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CONJUGATE TANGENT VECTORS AND ASYMPTOTIC
DIRECTIONS FOR SURFACES AT A CONSTANT DISTANCE
FROM EDGE OF REGRESSION ON A SURFACE IN FE}

DERYA SAGLAM! AND OZGUR BOYACIOGLU KALKAN?

ABSTRACT. In this paper we give conjugate tangent vectors and asymptotic
directions for surfaces at a constant distance from edge of regression on a
surface in Ei)’

1. INTRODUCTION

Conjugate tangent vectors and asymptotic directions in Euclidean space E3 can
be found in [9]. In 1984, A. Kili¢ and H. H. Hacisalihoglu found the Euler theorem
and Dupin indicatrix for parallel hypersurfaces in E™ [13]. Also the Euler theo-
rem and Dupin indicatrix are obtained for the parallel hypersurfaces in pseudo-
Euclidean spaces ETT' and E?*! in the papers ([5], [7], [8]).

In 2005 H. H. Hacisalihoglu and 0. Tarake introduced surfaces at a constant
distance from edge of regression on a surface. These surfaces are a generalization
of parallel surfaces in E3. Because the authors took any vector instead of normal
vector [17]. Euler theorem and Dupin indicatrix for these surfaces are given in [2].
Conjugate tangent vectors and asymptotic directions are given in [1]. In 2010 we
obtained the surfaces at a constant distance from edge of regression on a surface in
E3 [15]. We obtained the Euler theorem and Dupin indicatrix for these surfaces in
E3 [16].

In this paper we give conjugate tangent vectors and asymptotic directions for
surfaces at a constant distance from edge of regression on a surface in E.

2. PRELIMINARIES

Let E3 be the Minkowski 3-space is the real vector space R® endowed with the
standard flat Lorentzian metric given by

<,> = 7(d9§1)2 + (d$2)2 + (dx3)2
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where (x1,2,23) is a rectangular coordinate system of E}. An arbitrary vector
x € F} is called spacelike if (z,x) > 0 or x = 0, timelike if (z,2) < 0 and lightlike
(null) if (z,z) =0 and z # 0.
The timelike-cone of E is defined as the set of all timelike vectors of E$, that is
T ={(z,y,2) € B}, 2* +9y* - 2% < 0}.
The set of lightlike vectors is defined by C and it is the following set:
C={(z,y,2) € E}; 2* +y* — 22 =0} — {0,0,0}.

The cross product x X y of vectors & = (x1,z2,23) and y = (y1,y2,y3) in E} is
defined as

(x xy,2) =det(x,y,z) forall z=(21,20,23) € E3.
More explicitly, if 2,y belong to E$, then

(r,y) = —x1y1 + T2y2 + 23Yy3
rxy = (—(T2ys — T3y2), T3y1 — T1Y3, T1Y2 — T2Y1)
(a,z) (b,x)
axbxx = —
< v ’ (a,y) (b,y)

where a = (a1,az,a3) and b = (by, by, b3) in E} (Lagrange identity in E}).

Let e1,e2 € E3 be such that < e;,e; >= £1 and (e1,e2) = 0 and e3 = e1 X es.
Then these three vectors form an orthonormal frame. If (e1,e1) = 1 and (ea, e2) =
€9 where 1,9 = 1, it follows from the Lagrange identity that (e3,es) = —e1e9.
Each vector € E} can be written uniquely in terms of e;, es, e3 by

r =& <l’, €1> e1 + &o <l’, 62> €y —E1&2 <177 63> €3.

