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ON SPECTRAL PROPERTIES FOR A REGULAR
STURM-LIOUVILLE PROBLEM

ERDOĞAN ŞEN, AZAD BAYRAMOV, SERKAN ARACI, AND MEHMET ACIKGOZ

Abstract. In this work we study a discontinuous boundary-value problem
with retarded argument which contains a spectral parameter in the trans-
mission conditions. We firstly prove the existence theorem and then obtain
asymptotic representation of eigenvalues and eigenfunctions.

1. Introduction

The theory of differential equations with retarded arguments is one of the actual
branch of the theory of ordinary differential equations. Particularly, there has been
increasing interest in spectral analysis of boundary value problems. There is quite
substantial literature concerning such problems. Here we mention the results of
[1–19].

In this paper we study the eigenvalues and eigenfunctions of a discontinuous
boundary value problem with retarded argument and spectral parameters in the
transmission conditions. Namely we consider the boundary value problem for the
differential equation

(1.1) y′′(x) + q(x)y(x−∆(x)) + λy(x) = 0

on [0, h1) ∪ (h1, h2) ∪ (h2, π] , with boundary conditions

(1.2) y(0) cos α + y′(0) sin α = 0,

(1.3) y(π) cos β + y′(π) sin β = 0,

and transmission conditions

(1.4) y(h1 − 0)− 3
√

λδy(h1 + 0) = 0,

(1.5) y′(h1 − 0)− 3
√

λδy′(h1 + 0) = 0,

(1.6) y(h2 − 0)− γy(h2 + 0) = 0,
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(1.7) y′(h2 − 0)− γy′(h2 + 0) = 0,

where the real-valued function q(x) is continuous in [0, h1) ∪ (h1, h2) ∪ (h2, π] and
has finite limits q(h1 ± 0) = limx→h1±0 q(x), q(h2 ± 0) = limx→h2±0 q(x) the real
valued function ∆(x) ≥ 0 continuous in [0, h1) ∪ (h1, h2) ∪ (h2, π] and has finite
limits ∆(h1 ± 0) = limx→h1±0 ∆(x), ∆(h2 ± 0) = limx→h2±0 ∆(x), x−∆(x) ≥ 0, if
x ∈ [0, h1) ; x−∆(x) ≥ h1, if x ∈ (h1, h2) , x−∆(x) ≥ h2, if x ∈ (h2, π] ; λ is a real
spectral parameter; δ, γ are arbitrary real numbers and sinα sin β 6= 0.

Let w1(x, λ) be a solution of Equation (1.1) on [0, h1] , satisfying the initial
conditions

(1.8) w1 (0, λ) = sin α,w′1 (0, λ) = − cosα.

The conditions (1.8) define a unique solution of Equation (1.1) on [0, h1] ([2], p.
12).

After defining the above solution we shall define the solution w2 (x, λ) of Equation
(1.1) on [h1, h2] by means of the solution w1 (x, λ) using the initial conditions

(1.9) w2 (h1, λ) = λ−1/3δ−1w1 (h1, λ) , w′2(h1, λ) = λ−1/3δ−1w′1(h1, λ).

The conditions (1.9) are defined as a unique solution of Equation (1.1) on [h1, h2] .
After defining the above solution we shall define the solution w3 (x, λ) of Equation

(1.1) on [h2, π] by means of the solution w2 (x, λ) using the initial conditions

(1.10) w3 (h2, λ) = γ−1w2 (h2, λ) , w′3(h2, λ) = γ−1w′2(h2, λ).

The conditions (1.10) are defined as a unique solution of Equation (1.1) on
[h2, π] .

Consequently, the function w (x, λ) is defined on [0, h1)∪ (h1, h2)∪ (h2, π] by the
equality

w(x, λ) =





w1(x, λ), x ∈ [0, h1) ,
w2(x, λ), x ∈ (h1, h2) ,
w3(x, λ), x ∈ (h2, π]

is a solution of the Equation (1.1) on [0, h1) ∪ (h1, h2) ∪ (h2, π] ;which satisfies one
of the.boundary conditions and transmission conditions (1.4)-(1.5).

