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SOME GRÜSS TYPE INEQUALITIES FOR THE
RIEMANN–STIELTJES INTEGRAL WITH LIPSCHITZIAN

INTEGRATORS

M.W. ALOMARI1 AND S.S. DRAGOMIR2,3

Abstract. In this paper several new inequalities of Grüss’ type for the Riemann–
Stieltjes integral with Lipschitzian integrators are proved.

1. Introduction

The Čebyšev functional

T (f, g) =
1

b− a

∫ b

a

f (t) g (t) dt− 1
b− a

∫ b

a

f (t) dt · 1
b− a

∫ b

a

g (t) dt,(1.1)

has interesting applications in the approximation of weighted integrals as one can
has from the literature below.

Bounding Čebyšev functional has a long history, starting with Grüss inequality
[14] in 1935, where Grüss had proved that for two integrable mappings f, g such
that φ ≤ f(x) ≤ Φ and γ ≤ f(x) ≤ Γ, the inequality

|T (f, g)| ≤ 1
4

(Φ− φ) (Γ− γ)(1.2)

holds, and the constant 1
4 is the best possible.

After that many authors have studied the functional (1.1) and several bounds
under various assumptions for the functions involved have been obtained. For new
results and generalizations the reader may refer to [2]–[15].

A generalization of (1.1) for Riemann–Stieltjes integral was considered by Dragomir
in [10]. Namely, the author has introduced the following Čebyšev functional for the
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functions.

36
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Riemann–Stieltjes integral :

(1.3) T (f, g; u) :=
1

u (b)− u (a)

∫ b

a

f (t) g (t) du (t)

− 1
u (b)− u (a)

∫ b

a

f (t) du (t) · 1
u (b)− u (a)

∫ b

a

g (t) du (t)

under the assumptions that, f, g are continuous on [a, b] and u is of bounded vari-
ation on [a, b] with u(b) 6= u(a).

By simple computations with Riemann–Stieltjes integral, Dragomir [10] has in-
troduced the identity,

(1.4) T (f, g; u) :=
1

u (b)− u (a)

∫ b

a

[
f (t)− f (a) + f (b)

2

]

×
[
g (t)− 1

u (b)− u (a)

∫ b

a

g (s) du (s)

]
du (t) ,

to obtain several sharp bounds of the Čebyšev functional for the Riemann–Stieltjes
integral (1.3).

In this work, several sharp inequalities of Grüss’ type for the Riemann–Stieltjes
integral with Lipschitzian integrators are proved.

2. The Results

We recall that a function f : [a, b] → C is p–Hf–Holder continuous on [a, b], if

|f (t)− f (s)| ≤ Hf |t− s|p

for all t, s ∈ [a, b], where p ∈ (0, 1] and Hf > 0 are given. If p = 1 we call f
Hf–Lipschitzian.

We are ready to state our first result as follows:

Theorem 2.1. Let f : [a, b] → R be a p–Hf–Hölder continuous on [a, b], where
p ∈ (0, 1] and Hf > 0; are given. Let g, u : [a, b] → R be such that g is Lebesgue
integrable on [a, b] and there exists the real numbers m,M such that m ≤ g(x) ≤ M
for all x ∈ [a, b], and u is Lu–Lipschitzian on [a, b] then

|T (f, g;u)| ≤ LuHf

(p + 1)
· (M −m)
|u (b)− u (a)| · (b− a)p+1

.(2.1)
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Proof. Taking the modulus in (1.4) and utilizing the triangle inequality, we get

|T (f, g; u)| =
∣∣∣∣∣

1
u (b)− u (a)

∫ b

a

[
f (t)− f (a) + f (b)

2

]

×
[
g (t)− 1

u (b)− u (a)

∫ b

a

g (s) du (s)

]
du (t)

∣∣∣∣∣

≤ Lu

|u (b)− u (a)| ·
∫ b

a

∣∣∣∣f (t)− f (a) + f (b)
2

∣∣∣∣

×
∣∣∣∣∣g (t)− 1

u (b)− u (a)

∫ b

a

g (s) du (s)

∣∣∣∣∣ dt

≤ Lu

|u (b)− u (a)| · sup
t∈[a,b]

∣∣∣∣∣g (t)− 1
u (b)− u (a)

∫ b

a

g (s) du (s)