The angle between two vectors in Minkowski 3-space is defined by ([3], [10], [11],
[12]):

Definition 2.1. i. Hyperbolic angle: Let z and y be timelike vectors in the
same timecone of Minkowski space. Then there is a unique real number 6 > 0,
called the hyperbolic angle between z and y, such that

<@,y >= — |[z[l [yl cosh 6.

ii. Central angle: Let x and y be spacelike vectors in Minkowski space that span
a timelike vector subspace. Then there is a unique real number 6 > 0, called the
central angle between x and y, such that

<@,y > = || [ly[l cosh 6.

iii. Spacelike angle: Let x and y be spacelike vectors in Minkowski space that
span a spacelike vector subspace. Then there is a unique real number 6 between 0
and 7 called the spacelike angle between x and y, such that

<2,y >= [lz] ly[| cos 6.

iv. Lorentzian timelike angle: Let x be a spacelike vector and y be a timelike
vector in Minkowski space. Then there is a unique real number 6 > 0, called the
Lorentzian timelike angle between = and y, such that

< 2y >| = || lyll sinh 6.
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Definition 2.2. Let M and M/ be two surfaces in E and N, be a unit normal
vector of M at the point P € M. Let T,M be tangent space at P € M and
{X,,Y,} be an orthonormal bases of T,M. Let Z, = d1 X, + d2Y, + d3sN,, be a unit
vector, where di,da,d3 € R are constant numbers and e1d3 + egd3 — e162d3 = +1.
If a function f exists and satisfies the condition f : M — M/, f(P) = P +rZ,,
r constant, M7 is called as the surface at a constant distance from the edge of
regression on M and M/ denoted by the pair (M, M7).

If di = dy = 0, then we have Z, = N, and f(P) = P+ rN,. In this case M and
M7 are parallel surfaces [15].

Theorem 2.1. Let the pair (M, M7) be given in E}. For any W € x(M), we
- 3 0 — 3 3}
have f.(W) =W 4+ rDwZ, where W = Zwi@? W= Zma and VP € M,
i=1 i i=1
wilP) = Wi(f(p)), 1< <3[15].

9

Let (¢,U) be a parametrization of M, so we can write that

¢: U CE} - M .
(uv) P=g(u,v)

In this case {Pulp, Pulp} is a basis of T,M. Let N, is a unit normal vector at
P € M and dy,dz,d3s € R be constant numbers then we can write that Z, =
d1bulp + dady|, + d3N,. Since M7 = {f(P) | f(P) = P+ rZ,}, a parametric
representation of M7 is ¢(u,v) = ¢(u,v) + rZ(u,v). Thus we can write

Mf = {¢(Ua ’U) | 1/}(u7 U) = ¢(u7 ’U) + T(d1¢u(u7 ’U) + d2¢1}(u7 1}) + d3N(u7 ’l))),
dy, do, dg,r are constant, Eld% + 52d§ — 61€2d§ = :l:l} .

If we take rd; = A1, rds = A9, rd3s = A3 then we have
M = {Y(u, v) | (u,v) = ¢(u, v)+A1 Gy (U, V) + A2, (w, V)+A3N (u,v), A1, A2, A3 are constant}.

Let {¢u, ¢y} is basis of x(M7). If we take (¢y,du) = €1, (By, dy) = €2 and
(N,N) = —¢e1¢e9, then

Yy = (14 Ask1)du +e2X1k1N,
Yy = (14 X3k2)oy, + 12k N

is a basis of x(M7), where N is the unit normal vector field on M and ki, ky are
principal curvatures of M [15].

Theorem 2.2. Let the pair (M, M') be given in E}. Let {¢y, ¢} (orthonormal
and principal vector fields on M) be basis of x(M) and ki,ks be principal cur-
vatures of M. The matriz of the shape operator of MT with respect to the basis
{0 = (14 Ask1)du + e2Mk1 N, 1y = (14 Ask2) ¢ + 1 X2ka N} of x(MY) is

sf — H1 o p2
M3 Ha
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where
1+ Asks Ok
g o= (1473) {gAlau(Agk; —e1(1 4+ \3k2)?) + k1A2} ,
by = A Aok1ka (1 + Asks) Oky
2 A3 ou’
o —E)\l)\%klk‘g(l + )\3]{:1) %
M3 = AS 8’U )
14+ A3k ok
Ha = (147331) {_5)\281}2()\%k% —52(1+)\3]€1)2)+k2A2}

and A = \/8 (81/\%](}%(1 + /\3k2)2 + 82)\%]{}%(1 + )\3]{}1)2 - 6162(1 + /\3/451)2(1 + /\3]62)2)
115).