Lemma 1.1. Let w (x, λ) be a solution of Equation (1.1) and λ > 0. Then the
following integral equations hold:

w1(x, λ) = sin α cos sx− cos α

s
sin sx

− 1
s

x∫

0

q (τ) sin s (x− τ) w1 (τ −∆ (τ) , λ) dτ
(
s =

√
λ, λ > 0

)
,(1.11)

w2(x, λ) =
1

s2/3δ
w1 (h1, λ) cos s (x− h1) +

w′1 (h1, λ)
s5/3δ

sin s (x− h1)

− 1
s

x∫

h1

q (τ) sin s (x− τ) w2 (τ −∆ (τ) , λ) dτ
(
s =

√
λ, λ > 0

)
,(1.12)
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w3(x, λ) =
1
γ

w2 (h2, λ) cos s (x− h2) +
w′2 (h2, λ)

sγ
sin s (x− h2)

− 1
s

x∫

h2

q (τ) sin s (x− τ) w3 (τ −∆ (τ) , λ) dτ
(
s =

√
λ, λ > 0

)
.(1.13)

Proof. To prove this, it is enough to substitute−s2w1(τ, λ)−w′′1 (τ, λ),−s2w2(τ, λ)−
w′′2 (τ, λ) and −s2w3(τ, λ)−w′′3 (τ, λ) instead of −q(τ)w1(τ −∆(τ), λ), −q(τ)w2(τ −
∆(τ), λ) and −q(τ)w3(τ − ∆(τ), λ) in the integrals in (1.11), (1.12) and (1.13)
respectively and integrate by parts twice. ¤
Theorem 1.1. The problem (1.1)− (1.7) can have only simple eigenvalues.

Proof. Let λ̃ be an eigenvalue of the problem (1.1)− (1.7) and

ỹ(x, λ̃) =





ỹ1(x, λ̃), x ∈ [0, h1) ,

ỹ2(x, λ̃), x ∈ (h1, h2) ,

ỹ3(x, λ̃), x ∈ (h2, π]

be a corresponding eigenfunction. Then from (1.2) and (1.8) it follows that the
determinant

W
[
ỹ1(0, λ̃), w1(0, λ̃)

]
=

∣∣∣∣∣
ỹ1(0, λ̃) sin α

ỹ′1(0, λ̃) − cos α

∣∣∣∣∣ = 0,

and by Theorem 2.2 in [2] the functions ỹ1(x, λ̃) and w1(x, λ̃) are linearly dependent
on [0, h1]. We can also prove that the functions ỹ2(x, λ̃), w2(x, λ̃) are linearly
dependent on [h1, h2] and ỹ3(x, λ̃), w3(x, λ̃) are linearly dependent on [h2, π] . Hence

(1.14) ỹi(x, λ̃) = Kiwi(x, λ̃)
(
i = 1, 3

)

for some K1 6= 0, K2 6= 0 and K3 6= 0. We must show that K1 = K2 = K3.
Suppose that K1 6= K2. From the equalities (1.4) and (1.14), we have

ỹ(h1 − 0, λ̃)− 3
√

λ̃δỹ(h1 + 0, λ̃) = ỹ1(h1, λ̃)− 3
√

λ̃δỹ2(h1, λ̃)

= K1w1(h1, λ̃)− 3
√

λ̃δK2w2(h1, λ̃)

=
3
√

λ̃δK1w2(h1, λ̃)− 3
√

λ̃δK2w2(h1, λ̃)

=
3
√

λ̃δ (K1 −K2)w2(h1, λ̃) = 0.

Since δ (K1 −K2) 6= 0 it follows that

(1.15) w2

(
h1, λ̃

)
= 0.

By the same procedure from equality (1.5), we can derive that

(1.16) w′2
(
h1, λ̃

)
= 0.

From the fact that w2(x, λ̃) is a solution of the differential Equation (1.1) on [h1, h2]
and satisfies the initial conditions (1.15) and (1.16) it follows that w2(x, λ̃) = 0
identically on [h1, h2] (cf. [2, p. 12, Theorem 1.2.1]).

