G̃(x + (1− x)σ, s)dσ, (3.28)

Φ̃(x) = −2βk1x
1
2−β

1∫

0

σ2β−1a1(x + (1− x)σ)f̃(x + (1− x)σ)dσ+

+k1x
1
2−β(1− x)2β

1∫

0

σ2β−1 d

dx

[
a1(x + (1− x)σ)f̃(x + (1− x)σ)

]
dσ−

−(1 + β)k1x
1
2−β(1− x)β

1∫

0

σ2β−1(1− σ)1−βc(x + (1− x)σ)dσ+

+k1x
1
2−β(1− x)1+β

1∫

0

σ2β−1(1− σ)1−β d

dx
[c(x + (1− x)σ)] dσ. (3.29)

From here, owing to continuity the functions G(x, t) ∈ C ([0, 1]× [0, 1]) and a(x),
we have ∣∣∣K̃1(x, s)

∣∣∣ c1s
n0+1
n+2 −1 (1− x)2β−1

. (3.30)

Also, considering (3.9),(3.14), (3.18),(3.21) from (3.28) we will receive∣∣∣K̃2(x, s)
∣∣∣ c2s

n0+2
n+2 −1(1− x)2β−1. (3.31)

Thus, by virtue (3.30) and (3.31) from (3.26), we have∣∣∣K̃(x, s)
∣∣∣ c3s

n0+1
n+2 −1(1− x)2β−1. (3.32)

There under (3.2), (3.9), (3.14), (3.19) appear from (3.29) that the function Φ̃(x).
Supposes an estimate ∣∣∣Φ̃(x)

∣∣∣ c4(1− x)2β−1. (3.33)

where, c1, c2, c3, c4 = const.
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Thus, by virtue (3.32), (3.33) integral equation (3.25) constitute Fredholm in-
tegral equation of the second kind[6], with the weak feature which unequivocal
solvability appears from the uniqueness of the solution of investigated problem, i.e.
the equation (3.25) has the unique solution, and ν+(x) ∈ C2(0, 1).

Hence, it is possible to present its solution on the form of[6]:

ν̃−(x) = Φ̃(x) +

1∫

0

R(x, s)Φ̃(s)ds, (3.34)

where R(x, s)- resolvent the kernel of K(x, s).
From here, according to gluing condition (3.4) taking into account (3.34) and

(3.20) we find function τ̃+(x),

τ̃+(x) =

1∫

0

G̃(x, t)


Φ̃(t) +

1∫

0

R(t, z)Φ̃(z)dz


 dt + f̃(x),

Further, designating, Φ(t) = Φ̃(t) +
1∫
0

R(t, z)Φ̃(z)dz, we have

τ̃+(x) =

1∫

0

G̃(x, t)Φ(t)dt + f̃(x), 0x1. (3.35)

Hence, by virtue (3.2), (3.9) owing to (3.35) and (3.21), (3.19) conclude, that
the function τ+(x) in C[0, 1] ∩ C2(0, 1).

II. Let’s b(x) 6= 0, a(x) 6= 0.
From (3.13), we will receive

ν̃−(x) =
γ2Γ(1− β)42β−1

b (x)Γ(1− 2β)

1∫

x

(t− x)−2βtβ−
1
2 ν̃−(t)dt−

−a1(x)
b (x)

τ̃−(x)− c(x)
b (x)

(1− x)1−β . (3.36)

Let’s notice, that the integral equation (2.36) is integrated Equation Volterra of
the second kind

ν̃−(x) = λ

1∫

x

N(x, t)ν̃−(t)dt + F (x), (3.37)

where, λ = γ2Γ(1−β)42β−1

Γ(1−2β) ,

F (x) = −a1(x)
b (x)

τ̃−(x)− c(x)
b(x)

(1− x)1−β , (3.38)

N(x, t) =
1

b(x)
(t− x)−2βtβ−

1
2 . (3.39)

By virtue (3.9), from (3.38) and (3.39) accordingly

|N(x, t)| ≤ M, 0 ≤ x ≤ 1, (3.40)

and
|F (x)| ≤ const (3.41)



20

further, owing to the theory of integrated equations Volterra of the second kind [9],
taking into account (3.40) and (3.41), we have |R(x, s; λ)| ≤ const, i. the solution
of equation (3.37) it is possible will present on the form of

