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CONJUGATE TANGENT VECTORS AND ASYMPTOTIC
DIRECTIONS FOR SURFACES AT A CONSTANT DISTANCE

FROM EDGE OF REGRESSION ON A SURFACE IN E3
1

DERYA SAĞLAM1 AND ÖZGÜR BOYACIOĞLU KALKAN2

Abstract. In this paper we give conjugate tangent vectors and asymptotic
directions for surfaces at a constant distance from edge of regression on a
surface in E3

1 .

1. Introduction

Conjugate tangent vectors and asymptotic directions in Euclidean space E3 can
be found in [9]. In 1984, A. Kılıç and H. H. Hacısalihoğlu found the Euler theorem
and Dupin indicatrix for parallel hypersurfaces in En [13]. Also the Euler theo-
rem and Dupin indicatrix are obtained for the parallel hypersurfaces in pseudo-
Euclidean spaces En+1

1 and En+1
ν in the papers ([5], [7], [8]).

In 2005 H. H. Hacısalihoğlu and Ö. Tarakçı introduced surfaces at a constant
distance from edge of regression on a surface. These surfaces are a generalization
of parallel surfaces in E3. Because the authors took any vector instead of normal
vector [17]. Euler theorem and Dupin indicatrix for these surfaces are given in [2].
Conjugate tangent vectors and asymptotic directions are given in [1]. In 2010 we
obtained the surfaces at a constant distance from edge of regression on a surface in
E3

1 [15]. We obtained the Euler theorem and Dupin indicatrix for these surfaces in
E3

1 [16].
In this paper we give conjugate tangent vectors and asymptotic directions for

surfaces at a constant distance from edge of regression on a surface in E3
1 .

2. Preliminaries

Let E3
1 be the Minkowski 3-space is the real vector space R3 endowed with the

standard flat Lorentzian metric given by

〈, 〉 = −(dx1)2 + (dx2)2 + (dx3)2
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where (x1, x2, x3) is a rectangular coordinate system of E3
1 . An arbitrary vector

x ∈ E3
1 is called spacelike if 〈x, x〉 > 0 or x = 0, timelike if 〈x, x〉 < 0 and lightlike

(null) if 〈x, x〉 = 0 and x 6= 0.
The timelike-cone of E3

1 is defined as the set of all timelike vectors of E3
1 , that is

T = {(x, y, z) ∈ E3
1 ; x2 + y2 − z2 < 0}.

The set of lightlike vectors is defined by C and it is the following set:

C = {(x, y, z) ∈ E3
1 ; x2 + y2 − z2 = 0} − {0, 0, 0}.

The cross product x × y of vectors x = (x1, x2, x3) and y = (y1, y2, y3) in E3
1 is

defined as
〈x× y, z〉 = det(x, y, z) for all z = (z1, z2, z3) ∈ E3

1 .

More explicitly, if x, y belong to E3
1 , then

〈x, y〉 = −x1y1 + x2y2 + x3y3

x× y = (−(x2y3 − x3y2), x3y1 − x1y3, x1y2 − x2y1)

〈a× b, x× y〉 = −
∣∣∣∣
〈a, x〉 〈b, x〉
〈a, y〉 〈b, y〉

∣∣∣∣

where a = (a1, a2, a3) and b = (b1, b2, b3) in E3
1 (Lagrange identity in E3

1).
Let e1, e2 ∈ E3

1 be such that < ei, ei >= ±1 and 〈e1, e2〉 = 0 and e3 = e1 × e2.
Then these three vectors form an orthonormal frame. If 〈e1, e1〉 = ε1 and 〈e2, e2〉 =
ε2 where ε1, ε2 = ±1, it follows from the Lagrange identity that 〈e3, e3〉 = −ε1ε2.
Each vector x ∈ E3

1 can be written uniquely in terms of e1, e2, e3 by

x = ε1 〈x, e1〉 e1 + ε2 〈x, e2〉 e2 − ε1ε2 〈x, e3〉 e3.