By using this, we may also find

w1

(
h1, λ̃

)
= w′1

(
h1, λ̃

)
= 0
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From the latter discussions of w2(x, λ̃) it follows that w1(x, λ̃) = 0 identically on
[0, h1] . But this contradicts (1.8), thus completing the proof. Analogically we can
show that K2 = K3. ¤

2. An existence theorem

The function w(x, λ) defined in section 1 is a nontrivial solution of Equation
(1.1) satisfying conditions (1.2) and (1.4)-(1.7). Putting w(x, λ) into (1.3), we get
the characteristic equation

(2.1) F (λ) ≡ w(π, λ) cos β + w′(π, λ) sin β = 0.

By Theorem 1.1, the set of eigenvalues of boundary-value problem (1.1)-(1.7)

coincides with the set of real roots of Eq. (2.1). Let q1 =
h1∫
0

|q(τ)|dτ, q2 =
h2∫
h1

|q(τ)| dτ

and q3 =
π∫

h2

|q(τ)| dτ.

Lemma 2.1. (1) Let λ ≥ 4q2
1. Then for the solution w1 (x, λ) of Equation (1.11),

the following inequality holds:

(2.2) |w1 (x, λ)| ≤ 1
|q1|

√
4q2

1 sin2 α + cos2 α, x ∈ [0, h1] .

(2) Let λ ≥ max
{
4q2

1 , 4q2
2

}
. Then for the solution w2 (x, λ) of Equation (1.12), the

following inequality holds:

(2.3) |w2 (x, λ)| ≤ 2.5198421
3
√

q5
1δ

√
4q2

1 sin2 α + cos2 α, x ∈ [h1, h2] .

(3) Let λ ≥ max
{
4q2

1 , 4q2
2 , 4q2

3

}
. Then for the solution w2 (x, λ) of Equation (1.13),

the following inequality holds:

(2.4) |w3 (x, λ)| ≤ 10.0793684
3
√

q5
1δγ

√
4q2

1 sin2 α + cos2 α, x ∈ [h2, π] .

Proof. Let B1λ = max[0,h1] |w1 (x, λ)|. Then from (1.11), it follows that, for every
λ > 0, the following inequality holds:

B1λ ≤
√

sin2 α +
cos2 α

s2
+

1
s
B1λq1.

If s ≥ 2q1 we get (2.2). Differentiating (1.11) with respect to x, we have
(2.5)

w′1(x, λ) = −s sin α sin sx− cosα cos sx−
x∫

0

q(τ) cos s (x− τ)w1(τ −∆ (τ) , λ)dτ.

From (2.5) and (2.2), it follows that, for s ≥ 2q1, the following inequality holds:.

(2.6)
|w′1(x, λ)|

s5/3
≤ 1

3
√

4q5
1

√
4q2

1 sin2 α + cos2 α.
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Let B2λ = max[h1,h2] |w2 (x, λ)|. Then from (1.12), (2.2) and (2.6) it follows that,
for s ≥ 2q1 and s ≥ 2q2, the following inequalities hold:

B2λ ≤ 2
3
√

4q5
1δ

√
4q2

1 sin2 α + cos2 α +
1

2q2
B2λq2,

B2λ ≤ 2 3
√

2
3
√

q5
1δ

√
4q2

1 sin2 α + cos2 α.

Hence if λ ≥ max
{
4q2

1 , 4q2
2

}
we get (2.3).

Differentiating (1.12) with respect to x, we have

w′2(x, λ) = −
3
√

s

δ
w1 (h1, λ) sin s (x− h1) +

w′1 (h1, λ)
3
√

s2δ
cos s (x− h1)

−
x∫

h1

q(τ) cos s (x− τ)w2(τ −∆(τ) , λ)dτ.(2.7)

From (2.7) and (2.3), it follows that, for s ≥ 2q1, the following inequality holds:.

(2.8)
|w′2(x, λ)|

s
≤

3
√

16
δ 3
√

q5
1

√
4q2

1 sin2 α + cos2 α.