Definition 2.3. Let M be an Euclidean surface in £2 and S be shape operator of
M. For any X,,Y, € T,M, if

(2.1) (S(X,), Yp) =0
then X, and Y, are called conjugate tangent vectors of M at p [9].

Definition 2.4. Let M be an Euclidean surface in E? and S be shape
operator of M. For any X, € T,M, if

(2:2) (S(X,), X,) = 0
then X, is called an asymptotic direction of M at p [9].

We can get the definitions of conjugate tangent vectors and asymptotic direction
in Minkowski 3-space similar to Definition 2.3 and 2.4 as below:

Definition 2.5. Let M be a surface in E5 and S be shape operator of M. For any
Xp, Y, € T,M, if

(2.3) (S(X,), ;) = 0
then X, and Y}, are called conjugate tangent vectors of M at p.

Definition 2.6. M be a surface in E} and S be shape operator of M. For any
Xp e T,M, if

(2.4) (S(Xp), Xp) =0

then X, is called an asymptotic direction of M at p.

3. CONJUGATE TANGENT VECTORS FOR SURFACES AT A CONSTANT DISTANCE
FROM EDGE OF REGRESSION ON A SURFACE IN E3

Theorem 3.1. Let M7 be a surface at a constant distance from edge of regression
on a M in E}. Let k1 and ko denote principal curvature function of M and let
{bu, v} be orthonormal basis such that ¢, and ¢, are principal directions on M.
For X,,Y, € T,M, f.(X,) and f.(Y,) are conjugate tangent vectors if and only if

(3.1) E1PIT1IYL + E1U5T1Y2 + E243T2Y1 + E2piyT2Yy2 = 0
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where
(3'2) ry = <va ¢u> ) T2 = <Xp7 ¢v> s
g1 = <Y;77¢u>7 Y2 = <}/;7¢v>7
/ff = Ml(l + Azky 2 )\1k1(€2/i1)\1k1 + 51#2)\2/@ y

2

)

) )
143 p2(1+ Ask2)® — Aoka(e2p A1k + €112 A2k2),
py = pa(l4 Ask1)® — Aiki(eapshikr + e1padoks)
o = pa(l+ )\3k2)2 — Aoka(eapisAkr + €1 padoks).
Proof. Let f.(X,) € Ty M7. Then let us calculate f, (X)) and SY(f.(X,)). Since
¢, and ¢, are orthonormal we have
Xp = &1 <Xp7 ¢u> ¢u + &2 <va ¢v> ¢v

= Elxld)u + 521'2(7251;-

Further without lost of generality, we suppose that X, is a unit vector. Then
(3.3) [(Xp) = e1w1fi(du) + 222 fu(d0)
= a1y + E2w21y.

On the other hand we find that
(3.4)
Sf(f*(X;D)) 51$15f(1/}u) +€2$25f(¢v)
= e1x1 ( (1 + Ask1)du + p2(1 + Aska)dy + (182A1k1 + pog1A2ka) N)
+eoxa (s (1 + Ask1) oy + pa(l + Ask2) o, + (nzea1k1 + pac1Azka)N)

and for Y, € T,M we have

(3’5) Yp = & <va ¢u> by + €2 <Ypa ¢v> ol
= E1Y10Qu + E2Y2Py.