ν̃−(x) = −λ

1∫

x

a1(s)
b(x)

R(x, s;λ)τ̃−(s)ds− λ

1∫

x

R(x, s;λ)c(s)
b(s)

ds−

−a1(x)
b(x)

τ−(x)− c(x)
b(x)

(1− x)1−β . (3.42)

3.4. Uniqueness of the solution.

Theorem 3. If satisfying the conditions (3.2),(3.8), (3.9), b(x) 6= 0, a(x) 6= 0
and

a1(x) > 0, b(x) < 0, 0 < x < 1, (3.43)

then the solution u(x, y) of the problem F is unique.
Proof. Let’s notice, that justice of the theorem 3 the follows at once from the

theorem 1, if is proved, than the solution u(x, y) of the equations (3.1) cannot reach
the positive maximum and negative minimum in domain of Ω1 and on a piece A0B0.
And this statement is similarly proved as the theorem 1, i.e. by virtue principle of
an extremum for the parabolic equations [5], the solution u(x, y) the equation (3.1)
cannot reach the positive maximum and a negative minimum in domain Ω1 and
on a piece A0B0. Let’s show, that the solution u(x, y) does not reach the positive
maximum and negative minimum on an interval AB. We will assume the return, i.e.
let in some point (x0, 0) function u(x, y) reaches the positive maximum (negative
minimum). Then from (3.42), at c(x) ≡ 0 we have:

ν̃−(x0) = −λ

1∫

x0

a1(s)
b(x0)

R(x0, s; λ)τ̃−(s)ds− a1(x0)
b(x0)

τ̃−(x0).

From here considering (3.43), owing to, that R(x0, s; λ) > 0 in the point of
positive maximum (negative minimum) τ̃−(x0) ≥ 0 (τ̃−(x0) ≤ 0) we will receive
ν̃−(x0) ≥ 0 (ν̃−(x0) ≤ 0), and this inequality contradicts an inequality ν̃+ (x0) 0,
(ν̃+ (x0) ≥ 0), which directly follows from (3.17). Hence the solution u(x, y) the
equation (3.1) can’t reach the positive maximum and negative minimum in domain
Ω1 and on a piece A0B0. The theorem 3 is proved.

3.5. Existence of the solution.

Theorem 4. If satisfying the conditions (3.2), (3.8), (3.9) and b(x) 6= 0, a(x) 6=
0 then the solution u(x, y) of the problem F is exist.

Proof. Substituting (3.42) in (3.20), we have

τ̃(x) =

1∫

0

K̃(x, s)τ̃(s)ds + f̃(x), 0x1, (3.44)

where,

K̃(x, s) = −a1(s)
b(s)


G̃(x, s) + λ

s∫

0

G̃(x, t)R(t, s; λ)dt


 .
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The equation (3.44) is Fredholm integral equation the second kind[6] and it un-
equivocal resolubility follows from the uniqueness of the solution the problems F.

III. Let’s a(x) ≡ 0, b(x) 6= 0.

3.6. Uniqueness and existence of the solution.

On the case of a(x) ≡ 0, b(x) 6= 0 takes place the following uniqueness theorem:
Theorem 5. If satisfying the conditions (3.2) and

b(x) > 0, 0 < x < 1, (3.45)

then the solution u(x, y) of the problem F is unique.
Proof. From the integral equation (3.36) at a(x) ≡ 0, taking into account (3.14)

we will receive:

ν̃−(x) =
γ2Γ(1− β)42β−1

b(x)Γ(1− 2β)

1∫

x

(t− x)−2βtβ−
1
2 ν̃−(s)ds + F1(x)

where

F1(x) =
γ1Γ(β)
b(x)

τ̃−(x)− c(x)
b̄(x)

(1− x)1−β
,

and |F1(x)| const.
Hence, from (3.42), at a(x) ≡ 0 we obtain main functional relation between

τ̃−(x) and ν̃−(x) :

ν̃−(x) = λγ1Γ(β)

1∫

x

1
b(x)

R(x, s; λ)τ̃−(s)ds− λ

1∫

x

R(x, s; λ)c(s)
b(s)

ds+

+
γ1Γ(β)
b(x)

τ−(x)− c(x)
b(x)

(1− x)1−β . (3.46)

Let’s show, that the solution u(x, y) does not reach the positive maximum and
negative minimum on an interval AB. We will assume the return, i.e. let in some
point (x0, 0) function u(x, y) reach the positive maximum (negative minimum).
Then from (3.46), at c(x) ≡ 0 we have:

ν̃−(x0) = λγ1Γ(β)

1∫

x0

1
b(x0)

R(x0, s; λ)τ̃−(s)ds +
γ1Γ(β)
b(x0)

τ̃−(x0).