Let B3λ = max[h2,π] |w3 (x, λ)|. Then from (1.13), (2.2), (2.3) and (2.8) it follows
that, for s ≥ 2q1, s ≥ 2q2 and s ≥ 2q3, the following inequalities hold:

B3λ ≤
3
√

24

3
√

q5
1δγ

√
4q2

1 sin2 α + cos2 α +
3
√

24

3
√

q5
1δγ

√
4q2

1 sin2 α + cos2 α +
1

2q3
B3λq3,

B3λ ≤
3
√

210

3
√

q5
1δγ

√
4q2

1 sin2 α + cos2 α.

Hence if λ ≥ max
{
4q2

1 , 4q2
2 , 4q2

3

}
we get (2.4). ¤

Theorem 2.1. The problem (1.1)-(1.7) has an infinite set of positive eigenvalues.

Proof. Differentiating (1.9) with respect tox, we get

w′3(x, λ) = − s

γ
w2 (h2, λ) sin s (x− h2) +

w′2 (h2, λ)
γ

cos s (x− h2)

−
x∫

h2

q(τ) cos s (x− τ)w3(τ −∆(τ) , λ)dτ.(2.9)

From (1.11), (1.12), (1.13), (2.1), (2.5), (2.7) and (2.9), we get

 1

γ





1
s2/3δ


sin α cos sh1 − cos α

s
sin sh1 − 1

s

h1∫

0

q(τ) sin s(h1 − τ)w1(τ −∆(τ), λ)dτ




× cos s (h2 − h1)

− 1
s5/3δ


s sin α sin sh1 + cos α cos sh1 +

h1∫

0

q(τ) cos s(h1 − τ)w1(τ −∆(τ), λ)dτ



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× sin s (h2 − h1)− 1
s

h2∫

h1

q(τ) sin s(h2 − τ)w2(τ −∆(τ), λ)dτ



 cos s (π − h2)+

1
sγ



−

s1/3

δ


sin α cos sh1−cosα

s
sin sh1−1

s

h1∫

0

q(τ) sin s(h1 − τ)w1(τ −∆(τ), λ)dτ




× sin s (h2 − h1)

− 1
s2/3δ


s sin α sin sh1+ cos α cos sh1+

h1∫

0

q(τ) cos s(h1 − τ)w1(τ −∆(τ), λ)dτ




× cos s (h2 − h1)−
h2∫

h1

q(τ) cos s(h2 − τ)w2(τ −∆(τ), λ)dτ



 sin s (π − h2)

−1
s

π∫

h2

q(τ) sin s (π − τ) w3(τ −∆(τ), λ)dτ


 cosβ+


− s

γ





1
s2/3δ


sin α cos sh1 − cosα

s
sin sh1 − 1

s

h1∫

0

q(τ) sin s(h1 − τ)w1(τ −∆(τ), λ)dτ




× cos s (h2 − h1)

− 1
s5/3δ


s sin α sin sh1 + cos α cos sh1 +

h1∫

0

q(τ) cos s(h1 − τ)w1(τ −∆(τ), λ)dτ




× sin s (h2 − h1)− 1
s

h2∫

h1

q(τ) sin s(h2 − τ)w2(τ −∆(τ), λ)dτ



 sin s (π − h2) +

1
γ



−

s1/3

δ


sin α cos sh1−cosα

s
sin sh1−1

s

h1∫

0

q(τ) sin s(h1 − τ)w1(τ −∆(τ), λ)dτ




× sin s (h2 − h1)

− 1
s2/3δ


s sin α sin sh1+ cos α cos sh1+

h1∫

0

q(τ) cos s(h1 − τ)w1(τ −∆(τ), λ)dτ




× cos s (h2 − h1)−
h2∫

h1

q(τ) cos s(h2 − τ)w2(τ −∆(τ), λ)dτ



 cos s (π − h2)

(2.10) −
π∫

h2

q(τ) cos s (π − τ)w3(τ −∆(τ), λ)dτ


 sin β = 0.

Let λ be sufficiently large. Then, by (2.2)-(2.4), Equation (2.10) may be rewritten
in the form

(2.11) 3
√

s sin sπ + O(1) = 0.
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Obviously, for large s Equation (2.11) has an infinite set of roots. Thus the theorem
is proved. ¤

3. Asymptotic Formulas for Eigenvalues and Eigenfunctions

Now we begin to study asymptotic properties of eigenvalues and eigenfunctions.
In the following we shall assume thatsis sufficiently large. From (1.11) and (2.2),
we get

(3.1) w1(x, λ) = O(1) on [0, h1].