Then
(3.6) [(Yp) = e fu(du) + 292 fi(d0)
= a1ty + e2y2y.
Thus using equations (3.4) and (3.6) in equation (2.3) we obtain (3.1). O

Theorem 3.2. Let M7 be a surface at a constant distance from edge of regression
on M in E}. Let ky and ky denote principal curvature functions of M and let
{bu, v} be orthonormal basis such that ¢, and ¢, are principal directions on M.
Let us denote the angle between X, € T,M and ¢, ¢, by 01, 02 respectively and
the angle between Y, € T,M and ¢, ¢, by 0}, 05 respectively. f.(X,) and f.(Y})
are conjugate tangent vectors if and only if

(a)Let Ny, be a timelike vector then

py cos 0y cos 0] + pb cos by cos 05 + i cos B cos 0] + ) cos b cos 05 = 0.

(b) Let ¢, be a timelike vector.
(b.1) If X, and Y, are spacelike vectors then

0 = —0101 p7 sinh 61 sinh 6] — 61055 sinh 61 cosh 64
+064 6213 cosh 02 sinh 0] + §265 5 cosh O3 cosh 65,
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(b.2) If X,,,Y,, and ¢, are timelike vectors in the same timecone then

0 = pj cosh 0y cosh 0] + 845 cosh 6 sinh &),
— 0o} sinh 05 cosh 0] + 6205 1% sinh O, sinh 6.

(b.3) If X,,, ., are timelike vectors in the same timecone and Y, is spacelike vector
then

0 = &)} cosh 0y sinh 0] + 643 cosh 6 cosh 6,
+081 6243 sinh O sinh 0] + §265 4% sinh O cosh 0.
(b.4) If Y, and ¢, are timelike vectors in the same timecone and X, is spacelike
vector then
0 = 613 sinh 0y cosh 0] — &165 5 sinh 0y sinh 0)
—02 1% cosh Oz cosh 0] + 5264511 cosh O sinh 0.
(c) Let ¢, be a timelike vector.
(c.1) If X, and Y, are spacelike vectors then

0 = 6107 3 cosh 0y cosh 0] + 610515 cosh 0y sinh 0
—01 0215 sinh O cosh 0] — 5265117 sinh O sinh 6.

(c.2) If X,,,Y, and ¢, are timelike vectors in the same timecone then

0 = 6107y sinh 01 sinh 0] — 61 3 sinh 6y cosh 0}
—0% p cosh B sinh 6] — p cosh 65 cosh 6.

(c.3) If X, and ¢, are timelike vectors in the same timecone and Y, is spacelike
vector then
0 = 0104 p sinh 61 cosh 0] + 61055 sinh 6, sinh 6/
+07 ph cosh 02 cosh 0] + 8% cosh 65 sinh 6.
(c.4) If Y, and ¢, are timelike vectors in the same timecone and X, is spacelike
vector then
0 = 6161 i cosh 0 sinh 0] — §; p3 cosh 61 cosh 6
— 0907 p} sinh 65 sinh 0] 4 do 1} sinh 05 cosh 6.

Abovementioned 3, i, 1 and ph are given in (3.2),

1,  x; is positive

e { -1, x; is negative ’ i=(1,2)

and

1 Y; 1s positive ‘
’_ , i B
o= { -1, wy; is negative ’ i=(1,2).

Proof. (a) Let N, be a timelike vector. In this case 61, 02, 0], 05 are spacelike
angles then

x1 = (Xp,¢u) = cosby

z9 = (Xp,¢y) = cosby.
and

yi = (Yp,¢u) = cost

Y2 = (Yp,0y) = costy.

Substituting these equations in (3.1) the proof is obvious.
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(b) Let ¢, be a timelike vector.
(b.1) If X, and Y, are spacelike vectors and ¢, is timelike vector then there are
Lorentzian timelike angles 6, 67 and central angles 65, 6. Thus

r1 = O01sinhf; and x5 = 3 coshby

y1 = 0;sinhf] and yo = &5 cosh b,
(b.2) If X,,,Y, and ¢, are timelike vectors in the same timecone then there are
hyperbolic angles 6, 0] and Lorentzian timelike angles 6, 6. Thus