From here considering (3.45), owing to, that R(x0, s; λ) > 0 in the point of
positive maximum (negative minimum) τ̃−(x0) ≥ 0 (τ̃−(x0) ≤ 0) we will receive
ν̃−(x0) ≥ 0 (ν̃−(x0) ≤ 0), and this inequality contradicts an inequality ν̃+ (x0) 0,
(ν̃+ (x0) ≥ 0), which directly follows from (3.17). Hence the solution u(x, y) the
equation (3.1) can’t reach the positive maximum and negative minimum in domain
Ω1 and on a piece A0B0. further, let’s notice, that justice of the theorem 4 the
follows at once from the theorem 1 and theorem 3. The theorem 5 is proved.

Theorem 6. If satisfying the conditions (3.2), (3.8), (3.9) and a(x) ≡ 0,
b(x) 6= 0 then the solution u(x, y) of the problem F is exist.



22

Proof. Substituting (3.46) in (3.20), we have

τ̃(x) =

1∫

0

K̃1(x, s)τ̃(s)ds + f̃(x), 0x1, (3.47)

where,

K̃1(x, s) =
γ1Γ(β)
b(s)


G̃(x, s) + λ

s∫

0

G̃(x, t)R(t, s; λ)dt


 .

The equation (3.47) is Fredholm integral equation the second kind[6], and it
unequivocal solubility follows from the uniqueness of the solution the problems F.

Thus, the solution of the investigated problem in the domain of Ω1 is restored
as the solution of the first boundary problem which has kind of [11]:

u(x, y) =

1∫

0

G1(x, ξ; y, α0)τ+(ξ)ξn0dξ + y−m0
∂

∂y

y∫

0

G2(x, y − t, α0)τ+
0 (t)tm0dt+

+y−m0
∂

∂y

y∫

0

G3(x, y − t, α0)ϕ0(t)tm0dt,

where

G3(x, y, α0) = (1− α0)2(1−α0)x−
1∫

0

G1(x, ξ; y, α0)
[
(1− α0)2(1−α0)

]
ξn0dξ,

G2(x, y, α0) = 1− (1−α0)2(1−α0)x−
1∫

0

G1(x, ξ; y, α0)
[
1− (1− α0)2(1−α0)ξ

]
ξn0dξ,

G1(x, ξ, y;α0) =
∞∑

k=0

e
−λ2

kym0+1

4(m0+1) (1− α0)
√

xξ×

×J1−α0(λk(1− α0)(
√

x)
1

1−α0 )J1−α0(λk(1− α0)(
√

ξ)
1

1−α0 )
J2

2−α0
(λk)

,

Jν(z) =
∞∑

k=0

(−1)k( z
2 )

ν+2k

Γ(k+1)Γ(k+ν+1) is the function of Bessel on the first kind , λk are

positive solutions of equation J1−α0(λk) = 0, k = 0, 1, 2. G1(x, ξ; y, α0) - the Grin
function of the first boundary value problem.

Satisfying condition ν+
0 (y) = ux(0, y), (0 < y < 1) to solution of the first bound-

ary value problem, we have:

ν+
0 (y) = lim

x→+0

∂

∂x

1∫

0

G1(x, ξ; y, α0)τ+
1 (ξ)ξn0dξ+

+ lim
x→+0

∂

∂x


y−m0

∂

∂y

y∫

0

G2(x, y − t, α0)τ+
0 (t)tm0dt


 +
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+ lim
x→+0

∂

∂x


y−m0

∂

∂y

y∫

0

G3(x, y − t, α0)ϕ0(t)tm0dt


 .

From here, by virtue condition(3.7), the solution of the problem F on domain
of Ω22, it is restored as the solution of problem Cauchy-Gaursat, satisfying to
conditions ν+(y) = ν−(y) = ux(0, y), −1 < y < 0 u(−y, y) = h(y), where h(y)
is the trace of solution of problem Cauchy in domain of Ω21 on the characteristics
y = −x. Thus, the existence of solution of the problem F is proved.
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