From (1.12) and (2.3), we get

(3.2) w2(x, λ) = O(1) on [h1, h2].

From (1.13) and (2.4), we get

(3.3) w3(x, λ) = O(1) on [h2, π].

The existence and continuity of the derivatives w′1s(x, λ) for 0 ≤ x ≤ h1, |λ| < ∞,
w′2s(x, λ) for h1 ≤ x ≤ h2, |λ| < ∞ and w′3s(x, λ) for h2 ≤ x ≤ π, |λ| < ∞ follows
from Theorem 1.4.1 in [2].

w′1s(x,λ) = O(1), x ∈ [0, h1],(3.4)

w′2s(x,λ) = O(1), x ∈ [h1, h2],(3.5)

w′3s(x,λ) = O(1), x ∈ [h2, π](3.6)

hold.

Proof. By differentiating (1.13) with respect to s, we get, by (3.3)
(3.7)

w′3s(x, λ) = −1
s

x

0
q(τ) cos s(x− τ)w′3s (τ −∆(τ) , λ) + θ(x, λ), (|θ(x, λ)| ≤ θ0).

Let Dλ = max[h2,π] |w′3s(x, λ)| . Then the existance of Dλ follows from continuity
of derivation for x ∈ [h2, π]. From (3.7)

Dλ ≤ 1
s
q3Dλ + θ0.

Now let s ≥ 2q3. Then Dλ ≤ 2θ0 and the validity of the asymptotic formula (3.6)
follows. Formulas (3.4) and (3.5) may be proved analogically. ¤
Theorem 3.1. Let n be a natural number. For each sufficiently large n there is
exactly one eigenvalue of the problem (1.1)-(1.7) near n2.

Proof. We consider the expression which is denoted by O(1) in Equation (2.11):

δγ

sin α sin β

{
− sin(α− β)

s2/3δγ
cos sπ +

cosα cosβ

s5/3δγ
sin sπ

− 1
δγ

h1

0

[
cosβ

s5/3
sin s(π − τ) +

sin β

s2/3
cos s (π − τ)

]
q (τ)w1 (τ −∆(τ) , λ) dτ

+
1
γ

h2

h1

[
cos β

s5/3
sin s(π − τ) +

sinβ

s2/3
cos s (π − τ)

]
q (τ) w2 (τ −∆(τ) , λ) dτ

+π
h2

[
cos β

s
sin s(π − τ) + sin β cos s (π − τ)

]
q (τ)w3 (τ −∆(τ) , λ) dτ

}
.
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If formulas (3.1)-(3.6) are taken into consideration, it can be shown by differen-
tiation with respect to s that for large s this expression has bounded derivative. It
is obvious that for large s the roots of Equation (2.11) are situated close to entire
numbers. We shall show that, for large n, only one root (2.11) lies near to each
n. We consider the function φ(s) = 3

√
s sin sπ + O(1). Its derivative, which has the

form φ′(s) = 1

3
3√

s2
sin sπ + 3

√
sπ cos π + O(1), does not vanish for s close to n for

sufficiently large n. Thus our assertion follows by Rolle’s Theorem. ¤

Let n be sufficiently large. In what follows we shall denote byλn = s2
n the

eigenvalue of the problem (1.1)-(1.7) situated near n2. We set sn = n + δn. From
(2.11) it follows that δn = O

(
1

n1/3

)
.

Consequently

(3.8) sn = n + O

(
1

n1/3

)
.

Formula (3.8) make it possible to obtain asymptotic expressions for eigenfunction
of the problem (1.1)-(1.7). From (1.11), (2.5) and (3.1), we get

(3.9) w1(x, λ) = sin α cos sx + O

(
1
s

)
,

(3.10) w′1(x, λ) = −s sin α sin sx + O (1) .