x1 = —coshf; and x9 = d2sinh by

y1 = —coshf] and yy = ) sinh ).
(b.3) If X, and ¢, are timelike vectors in the same timecone and Y, is spacelike
vector then there is a hyperbolic angle 07, a central angle 6/, and there are Lorentzian
timelike angles 62, 6]. Thus

xr1 = —coshf; and x9 = d5sinh by

y1 = 0&;sinh@] and y, = 05 cosh 6.
(b.4) If Y}, and ¢, are timelike vectors in the same timecone and X, is spacelike
vector then there is a central angle 0, a hyperbolic angle 67 and there are Lorentzian
timelike angles 61, 65. Thus

xy = 01sinhf; and xzo = 6y coshby

y1 = —coshf] and yp = dysinh6).
(¢c) Let ¢, be a timelike vector.
(c.1) If X, and Y), are spacelike vectors and ¢, is timelike vector then there are
central angles 61, 6] and Lorentzian timelike angles 65, 65.Thus

r1 = 51 cosh 01 and To = 52 sinh 92

y1 = O0jcoshf] and yo = &5 sinh 6.
(c.2) If X,,, Y, and ¢, are timelike vectors in the same timecone then there are
Lorentzian timelike angles 61,67 and hyperbolic angles 65, 5. Thus

xy = O01sinhf; and 2o = —coshbsy

y1 = O&;sinh#] and yo = —coshd.
(c.3) If X, and ¢, are timelike vectors in the same timecone and Y}, is spacelike
vector then there is a hyperbolic angle s, a central angle 6] and there are Lorentzian
timelike vectors 6y, 6. Thus

z1 = 01sinhf; and x5 = — coshfy

y1 = djcosh@] and yo = dhsinhd).
(c4) If Y, and ¢, are timelike vectors in the same timecone and X, is spacelike
vector then then there is a central angle 61, a hyperbolic angle 5 and there are
Lorentzian timelike angles 67, 6. Thus

r, = 51 COSh01 and To = 52 sinh92

y1 = 0&;sinh#; and ys = —cosh¥.



CONJUGATE TANGENT VECTORS AND ASYMPTOTIC DIRECTIONS FOR SURFACES AT A CONSTANT DISTANCE FR(

As a special case if we take A\; = Ay = 0, A3 = r = constant, then we obtain
that M and M/ are parallel surfaces. Hence we give the following corollaries.

Corollary 3.1. Let M and M, be parallel surfaces in E}. Let ki and ko denote
principal curvature functions of M and let {¢y, Py} be orthonormal basis such that
@u and ¢, are principal directions on M. Let us denote the angle between X,, € T, M
and ¢, ¢y by 01, 02 respectively and the angle between Y, € T,M and ¢, ¢, by
61, 05 respectively. f.(Xp) and f.(Y,) are conjugate tangent vectors if and only if

(3.7) e1k1(1 + rki)z1yr + e2ka(1 + rkh2)22y2 = 0.
Proof. Since
pi = ki(1+rky),
py = 0,  pu3=0,
wy = ko(1+rks)
from (3.1) we find (3.7). O

Corollary 3.2. Let M and M, be parallel surfaces in Ef Let k1 and ko denote
principal curvature functions of M and let {¢,,, ¢y} be orthonormal basis such that
¢ and ¢, are principal directions on M. Let us denote the angle between X,, € T, M
and ¢, ¢, by 01, Oz respectively and the angle between Y, € T,M and ¢, ¢, by
01, 05 respectively. f.(Y,) are conjugate tangent vectors if and only if

(a)Let N, be a timelike vector then

k1(1+ rky) cos by cos 6y + ka(1 + rko) cos Oz cos 05 = 0.

(b) Let ¢, be a timelike vector.
(b.1) If X, and Y, are spacelike vectors then

—8101k1(1 + rky) sinh 61 sinh 0] + 6285k2(1 + rks) cosh 62 cosh 6, = 0.
b.2) If X,,,Y, and ¢, are timelike vectors in the same timecone then
prLp
—k1(1 4 7k1) cosh 0y cosh 6 + k(1 + rk2) sinh 3 sinh 65 = 0.