The angle between two vectors in Minkowski 3-space is defined by ([3], [10], [11],
[12]):

Definition 2.1. i. Hyperbolic angle: Let x and y be timelike vectors in the
same timecone of Minkowski space. Then there is a unique real number θ ≥ 0,
called the hyperbolic angle between x and y, such that

< x, y >= −‖x‖ ‖y‖ cosh θ.

ii. Central angle: Let x and y be spacelike vectors in Minkowski space that span
a timelike vector subspace. Then there is a unique real number θ ≥ 0, called the
central angle between x and y, such that

|< x, y >| = ‖x‖ ‖y‖ cosh θ.

iii. Spacelike angle: Let x and y be spacelike vectors in Minkowski space that
span a spacelike vector subspace. Then there is a unique real number θ between 0
and π called the spacelike angle between x and y, such that

< x, y >= ‖x‖ ‖y‖ cos θ.

iv. Lorentzian timelike angle: Let x be a spacelike vector and y be a timelike
vector in Minkowski space. Then there is a unique real number θ ≥ 0, called the
Lorentzian timelike angle between x and y, such that

|< x, y >| = ‖x‖ ‖y‖ sinh θ.
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Definition 2.2. Let M and Mf be two surfaces in E3
1 and Np be a unit normal

vector of M at the point P ∈ M. Let TpM be tangent space at P ∈ M and
{Xp, Yp} be an orthonormal bases of TpM. Let Zp = d1Xp + d2Yp + d3Np be a unit
vector, where d1, d2, d3 ∈ R are constant numbers and ε1d

2
1 + ε2d

2
2 − ε1ε2d

2
3 = ±1.

If a function f exists and satisfies the condition f : M → Mf , f(P ) = P + rZp,
r constant, Mf is called as the surface at a constant distance from the edge of
regression on M and Mf denoted by the pair (M,Mf ).

If d1 = d2 = 0, then we have Zp = Np and f(P ) = P + rNp. In this case M and
Mf are parallel surfaces [15].

Theorem 2.1. Let the pair (M,Mf ) be given in E3
1 . For any W ∈ χ(M), we

have f∗(W ) = W + rDW Z, where W =
3∑

i=1

wi
∂

∂xi
,W =

3∑
i=1

wi
∂

∂xi
and ∀P ∈ M,

wi(P ) = wi(f(p)), 1 ≤ i ≤ 3 [15].

Let (φ,U) be a parametrization of M , so we can write that

φ : U
(u,v)

⊂ E3
1 → M

P=φ(u,v)
.

In this case {φu|p, φv|p} is a basis of TpM. Let Np is a unit normal vector at
P ∈ M and d1, d2, d3 ∈ R be constant numbers then we can write that Zp =
d1φu|p + d2φv|p + d3Np. Since Mf = {f(P ) | f(P ) = P + rZp}, a parametric
representation of Mf is ψ(u, v) = φ(u, v) + rZ(u, v). Thus we can write

Mf = {ψ(u, v) | ψ(u, v) = φ(u, v) + r(d1φu(u, v) + d2φv(u, v) + d3N(u, v)),
d1, d2, d3, r are constant, ε1d

2
1 + ε2d

2
2 − ε1ε2d

2
3 = ±1

}
.

If we take rd1 = λ1, rd2 = λ2, rd3 = λ3 then we have

Mf = {ψ(u, v)|ψ(u, v) = φ(u, v)+λ1φu(u, v)+λ2φv(u, v)+λ3N(u, v), λ1, λ2, λ3 are constant}.

Let {φu, φv} is basis of χ(Mf ). If we take 〈φu, φu〉 = ε1, 〈φv, φv〉 = ε2 and
〈N, N〉 = −ε1ε2, then

ψu = (1 + λ3k1)φu + ε2λ1k1N,

ψv = (1 + λ3k2)φv + ε1λ2k2N

is a basis of χ(Mf ), where N is the unit normal vector field on M and k1, k2 are
principal curvatures of M [15].