∣∣∣∣∣

×
∫ b

a

∣∣∣∣f (t)− f (a) + f (b)
2

∣∣∣∣ dt

≤ Lu

|u (b)− u (a)| ·
Lu (M −m)
|u (b)− u (a)| (b− a) · Hf

2

∫ b

a

[(t− a)p + (b− t)p] dt

=
L2

uHf

p + 1
· (M −m)
(u (b)− u (a))2

(b− a)p+2
,

since m ≤ g(x) ≤ M , for all x ∈ [a, b], then
∣∣∣∣∣g (t)− 1

u (b)− u (a)

∫ b

a

g (s) du (s)

∣∣∣∣∣ ≤
∣∣∣∣∣

∫ b

a
[g (t)− g (s)] du (s)

u (b)− u (a)

∣∣∣∣∣

≤ Lu

|u (b)− u (a)|
∫ b

a

|g (t)− g (s)| ds

≤ Lu (M −m)
|u (b)− u (a)| (b− a) ,(2.2)

which completes the proof. ¤

Corollary 2.1. Let g, u be as in Theorem 2.1. If f : [a, b] → R is Lf–Lipschitzian
on [a, b], then

|T (f, g;u)| ≤ L2
uLf (M −m)

2 (u (b)− u (a))2
(b− a)3(2.3)

Remark 2.1. Under the assumptions of Theorem 2.1, we have

|T (f, g)| ≤ Hf

(p + 1)
(M −m) · (b− a)p

.(2.4)

In particular, if f is Lf–Lipschitzian, then

|T (f, g)| ≤ 1
2
Lf (b− a) (M −m) .(2.5)
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Theorem 2.2. Let g, u be as in Theorem 2.1. Let f : [a, b] → R be a function of
bounded variation on [a, b], then we have

|T (f, g; u)| ≤ 1
2

Lu (M −m)
(u (b)− u (a))2

(b− a) ·
b∨
a

(f) .(2.6)

Proof. Since u is Lu–Lipschitzian on [a, b], as in Theorem 2.1, we have

|T (f, g; u)| ≤ Lu

|u (b)− u (a)| · sup
t∈[a,b]

∣∣∣∣∣g (t)− 1
u (b)− u (a)

∫ b

a

g (s) du (s)

∣∣∣∣∣

×
∫ b

a

∣∣∣∣f (t)− f (a) + f (b)
2

∣∣∣∣ dt

Since m ≤ g ≤ M , by (2.2) we have

(2.7)
1

|u (b)− u (a)|
∫ b

a

∣∣∣∣∣g (t)− 1
u (b)− u (a)

∫ b

a

g (s) du (s)

∣∣∣∣∣ du (t)

≤ Lu (M −m)
(u (b)− u (a))2

(b− a) .

Now as f is of bounded variation on [a, b], we have

sup
t∈[a,b]

∣∣∣∣f (t)− f (a) + f (b)
2

∣∣∣∣ = sup
t∈[a,b]

∣∣∣∣
f (t)− f (a) + f (t)− f (b)

2

∣∣∣∣

≤ 1
2

sup
t∈[a,b]

[|f (t)− f (a)|+ |f (t)− f (b)|] ≤ 1
2

b∨
a

(f) ,(2.8)

for all t ∈ [a, b]. Finally, combining the inequalities (2.7)–(2.8), we obtain the
required result (2.6). ¤

Theorem 2.3. Let g, u : [a, b] → R be such that g is of bounded variation on [a, b],
and u be Lu–Lipschitzian on [a, b], then we have

(2.9) |T (f, g;u)|

≤





Hf L2
u(b−a)p+2

(p+1)(u(b)−u(a))2
·∨b

a (g) , if f is Hf − p−Hölder

L2
u(b−a)2

2(u(b)−u(a))2

∨b
a (g) ·∨b

a (f) , if f is of bounded variation

where, Lu,Hf > 0 and p ∈ (0, 1] are given.
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Proof. Using (1.4) we may write

(2.10) |T (f, g;u)|

≤ Lu

|u (b)− u (a)|
∫ b

a

∣∣∣∣f (t)− f (a) + f (b)
2

∣∣∣∣
∣∣∣∣∣g (t)− 1

u (b)− u (a)

∫ b

a

g (s) du (s)