(b.3) If X, and ¢, are timelike vectors in the same timecone and Y, is spacelike
vector then

81k1(1 4 rkq) cosh 0y sinh 0] + 6205k (1 + rks) sinh 6 cosh 65 = 0.

(b.4) If Y, and ¢, are timelike vectors in the same timecone and X, is spacelike
vector then

81k1(1 + rky) sinh 61 cosh 0] + 0205k (1 + 7ko) cosh 05 sinh 65 = 0.

(c) Let ¢, be a timelike vector.
(c.1) If X, and Y, are spacelike vectors then

§101k1(1 + rky) cosh 6y cosh 0] — 6285ka(1 + rke) sinh 6 sinh 6 = 0.
(c.2) If X,,, Y, and ¢, are timelike vectors in the same timecone then
8101k1(1 + rky) sinh 61 sinh 0] — ko (1 + rkz) cosh 63 cosh 65 = 0.

(c.3) If X, and ¢, are timelike vectors in the same timecone and Y, is spacelike
vector then

8101k1(1 + rky) sinh 01 cosh 6] + d5k2(1 + rks) cosh O sinh 65 = 0.
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(c.4) If Y, and ¢, are timelike vectors in the same timecone and X, is spacelike
vector then

0101k1 (1 + rk1) cosh 01 sinh 6] + daka (1 + k) sinh 65 cosh 65 = 0.
For the above equations
- 1,  =; is positive o
b= { -1, x; is negative ’ i=(1,2)

and

5 — 1, Y; 18 positive i = (1,2)
-1, vy, is negative ’ T

4. ASYMPTOTIC DIRECTIONS FOR SURFACES AT A CONSTANT DISTANCE FROM
EDGE OF REGRESSION ON A SURFACE IN B3

Theorem 4.1. Let M7 be a surface at a constant distance from edge of regression
on a M in E}. Let ki and ke denote principal curvature functions of M and let
{¢u, ds} be orthonormal basis such that ¢, and ¢, are principal directions on M.
fo(X,) € Tf(p)(Mf) is an asymptotic direction if and only if

(4.1) piat + ereapszirs + iz =0
where
(4'2) Ty = <Xp7 ¢u> ’ L2 = <X;D’ ¢U> )
pi = e (l+ Ask1)® — Mki(ereapm Arkr + podoks),
py = eapa(l+ )\3]@‘2)2 — Aeka(padk1 + €162 0ks)
terus(L+ Ask1)® — ki (e1e2psAiky + padaks),
s = eopa(l+ )\3k2)2 — Aoka(psAikr + e162paN0ks).

Proof. Let f.(Xp) € Typy(M7). Then let us calculate f.(X,) and SY(f.(X))).
Since ¢,, and ¢, are orthonormal we have
Xp = &1 <Xp7 ¢u> ¢u + &2 <Xp7 ¢v> ¢v
= E1Z10y + E2T20y
Further without lost of generality, we suppose that X, is a unit vector. Then
(4.3) [(Xp) = ea1x1fu(du) + 222 fu(dn)
= a1Z1¢y + €222ty

On the other hand we find that

(4.4)
Sf(f*(Xp)) = 51$1Sf(1/}u) +€2$25f(¢v)
= a1y (1 + Ask1)du + pa(1 + Aska)do + (1adik + pag1doka) N)
+eoxa (s (1 + Ask1) gy + pa(1 + Asko) oy + (uzeaA1k1 + pag1Aaka)N)
Thus using equations (4.3) and (4.4) in equation (2.4) we obtain (4.1). O

Corollary 4.1. Let M7 be a surface at a constant distance from edge of regression
on M in E}. Let ky and ky denote principal curvature functions of M and let
{bu, v} be orthonormal basis such that ¢, and ¢, are principal directions on M.
Let us denote the angle between X, € T,M and ¢y, ¢, by 01, 02 respectively.
f«(X,) € Tf(p)Mf is an asymptotic direction if and only if
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(a)Let Ny, be a timelike vector then
i cos? 01 + 5 cos 01 cos Oz + 115 cos? 6y = 0.