Theorem 2.2. Let the pair (M, Mf ) be given in E3
1 . Let {φu, φv} (orthonormal

and principal vector fields on M) be basis of χ(M) and k1, k2 be principal cur-
vatures of M . The matrix of the shape operator of Mf with respect to the basis
{ψu = (1 + λ3k1)φu + ε2λ1k1N, ψv = (1 + λ3k2)φv + ε1λ2k2N} of χ(Mf ) is

Sf =
[

µ1 µ2

µ3 µ4

]
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where

µ1 =
(1 + λ3k2)

A3

{
ελ1

∂k1

∂u
(λ2

2k
2
2 − ε1(1 + λ3k2)2) + k1A

2

}
,

µ2 =
ελ2

1λ2k1k2(1 + λ3k2)
A3

∂k1

∂u
,

µ3 =
−ελ1λ

2
2k1k2(1 + λ3k1)

A3

∂k2

∂v
,

µ4 =
(1 + λ3k1)

A3

{
−ελ2

∂k2

∂v
(λ2

1k
2
1 − ε2(1 + λ3k1)2) + k2A

2

}

and A =
√

ε (ε1λ2
1k

2
1(1 + λ3k2)2 + ε2λ2

2k
2
2(1 + λ3k1)2 − ε1ε2(1 + λ3k1)2(1 + λ3k2)2)

[15].

Definition 2.3. Let M be an Euclidean surface in E3 and S be shape operator of
M. For any Xp, Yp ∈ TpM, if

(2.1) 〈S(Xp), Yp〉 = 0

then Xp and Yp are called conjugate tangent vectors of M at p [9].

Definition 2.4. Let M be an Euclidean surface in E3 and S be shape
operator of M. For any Xp ∈ TpM, if

(2.2) 〈S(Xp), Xp〉 = 0

then Xp is called an asymptotic direction of M at p [9].

We can get the definitions of conjugate tangent vectors and asymptotic direction
in Minkowski 3-space similar to Definition 2.3 and 2.4 as below:

Definition 2.5. Let M be a surface in E3
1 and S be shape operator of M. For any

Xp, Yp ∈ TpM, if

(2.3) 〈S(Xp), Yp〉 = 0

then Xp and Yp are called conjugate tangent vectors of M at p.

Definition 2.6. M be a surface in E3
1 and S be shape operator of M. For any

Xp ∈ TpM, if

(2.4) 〈S(Xp), Xp〉 = 0

then Xp is called an asymptotic direction of M at p.

3. Conjugate tangent vectors for surfaces at a constant distance
from edge of regression on a surface in E3

1

Theorem 3.1. Let Mf be a surface at a constant distance from edge of regression
on a M in E3

1 . Let k1 and k2 denote principal curvature function of M and let
{φu, φv} be orthonormal basis such that φu and φv are principal directions on M.
For Xp, Yp ∈ TpM, f∗(Xp) and f∗(Yp) are conjugate tangent vectors if and only if

(3.1) ε1µ
∗
1x1y1 + ε1µ

∗
2x1y2 + ε2µ

∗
3x2y1 + ε2µ

∗
4x2y2 = 0
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where

x1 = 〈Xp, φu〉 , x2 = 〈Xp, φv〉 ,(3.2)
y1 = 〈Yp, φu〉 , y2 = 〈Yp, φv〉 ,
µ∗1 = µ1(1 + λ3k1)2 − λ1k1(ε2µ1λ1k1 + ε1µ2λ2k2),
µ∗2 = µ2(1 + λ3k2)2 − λ2k2(ε2µ1λ1k1 + ε1µ2λ2k2),
µ∗3 = µ3(1 + λ3k1)2 − λ1k1(ε2µ3λ1k1 + ε1µ4λ2k2),
µ∗4 = µ4(1 + λ3k2)2 − λ2k2(ε2µ3λ1k1 + ε1µ4λ2k2).

Proof. Let f∗(Xp) ∈ Tf(p)M
f . Then let us calculate f∗(Xp) and Sf (f∗(Xp)). Since

φu and φv are orthonormal we have

Xp = ε1 〈Xp, φu〉φu + ε2 〈Xp, φv〉φv

= ε1x1φu + ε2x2φv.