∣∣∣∣∣ dt

=
Lu

(u (b)− u (a))2

∫ b

a

∣∣∣∣f (t)− f (a) + f (b)
2

∣∣∣∣
∣∣∣∣∣
∫ b

a

[g (t)− g (s)] du (s)

∣∣∣∣∣ dt

≤ L2
u

(u (b)− u (a))2

∫ b

a

[∣∣∣∣f (t)− f (a) + f (b)
2

∣∣∣∣ ·
∫ b

a

|g (t)− g (s)| ds

]
dt,

but since g is of bounded variation then we have,
∫ b

a

|g (t)− g (s)| ds ≤ sup
s∈[a,b]

|g (t)− g (s)| ·
∫ b

a

ds ≤ (b− a)
b∨
a

(g) .(2.11)

Therefore, if f is of p–Hölder type, then we have

|T (f, g; u)|

≤ 1
2
· L2

u (b− a)
(u (b)− u (a))2

·
b∨
a

(g) ·
∫ b

a

[|f (t)− f (a)|+ |f (t)− f (b)|] dt

≤ Hf

2
· L2

u (b− a)
(u (b)− u (a))2

·
b∨
a

(g) ·
∫ b

a

[|t− a|p + |t− b|p] dt

=
Hf

(p + 1)
· L2

u (b− a)p+2

(u (b)− u (a))2
·

b∨
a

(g) ,

which prove the first part of inequality (2.9).
To prove the second part of (2.9), assume that f is of bounded variation, then

by (2.10) we have

|T (f, g; u)|

≤ L2
u

(u (b)− u (a))2

∫ b

a

[∣∣∣∣f (t)− f (a) + f (b)
2

∣∣∣∣ ·
∫ b

a

|g (t)− g (s)| ds

]
dt

≤ L2
u (b− a)2

2 (u (b)− u (a))2

b∨
a

(g) ·
b∨
a

(f) ,

and thus the theorem is proved. ¤

Remark 2.2. Under the assumptions of Theorem 2.3, we have

(2.12) |T (f, g)|

≤





Hf

p+1 (b− a)p ·∨b
a (g) , if f is Hf − p−Hölder

1
2

∨b
a (g) ·∨b

a (f) , if f is of bounded variation

where, Hf , > 0 and p ∈ (0, 1] are given.

An improvement for the first inequality in (2.9) may be stated as follows:
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Corollary 2.2. Let g, u be as in Theorem 2.3 and f : [a, b] → R be of p-Hf–Holder
type on [a, b], then

|T (f, g; u)| ≤ L2
uHf (b− a)p+2

2p (u (b)− u (a))2

b∨
a

(g) .(2.13)

Proof. By Theorem 2.3 we have

|T (f, g; u)|

≤ L2
u

(u (b)− u (a))2

∫ b

a

[∣∣∣∣f (t)− f (a) + f (b)
2

∣∣∣∣ ·
∫ b

a

|g (t)− g (s)| ds

]
dt

≤ L2
u (b− a)

(u (b)− u (a))2

b∨
a

(g)
∫ b

a

∣∣∣∣f (t)− f (a) + f (b)
2

∣∣∣∣ dt

≤ L2
u (b− a)2

(u (b)− u (a))2

b∨
a

(g) · sup
t∈[a,b]

∣∣∣∣f (t)− f (a) + f (b)
2

∣∣∣∣

≤ L2
u (b− a)2

(u (b)− u (a))2

b∨
a

(g) ·Hf

(
b− a

2

)p

,

and since f is of p–Hf–Holder type on [a, b], we have
∣∣∣∣f (t)− f (a) + f (b)

2

∣∣∣∣ =
∣∣∣∣
f (t)− f (a) + f (t)− f (b)

2

∣∣∣∣

≤ 1
2
|f (t)− f (a)|+ 1

2
|f (t)− f (b)|

≤ Hf

2
[(t− a)p + (b− t)p] ,

it follows that

sup
t∈[a,b]

∣∣∣∣f (t)− f (a) + f (b)
2

∣∣∣∣ ≤ Hf

(
b− a

2

)p

.(2.14)

which completes the proof. ¤

Remark 2.3. Under the assumptions of Corollary 2.2, we have

|T (f, g)| ≤ 1
2p

Hf (b− a)p
b∨
a

(g) ,(2.15)

which improves the first inequality in (2.12), where Hf > 0 and p ∈ (0, 1] are given.