From (1.12), 2.6), (3.2), (3.9) and (3.10), we get

w2(x, λ) =
sin α

s2/3δ
cos sx + O

(
1
s

)
,(3.11)

w′2(x, λ) = −s1/3 sinα

δ
sin sx + O (1) .(3.12)

From (1.13), (2.7), (3.3), (3.11) and (3.12), we get

w3(x, λ) =
sin α

s2/3δγ
cossh2 cos s (x− h2)− sin α

s2/3δγ
sinsh2 sin s (x− h2) + O

(
1
s

)
,

w3(x, λ) =
sin α

s2/3δγ
cossx + O

(
1
s

)
.

(3.13)

By substituting (3.8) into (3.9), (3.11) and (3.12), we find that

u1n = w1 (x, λn) = sin α cos nx + O

(
1

n1/3

)
,

u2n = w2 (x, λn) =
sin α

δn2/3
cosnx + O

(
1
n

)
,

u3n = w3 (x, λn) =
sin α

δγn2/3
cosnx + O

(
1
n

)
.

Hence the eigenfunctions un(x) have the following asymptotic representation:

un(x) =





sinα cos nx + O
(

1
n1/3

)
, x ∈ [0, h1) ,

sin α
δn2/3 cosnx + O

(
1
n

)
, x ∈ (h1, h2) ,

sin α
δγn2/3 cosnx + O

(
1
n

)
, x ∈ (h2, π] .
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Under some additional conditions the more exact asymptotic formulas which
depend upon the retardation may be obtained. Let us assume that the following
conditions are fulfilled:

a) The derivatives q′(x) and ∆′′(x) exist and are bounded in [0, h1) ∪ (h1, h2) ∪
(h2, π] and have finite limits q′(hi±0) = lim

x→hi±0
q′(x) and ∆′′(hi±0) = lim

x→hi±0
∆′′(x)

(i = 1, 2), respectively.
b) ∆′(x) ≤ 1 in [0, h1)∪(h1, h2)∪(h2, π], ∆(0) = 0 and lim

x→hi+0
∆(x) = 0 (i = 1, 2).

By using b), we have

x−∆(x) ≥ 0,x ∈ [0, h1) ,(3.14)

x−∆(x) ≥ h1,x ∈ (h1, h2) ,(3.15)

x−∆(x) ≥ h1,x ∈ (h2, π] .(3.16)

From Equations (3.9), (3.11) and (3.13)-(3.16) we have

(3.17) w1 (τ −∆(τ) , λ) = sin α cos s (τ −∆(τ)) + O

(
1
s

)
,

(3.18) w2 (τ −∆(τ) , λ) =
sin α

s2/3δ
cos s (τ −∆(τ)) + O

(
1
s

)
,

(3.19) w3 (τ −∆ (τ) , λ) =
sin α

s2/3δγ
coss (τ −∆ (τ)) + O

(
1
s

)
.

Putting these expressions into Equation (2.10), we have

− s1/3

δγ
sin α sinβ sin sπ +

sin (α− β)
s2/3δγ

cos sπ − sin α sin β

s2/3δγ

×
{

cos sππ
0

q (τ)
2

[cos s∆(τ) + cos s (2τ −∆(τ))] dτ

+sin sππ
0

q (τ)
2

[sin s∆(τ) + sin s (2τ −∆(τ))] dτ

}
+ O

(
1

s5/3

)
= 0.(3.20)

Let

(3.21)





A (x, s, ∆(τ)) = 1
2

x∫
0

q(τ) sin (s∆(τ)) dτ,

B(x, s, ∆(τ)) = 1
2

x∫
0

q(τ) cos (s∆(τ)) dτ.

It is obvious that these functions are bounded for 0 ≤ x ≤ π, 0 < s < +∞.
Under the conditions a) and b) the following formulas

(3.22)

x∫

0

q(τ) cos s(2τ−∆(τ))dτ = O

(
1
s

)
,

x∫

0

q(τ) sin s(2τ−∆(τ))dτ = O

(
1
s

)

can be proved by the same technique in Lemma 3.3 in [2]. From Equations (3.20),
(3.21) and(3.22),we have

sin sπ [s sin α sin β + A (π, s, ∆(τ)) sin α sinβ]−

cos sπ [sinα cosβ − cosα sin β −B (π, s,∆ (τ)) sin α sin β] + O

(
1
s

)
= 0.
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Hence

tan sπ =
1
s

[cotβ − cot α−B (π, s,∆(τ))] + O

(
1
s2

)
.