Further without lost of generality, we suppose that Xp is a unit vector. Then

f∗(Xp) = ε1x1f∗(φu) + ε2x2f∗(φv)(3.3)
= ε1x1ψu + ε2x2ψv.

On the other hand we find that
(3.4)
Sf (f∗(Xp)) = ε1x1S

f (ψu) + ε2x2S
f (ψv)

= ε1x1 (µ1(1 + λ3k1)φu + µ2(1 + λ3k2)φv + (µ1ε2λ1k1 + µ2ε1λ2k2)N)
+ε2x2 (µ3(1 + λ3k1)φu + µ4(1 + λ3k2)φv + (µ3ε2λ1k1 + µ4ε1λ2k2)N)

and for Yp ∈ TpM we have

Yp = ε1 〈Yp, φu〉φu + ε2 〈Yp, φv〉φv(3.5)
= ε1y1φu + ε2y2φv.

Then

f∗(Yp) = ε1y1f∗(φu) + ε2y2f∗(φv)(3.6)
= ε1y1ψu + ε2y2ψv.

Thus using equations (3.4) and (3.6) in equation (2.3) we obtain (3.1). ¤

Theorem 3.2. Let Mf be a surface at a constant distance from edge of regression
on M in E3

1 . Let k1 and k2 denote principal curvature functions of M and let
{φu, φv} be orthonormal basis such that φu and φv are principal directions on M.
Let us denote the angle between Xp ∈ TpM and φu, φv by θ1, θ2 respectively and
the angle between Yp ∈ TpM and φu, φv by θ′1, θ′2 respectively. f∗(Xp) and f∗(Yp)
are conjugate tangent vectors if and only if
(a)Let Np be a timelike vector then

µ∗1 cos θ1 cos θ′1 + µ∗2 cos θ1 cos θ′2 + µ∗3 cos θ2 cos θ′1 + µ∗4 cos θ2 cos θ′2 = 0.

(b) Let φu be a timelike vector.
(b.1) If Xp and Yp are spacelike vectors then

0 = −δ1δ
′
1µ
∗
1 sinh θ1 sinh θ′1 − δ1δ

′
2µ
∗
2 sinh θ1 cosh θ′2

+δ′1δ2µ
∗
3 cosh θ2 sinh θ′1 + δ2δ

′
2µ
∗
4 cosh θ2 cosh θ′2.
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(b.2) If Xp, Yp and φu are timelike vectors in the same timecone then

0 = µ∗1 cosh θ1 cosh θ′1 + δ′2µ
∗
2 cosh θ1 sinh θ′2

−δ2µ
∗
3 sinh θ2 cosh θ′1 + δ2δ

′
2µ
∗
4 sinh θ2 sinh θ′2.

(b.3) If Xp, φu are timelike vectors in the same timecone and Yp is spacelike vector
then

0 = δ′1µ
∗
1 cosh θ1 sinh θ′1 + δ′2µ

∗
2 cosh θ1 cosh θ′2

+δ′1δ2µ
∗
3 sinh θ2 sinh θ′1 + δ2δ

′
2µ
∗
4 sinh θ2 cosh θ′2.

(b.4) If Yp and φu are timelike vectors in the same timecone and Xp is spacelike
vector then

0 = δ1µ
∗
1 sinh θ1 cosh θ′1 − δ1δ

′
2µ
∗
2 sinh θ1 sinh θ′2

−δ2µ
∗
3 cosh θ2 cosh θ′1 + δ2δ

′
2µ
∗
4 cosh θ2 sinh θ′2.

(c) Let φv be a timelike vector.
(c.1) If Xp and Yp are spacelike vectors then

0 = δ1δ
′
1µ
∗
1 cosh θ1 cosh θ′1 + δ1δ

′
2µ
∗
2 cosh θ1 sinh θ′2

−δ′1δ2µ
∗
3 sinh θ2 cosh θ′1 − δ2δ

′
2µ
∗
4 sinh θ2 sinh θ′2.