(b) Let Ny, be a spacelike vector.
(b.1) If X, and ¢, are timelike vectors in the same timecone then

i cosh? 0 + O3 cosh 6y sinh Og + p sinh? 6y = 0.
(b.2) If X, and ¢, are timelike vectors in the same timecone then
i sinh? 0, + 015 sinh 61 cosh 05 + uj cosh? 0y = 0.
(b.3) If X, is a spacelike vector and ¢, is timelike vector then
uy sinh? §; — 01025 sinh 64 cosh 62 + 115 cosh? 6y = 0.
(b.4) If X, is a spacelike vector and ¢, is timelike vector then
i cosh?6; — &, da 5 cosh 61 sinh 0o + 5 sinh? 6, = 0.
Abovementioned p3, 1y and pi are given in (4.2) and

1,  x; is positive

o= { -1, x; is negative ’ i=(1,2).

Proof. (a) Let N, be a timelike vector. In this case #; and 6, are spacelike angles
then

1 = (Xp,¢u) =cosby

x2 = (Xp,¢y) = cosbs.

Substituting these equations in (4.1) the proof is obvious.

(b) Let N, be a spacelike vector.

(b.1) If X, and ¢,, are timelike vectors in the same timecone then there is a hyper-
bolic angle ¢; and a Lorentzian timelike angle 6. Since

xr1 = —coshf; and x5 = d2sinh 6y

the proof is obvious.
(b.2) If X, and ¢, are timelike vectors in the same timecone then there is a
Lorentzian timelike angle #; and a hyperbolic angle 6. Thus

x1 = 01sinhf; and z9 = — cosh6s.

(b.3) If X, is a spacelike vector and ¢,, is timelike vector then there is a Lorentzian
timelike angle 61 and a central angle #5. Thus

x1 = 01 sinh#; and x5 = d2 cosh 0s.

(b.4) If X, is a spacelike vector and ¢, is timelike vector then there is a central
angle 61 and a Lorentzian timelike angle 65. Thus

z1 = d1coshf; and x5 = do sinh O5.

]

As a special case if M and M, be parallel surfaces from (4.1) and (4.2) we obtain
that f.(X,) € Ty M, is an asymptotic direction if and only if

erki(1 4 rky)a? 4 e2ka(1 + rko)a3 = 0.
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Corollary 4.2. Let M and M, be parallel surfaces in E}. Let ky and ko denote
principal curvature function of M and let {¢,, Py} be orthonormal basis such that
@y and ¢, are principal directions on M. Let us denote the angle between X, € T, M
and ¢y, ¢y by 01, O respectively. f.(X,) € Ty M, is an asymptotic direction if
and only if

(a)Let Ny, be a timelike vector then

E1(1 4 rky) cos? 01 + ko(1 4 rky) cos? y = 0.

(b) Let N, be a spacelike vector.
(b.1) If X, and ¢, are timelike vectors in the same timecone then

—k1(L+71kqy) cosh? 6, + ka(1 + ko) sinh? 6, = 0.

(b.2) If X, and ¢, are timelike vectors in the same timecone then

k1 (1 4 rk;) sinh® 6; — ko(1 4 ko) cosh? 6, = 0.

(b.3) If X, is a spacelike vector and ¢, is timelike vector then

—k1(1+1kqy) sinh? 6, + ka(1 + rko) cosh? 6, = 0.

(b.4) If X, is a spacelike vector and ¢, is timelike vector then

1

[7

8

9

(10]
(11]
(12]

(13]

k1 (1 + k1) cosh? 6 — ky(1 + rky) sinh? 6 = 0.
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