Again if we take sn = n + δn, then

tan (n + δn) π = tan δnπ =
1
n

[cot β − cot α−B (π, n, ∆ (τ))] + O

(
1
n2

)
.

Hence for large n,

δn =
1

nπ
[cotβ − cot α−B (π, n, ∆(τ))] + O

(
1
n2

)

and finally

(3.23) sn = n +
1

nπ
[cot β − cot α−B (π, n, ∆ (τ))] + O

(
1
n2

)
.

Thus, we have proven the following theorem.

Theorem 3.2. If conditions a) and b) are satisfied then, the positive eigenvalues
λn = s2

n of the problem (1.1)-(1.7) have the asymptotic representation of (3.23)
forn →∞.

We now may obtain a more exact asymptotic formula for the eigenfunctions.
From Equations (1.11), (3.17), (3.21) and (3.22)

w1(x, λ) = sin α cos sx [1 + A (x, 〉 s,〉∆(τ)

s

(3.24) − sin sx

s
[cos α + sin αB (x, 〉 s, 〉∆(τ) + O

(
1
s2

)
.

Replacing s by sn and using Equation (3.23), we have

u1n(x) = w1(x, λn) = sin α

{
cosnx

[
1 +

A (x, n, ∆(τ))
n

]

(3.25)

− sin nx

nπ
[(cot β − cot α−B (π, n, ∆(τ))) x + (cot α + B (x, n, ∆(τ))) π]

}
+O

(
1
n2

)
.

From (2.5), (3.18), (3.21), (3.22) and (3.24), we have

w2 (x, λ) =
sin α

s2/3δ
cos sx

[
1 +

A (x, s, ∆(τ))
s

]

− sin sx

s5/3δ
(cosα + sin αB (x, s, ∆(τ))) + O

(
1
s2

)
,(3.26)

Now, replacing s by sn and using Equation (3.23), we have

u2n(x) =
sin α

n2/3δ

{
cosnx

[
1 +

A (x, n, ∆(τ))
n

]
− sinnx

n5/3π

× [(cotβ − cot α−B (π, n, ∆(τ))) x + (cot α + B (x, n, ∆(τ))) π]}+ O

(
1
n2

)
.
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From (2.9), (3.19), (3.21), (3.22) and (3.26), we have

w3 (x, λ) =
sin α

s2/3δγ
cos sx

[
1 +

A (x, s, ∆(τ))
s

]

− sin sx

s5/3δγ
(cos α + sin αB (x, s, ∆(τ))) + O

(
1
s2

)
,

Now, replacing s by sn and using Equation (3.23)

u3n(x) =
sin α

n2/3δγ

{
cos nx

[
1 +

A (x, n, ∆(τ))
n

]
− sin nx

n5/3π

× [(cotβ − cot α−B (π, n, ∆(τ))) x + (cot α + B (x, n, ∆(τ))) π]}+ O

(
1
n2

)
.

Thus, we have proven the following theorem.

Theorem 3.3. If conditions a) and b) are satisfied then, the eigenfunctions un(x)
of the problem (1.1)-(1.7) have the following asymptotic representation for n →∞:

un(x) =





u1n(x), x ∈ [0, h1) ,
u2n(x), x ∈ (h1, h2) ,
u3n(x), x ∈ (h2, π] ,

where u1n(x), u2n(x) and u3n(x) are defined as in (3.12) and (3.14) respectively.
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[16] E. Şen and A. Bayramov, Calculation of eigenvalues and eigenfunctions of a discontinuous
boundary value problem with retarded argument which contains a spectral parameter in the
boundary condition, Mathematical and Computer Modelling, 54 (2011) 3090-3097.
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[19] E. Şen and A. Bayramov, Asymptotic formulations of the eigenvalues and eigenfunctions
for a boundary value problem, Mathematical Methods in the Applied Sciences, 36 (2013)
1512-1519.

Department of Mathematics, Faculty of Arts and Science, Namik Kemal University,
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