(c.2) If Xp, Yp and φv are timelike vectors in the same timecone then

0 = δ1δ
′
1µ
∗
1 sinh θ1 sinh θ′1 − δ1µ

∗
2 sinh θ1 cosh θ′2

−δ′1µ
∗
3 cosh θ2 sinh θ′1 − µ∗4 cosh θ2 cosh θ′2.

(c.3) If Xp and φv are timelike vectors in the same timecone and Yp is spacelike
vector then

0 = δ1δ
′
1µ
∗
1 sinh θ1 cosh θ′1 + δ1δ

′
2µ
∗
2 sinh θ1 sinh θ′2

+δ′1µ
∗
3 cosh θ2 cosh θ′1 + δ′2µ

∗
4 cosh θ2 sinh θ′2.

(c.4) If Yp and φv are timelike vectors in the same timecone and Xp is spacelike
vector then

0 = δ1δ
′
1µ
∗
1 cosh θ1 sinh θ′1 − δ1µ

∗
2 cosh θ1 cosh θ′2

−δ2δ
′
1µ
∗
3 sinh θ2 sinh θ′1 + δ2µ

∗
4 sinh θ2 cosh θ′2.

Abovementioned µ∗1, µ
∗
2, µ

∗
3 and µ∗4 are given in (3.2),

δi =
{

1, xi is positive
−1, xi is negative , i = (1, 2)

and

δ′i =
{

1, yi is positive
−1, yi is negative , i = (1, 2).

Proof. (a) Let Np be a timelike vector. In this case θ1, θ2, θ′1, θ′2 are spacelike
angles then

x1 = 〈Xp, φu〉 = cos θ1

x2 = 〈Xp, φv〉 = cos θ2.

and

y1 = 〈Yp, φu〉 = cos θ′1
y2 = 〈Yp, φv〉 = cos θ′2.

Substituting these equations in (3.1) the proof is obvious.
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(b) Let φu be a timelike vector.
(b.1) If Xp and Yp are spacelike vectors and φu is timelike vector then there are
Lorentzian timelike angles θ1, θ′1 and central angles θ2, θ′2. Thus

x1 = δ1 sinh θ1 and x2 = δ2 cosh θ2

y1 = δ′1 sinh θ′1 and y2 = δ′2 cosh θ′2.

(b.2) If Xp, Yp and φu are timelike vectors in the same timecone then there are
hyperbolic angles θ1, θ

′
1 and Lorentzian timelike angles θ2, θ

′
2. Thus

x1 = − cosh θ1 and x2 = δ2 sinh θ2

y1 = − cosh θ′1 and y2 = δ′2 sinh θ′2.

(b.3) If Xp and φu are timelike vectors in the same timecone and Yp is spacelike
vector then there is a hyperbolic angle θ1, a central angle θ′2 and there are Lorentzian
timelike angles θ2, θ′1. Thus

x1 = − cosh θ1 and x2 = δ2 sinh θ2

y1 = δ′1 sinh θ′1 and y2 = δ′2 cosh θ′2.

(b.4) If Yp and φu are timelike vectors in the same timecone and Xp is spacelike
vector then there is a central angle θ2, a hyperbolic angle θ′1 and there are Lorentzian
timelike angles θ1, θ′2. Thus

x1 = δ1 sinh θ1 and x2 = δ2 cosh θ2

y1 = − cosh θ′1 and y2 = δ′2 sinh θ′2.

(c) Let φv be a timelike vector.
(c.1) If Xp and Yp are spacelike vectors and φv is timelike vector then there are
central angles θ1, θ′1 and Lorentzian timelike angles θ2, θ′2.Thus

x1 = δ1 cosh θ1 and x2 = δ2 sinh θ2

y1 = δ′1 cosh θ′1 and y2 = δ′2 sinh θ′2.

(c.2) If Xp, Yp and φv are timelike vectors in the same timecone then there are
Lorentzian timelike angles θ1, θ

′
1 and hyperbolic angles θ2, θ′2. Thus

x1 = δ1 sinh θ1 and x2 = − cosh θ2

y1 = δ′1 sinh θ′1 and y2 = − cosh θ′2.