Theorem 2.4. Let g, u : [a, b] → R be such that g is of q-Hg–Hölder type on [a, b],
and and u be Lu–Lipschitzian on [a, b], then we have

(2.16) |T (f, g;u)|

≤ L2
uHg ·





(b−a)q+2

(q+1)(q+2)(u(b)−u(a))2
·∨b

a (f) , if f is of bounded variation

Hf (b−a)p+q+2

2p(q+1)(q+2)(u(b)−u(a))2
, if f is Hf − p−Hölder

where, Lu,Hg,Hf > 0 and p, q ∈ (0, 1] are given.
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Proof. Assume that g is of q-Hg–Hölder type on [a, b] and f is of bounded variation
on [a, b]. Using (1.4), then we may write

|T (f, g; u)| ≤ Lu

|u (b)− u (a)|
∫ b

a

∣∣∣∣f (t)− f (a) + f (b)
2

∣∣∣∣

×
∣∣∣∣∣g (t)− 1

u (b)− u (a)

∫ b

a

g (s) du (s)

∣∣∣∣∣ dt

=
Lu

(u (b)− u (a))2

∫ b

a

∣∣∣∣f (t)− f (a) + f (b)
2

∣∣∣∣
∣∣∣∣∣
∫ b

a

[g (t)− g (s)] du (s)

∣∣∣∣∣ dt

≤ L2
u

(u (b)− u (a))2

∫ b

a

[∣∣∣∣f (t)− f (a) + f (b)
2

∣∣∣∣ ·
∫ b

a

|g (t)− g (s)| ds

]
dt

≤ L2
u

(u (b)− u (a))2
· sup

t∈[a,b]

∣∣∣∣f (t)− f (a) + f (b)
2

∣∣∣∣ ·
∫ b

a

[∫ b

a

|g (t)− g (s)| ds

]
dt

(2.17)

≤ L2
uHg

2 (u (b)− u (a))2
·

b∨
a

(f) ·
∫ b

a

[∫ b

a

|t− s|q ds

]
dt.

=
L2

uHg

2 (u (b)− u (a))2
·

b∨
a

(f) ·
∫ b

a

[∫ t

a

(s− a)q
ds +

∫ b

t

(b− s)q
ds

]
dt

=
L2

uHg

2 (u (b)− u (a))2
·

b∨
a

(f) ·
∫ b

a

[
(t− a)q+1 + (b− t)q+1

q + 1

]
dt

=
L2

uHg

(u (b)− u (a))2
·

b∨
a

(f) · (b− a)q+2

(q + 1) (q + 2)
,

which proves the first inequality in (2.16).
To prove the second inequality in (2.16), assume that f is of p–Hf–Hölder type

on [a, b], then by (2.17) we have

sup
t∈[a,b]

∣∣∣∣f (t)− f (a) + f (b)
2

∣∣∣∣ ≤ Hf

(
b− a

2

)p

(2.18)

which together with (2.17) proves the second part of (2.16), and thus the proof is
established. ¤

Corollary 2.3. Let g, u : [a, b] → R be respectively; Lg, Lu–Lipschitzian on [a, b],
then we have

(2.19) |T (f, g;u)|

≤ L2
uLg ·





(b−a)3

6(u(b)−u(a))2
·∨b

a (f) , if f is of bounded variation

Hf (b−a)p+3

2p+1·3(u(b)−u(a))2
, if f is Hf − p−Holder

where, Hg,Hf > 0 and p, q ∈ (0, 1] are given.
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Remark 2.4. Under the assumptions of Theorem 2.4, we have

(2.20) |T (f, g)|

≤ Hg ·





(b−a)q

(q+1)(q+2) ·
∨b

a (f) , if f is of bounded variation

Hf (b−a)p+q

2p(q+1)(q+2) , if f is Hf − p−Holder

where, Hf > 0 and p, q ∈ (0, 1] are given. In particular, if g is Lg–Lipschitzian,
then

(2.21) |T (f, g)|

≤ Lg ·




1
6 (b− a) ·∨b

a (f) , if f is of bounded variation

1
12Lf (b− a)2 , if f is Lf − Lipschitzian
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