(c.3) If Xp and φv are timelike vectors in the same timecone and Yp is spacelike
vector then there is a hyperbolic angle θ2, a central angle θ′1 and there are Lorentzian
timelike vectors θ1, θ′2. Thus

x1 = δ1 sinh θ1 and x2 = − cosh θ2

y1 = δ′1 cosh θ′1 and y2 = δ′2 sinh θ′2.

(c.4) If Yp and φv are timelike vectors in the same timecone and Xp is spacelike
vector then then there is a central angle θ1, a hyperbolic angle θ′2 and there are
Lorentzian timelike angles θ′1, θ2. Thus

x1 = δ1 cosh θ1 and x2 = δ2 sinh θ2

y1 = δ′1 sinh θ′1 and y2 = − cosh θ′2.

¤
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As a special case if we take λ1 = λ2 = 0, λ3 = r = constant, then we obtain
that M and Mf are parallel surfaces. Hence we give the following corollaries.

Corollary 3.1. Let M and Mr be parallel surfaces in E3
1 . Let k1 and k2 denote

principal curvature functions of M and let {φu, φv} be orthonormal basis such that
φu and φv are principal directions on M. Let us denote the angle between Xp ∈ TpM
and φu, φv by θ1, θ2 respectively and the angle between Yp ∈ TpM and φu, φv by
θ′1, θ′2 respectively. f∗(Xp) and f∗(Yp) are conjugate tangent vectors if and only if

(3.7) ε1k1(1 + rk1)x1y1 + ε2k2(1 + rk2)x2y2 = 0.

Proof. Since

µ∗1 = k1(1 + rk1),
µ∗2 = 0, µ∗3 = 0,

µ∗4 = k2(1 + rk2)

from (3.1) we find (3.7). ¤

Corollary 3.2. Let M and Mr be parallel surfaces in E3
1 . Let k1 and k2 denote

principal curvature functions of M and let {φu, φv} be orthonormal basis such that
φu and φv are principal directions on M. Let us denote the angle between Xp ∈ TpM
and φu, φv by θ1, θ2 respectively and the angle between Yp ∈ TpM and φu, φv by
θ′1, θ′2 respectively. f∗(Yp) are conjugate tangent vectors if and only if
(a)Let Np be a timelike vector then

k1(1 + rk1) cos θ1 cos θ′1 + k2(1 + rk2) cos θ2 cos θ′2 = 0.

(b) Let φu be a timelike vector.
(b.1) If Xp and Yp are spacelike vectors then

−δ1δ
′
1k1(1 + rk1) sinh θ1 sinh θ′1 + δ2δ

′
2k2(1 + rk2) cosh θ2 cosh θ′2 = 0.

(b.2) If Xp, Yp and φu are timelike vectors in the same timecone then

−k1(1 + rk1) cosh θ1 cosh θ′1 + k2(1 + rk2) sinh θ2 sinh θ′2 = 0.

(b.3) If Xp and φu are timelike vectors in the same timecone and Yp is spacelike
vector then

δ′1k1(1 + rk1) cosh θ1 sinh θ′1 + δ2δ
′
2k2(1 + rk2) sinh θ2 cosh θ′2 = 0.

(b.4) If Yp and φu are timelike vectors in the same timecone and Xp is spacelike
vector then

δ1k1(1 + rk1) sinh θ1 cosh θ′1 + δ2δ
′
2k2(1 + rk2) cosh θ2 sinh θ′2 = 0.

(c) Let φv be a timelike vector.
(c.1) If Xp and Yp are spacelike vectors then

δ1δ
′
1k1(1 + rk1) cosh θ1 cosh θ′1 − δ2δ

′
2k2(1 + rk2) sinh θ2 sinh θ′2 = 0.

(c.2) If Xp, Yp and φv are timelike vectors in the same timecone then

δ1δ
′
1k1(1 + rk1) sinh θ1 sinh θ′1 − k2(1 + rk2) cosh θ2 cosh θ′2 = 0.

(c.3) If Xp and φv are timelike vectors in the same timecone and Yp is spacelike
vector then

δ1δ
′
1k1(1 + rk1) sinh θ1 cosh θ′1 + δ′2k2(1 + rk2) cosh θ2 sinh θ′2 = 0.
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(c.4) If Yp and φv are timelike vectors in the same timecone and Xp is spacelike
vector then

δ1δ
′
1k1(1 + rk1) cosh θ1 sinh θ′1 + δ2k2(1 + rk2) sinh θ2 cosh θ′2 = 0.

For the above equations

δi =
{

1, xi is positive
−1, xi is negative , i = (1, 2)

and

δ′i =
{

1, yi is positive
−1, yi is negative , i = (1, 2).

4. Asymptotic directions for surfaces at a constant distance from
edge of regression on a surface in E3

1

Theorem 4.1. Let Mf be a surface at a constant distance from edge of regression
on a M in E3

1 . Let k1 and k2 denote principal curvature functions of M and let
{φu, φv} be orthonormal basis such that φu and φv are principal directions on M.
f∗(Xp) ∈ Tf(p)(Mf ) is an asymptotic direction if and only if

(4.1) µ∗1x
2
1 + ε1ε2µ

∗
2x1x2 + µ∗3x

2
2 = 0

where

x1 = 〈Xp, φu〉 , x2 = 〈Xp, φv〉 ,(4.2)

µ∗1 = ε1µ1(1 + λ3k1)2 − λ1k1(ε1ε2µ1λ1k1 + µ2λ2k2),
µ∗2 = ε2µ2(1 + λ3k2)2 − λ2k2(µ1λ1k1 + ε1ε2µ2λ2k2)

+ε1µ3(1 + λ3k1)2 − λ1k1(ε1ε2µ3λ1k1 + µ4λ2k2),
µ∗3 = ε2µ4(1 + λ3k2)2 − λ2k2(µ3λ1k1 + ε1ε2µ4λ2k2).

Proof. Let f∗(Xp) ∈ Tf(p)(Mf ). Then let us calculate f∗(Xp) and Sf (f∗(Xp)).
Since φu and φv are orthonormal we have

Xp = ε1 〈Xp, φu〉φu + ε2 〈Xp, φv〉φv

= ε1x1φu + ε2x2φv

Further without lost of generality, we suppose that Xp is a unit vector. Then

f∗(Xp) = ε1x1f∗(φu) + ε2x2f∗(φv)(4.3)
= ε1x1ψu + ε2x2ψv.

On the other hand we find that
(4.4)
Sf (f∗(Xp)) = ε1x1S

f (ψu) + ε2x2S
f (ψv)

= ε1x1 (µ1(1 + λ3k1)φu + µ2(1 + λ3k2)φv + (µ1ε2λ1k1 + µ2ε1λ2k2)N)
+ε2x2 (µ3(1 + λ3k1)φu + µ4(1 + λ3k2)φv + (µ3ε2λ1k1 + µ4ε1λ2k2)N)

Thus using equations (4.3) and (4.4) in equation (2.4) we obtain (4.1). ¤

Corollary 4.1. Let Mf be a surface at a constant distance from edge of regression
on M in E3

1 . Let k1 and k2 denote principal curvature functions of M and let
{φu, φv} be orthonormal basis such that φu and φv are principal directions on M.
Let us denote the angle between Xp ∈ TpM and φu, φv by θ1, θ2 respectively.
f∗(Xp) ∈ Tf(p)M

f is an asymptotic direction if and only if
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(a)Let Np be a timelike vector then

µ∗1 cos2 θ1 + µ∗2 cos θ1 cos θ2 + µ∗3 cos2 θ2 = 0.

(b) Let Np be a spacelike vector.
(b.1) If Xp and φu are timelike vectors in the same timecone then

µ∗1 cosh2 θ1 + δ2µ
∗
2 cosh θ1 sinh θ2 + µ∗3 sinh2 θ2 = 0.

(b.2) If Xp and φv are timelike vectors in the same timecone then

µ∗1 sinh2 θ1 + δ1µ
∗
2 sinh θ1 cosh θ2 + µ∗3 cosh2 θ2 = 0.

(b.3) If Xp is a spacelike vector and φu is timelike vector then

µ∗1 sinh2 θ1 − δ1δ2µ
∗
2 sinh θ1 cosh θ2 + µ∗3 cosh2 θ2 = 0.

(b.4) If Xp is a spacelike vector and φv is timelike vector then

µ∗1 cosh2 θ1 − δ1δ2µ
∗
2 cosh θ1 sinh θ2 + µ∗3 sinh2 θ2 = 0.

Abovementioned µ∗1, µ
∗
2 and µ∗3 are given in (4.2) and

δi =
{

1, xi is positive
−1, xi is negative , i = (1, 2).

Proof. (a) Let Np be a timelike vector. In this case θ1 and θ2 are spacelike angles
then

x1 = 〈Xp, φu〉 = cos θ1

x2 = 〈Xp, φv〉 = cos θ2.

Substituting these equations in (4.1) the proof is obvious.
(b) Let Np be a spacelike vector.
(b.1) If Xp and φu are timelike vectors in the same timecone then there is a hyper-
bolic angle θ1 and a Lorentzian timelike angle θ2. Since

x1 = − cosh θ1 and x2 = δ2 sinh θ2

the proof is obvious.
(b.2) If Xp and φv are timelike vectors in the same timecone then there is a
Lorentzian timelike angle θ1 and a hyperbolic angle θ2. Thus

x1 = δ1 sinh θ1 and x2 = − cosh θ2.

(b.3) If Xp is a spacelike vector and φu is timelike vector then there is a Lorentzian
timelike angle θ1 and a central angle θ2. Thus

x1 = δ1 sinh θ1 and x2 = δ2 cosh θ2.

(b.4) If Xp is a spacelike vector and φv is timelike vector then there is a central
angle θ1 and a Lorentzian timelike angle θ2. Thus

x1 = δ1 cosh θ1 and x2 = δ2 sinh θ2.

¤

As a special case if M and Mr be parallel surfaces from (4.1) and (4.2) we obtain
that f∗(Xp) ∈ Tf(p)Mr is an asymptotic direction if and only if

ε1k1(1 + rk1)x2
1 + ε2k2(1 + rk2)x2

2 = 0.
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Corollary 4.2. Let M and Mr be parallel surfaces in E3
1 . Let k1 and k2 denote

principal curvature function of M and let {φu, φv} be orthonormal basis such that
φu and φv are principal directions on M. Let us denote the angle between Xp ∈ TpM
and φu, φv by θ1, θ2 respectively. f∗(Xp) ∈ Tf(p)Mr is an asymptotic direction if
and only if
(a)Let Np be a timelike vector then

k1(1 + rk1) cos2 θ1 + k2(1 + rk2) cos2 θ2 = 0.

(b) Let Np be a spacelike vector.
(b.1) If Xp and φu are timelike vectors in the same timecone then

−k1(1 + rk1) cosh2 θ1 + k2(1 + rk2) sinh2 θ2 = 0.

(b.2) If Xp and φv are timelike vectors in the same timecone then

k1(1 + rk1) sinh2 θ1 − k2(1 + rk2) cosh2 θ2 = 0.

(b.3) If Xp is a spacelike vector and φu is timelike vector then

−k1(1 + rk1) sinh2 θ1 + k2(1 + rk2) cosh2 θ2 = 0.

(b.4) If Xp is a spacelike vector and φv is timelike vector then

k1(1 + rk1) cosh2 θ1 − k2(1 + rk2) sinh2 θ2 = 0.
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[13] Kılıç A. and Hacısalihoğlu H. H., Euler’s Theorem and the Dupin Representation for Parallel
Hypersurfaces, Journal of Sci. and Arts of Gazi Univ. Ankara, 1, No.1 (1984), 21-26.



CONJUGATE TANGENT VECTORS AND ASYMPTOTIC DIRECTIONS FOR SURFACES AT A CONSTANT DISTANCE FROM EDGE OF REGRESSION ON A SURFACE IN E3
135

[14] O’Neill B., Semi-Riemannian Geometry With Applications To Relativity, Academic Press,
New York, London,1983.
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