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ON SOME SINGULAR VALUE INEQUALITIES FOR MATRICES

ILYAS ALI, HU YANG, ABDUL SHAKOOR

Abstract. Some singular value inequalities for matrices are given. Among
other inequalities it is proved that if f and g be nonnegative functions on
[0,∞) which are continuous and satisfying the relation f(t)g(t) = t, for all
t ∈ [0,∞), then

sj(A
∗
1XB1 + A∗2XB2)

≤ sj((A
∗
1f2(| X∗ |)A1 + A∗2f2(| X∗ |)A2)⊕ (B∗1g2(| X |)B1 + B∗2g2(| X |)B2)),

for j = 1, 2, ..., n, where A1, A2, B1, B2, X are square matrices. Our results in
this article generalize some existing singular value inequalities of matrices.

1. Introduction

Let Mm,n be the space of m × n complex matrices and Mn = Mn,n. Let ‖ · ‖
stand for any unitarily invariant norm on Mn, i.e., a norm with the property that
‖UAV ‖ = ‖A‖ for all A ∈ Mn and for all unitary matrices U, V ∈ Mn. Any
matrix A ∈ Mn is called positive semidefinite, denoted as A ≥ 0 if for all x ∈ Cn,
x∗Ax ≥ 0 and it is called positive definite if for all nonzero x ∈ Cn, x∗Ax > 0 and it
is denoted as A > 0. The singular values of matrix A are the eigenvalues of positive
semidefinite matrix | A |= (AA∗)

1
2 , enumerated as s1(A) ≥ s2(A) ≥ ... ≥ sn(A)

and repeated according to multiplicity. The direct sum A⊕B represent the block

diagonal matrix
(

A 0
0 B

)
.

The well-known classical arithmetic-geometric mean inequality for a, b ≥ 0 de-
fined as

a
1
2 b

1
2 ≤ a + b

2
.(1.1)

Arithmetic-geometric mean inequality is important in matrix theory, functional
analysis, electrical networks, etc. For A,B, X ∈ Mn, such that A,B ≥ 0, R. Bhatia
and F. Kittaneh formulated some matrix versions of this inequality in [3,4] one of
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which is the following

‖A 1
2 XB

1
2 ‖ ≤ 1

2
‖AX + XB‖.(1.2)

From (1.2), for X = I we have the following inequality for positive semidefinite
matrices.

‖A 1
2 B

1
2 ‖ ≤ 1

2
‖A + B‖,(1.3)

R. Bhatia and F. Kittaneh also have proved in [5] that if A, B ∈ Mn such that
A,B ≥ 0, then

‖A 3
2 B

1
2 + A

1
2 B

3
2 ‖ ≤ 1

2
‖(A + B)2‖.(1.4)

From (1.3), (1.4) and also by triangle inequality, we obtain the following inequality

‖A 3
2 B

1
2 + A

1
2 B

3
2 + A

1
2 B

1
2 ‖ ≤ 1

2
‖(A + B)2‖+

1
2
‖A + B‖.(1.5)

In [2] L. Zou and Y. Jiang proved that for positive semidefinite matrices A,B ∈
Mn and 1 ≤ j ≤ n, the following inequality also holds

2sj(A
3
2 B

1
2 + A

1
2 B

3
2 + A

1
2 B

1
2 ) ≤ sj((A + B)2 + (A + B)),(1.6)

and consequently,

‖A 3
2 B

1
2 + A

1
2 B

3
2 + A

1
2 B

1
2 ‖ ≤ 1

2
‖(A + B)2 + (A + B)‖.(1.7)

The inequality (1.7) is an improvement of the inequality (1.5).
One another interesting inequality for sum and direct sum of matrices proved by

R. Bhatia and F. Kittaneh [6] is

sj(A∗B + B∗A) ≤ sj((A∗A + B∗B)⊕ (A∗A + B∗B)),(1.8)

where A,B ∈ Mn and 1 ≤ j ≤ n.
In Section 2, we give generalized form of the inequality (1.6) and also, we obtain

the X-version of the inequality (1.8).

2. Singular values inequalities for matrices

In this section, we generalize the inequalities (1.6) and also, we obtain X-version
of the inequality (1.8). Our results based on Several lemmas. First two lemmas
have been given by F. Kittaneh in [1] and Lemma 2.3 can be found in [8, Theorem
1].

Lemma 2.1. Let T ∈ Mn, then the block matrix
( | T | T ∗

T | T ∗ |
)
≥ 0.

Lemma 2.2. Let A,B, C ∈ Mn, such that A and B are positive semidefinite,
BC = CA and let f and g be nonnegative functions on [0,∞) which are continuous
and satisfying the relation f(t)g(t) = t, for all t ∈ [0,∞). If the block matrix(

A C∗

C B

)
≥ 0, then so

(
f2(A) C∗

C g2(B)

)
≥ 0.

Lemma 2.3. Let A,B, C ∈ Mn such that
(

A B
B∗ C

)
≥ 0, then

2sj(B) ≤ sj

(
A B
B∗ C

)
, j = 1, 2, ..., n.(2.1)
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The following Lemma was proved in [7].

Lemma 2.4. Let A,B, C ∈ Mn, such that
(

A B
B∗ C

)
≥ 0, then

sj(B) ≤ sj(A⊕ C), j = 1, 2, ..., n.(2.2)

To give the general form of (1.6), first we prove the following result.

Theorem 2.5. Let A,B ∈ Mn be any two matrices and r be a positive inte-
ger, then

2sj(A(| A |2 + | B |2)r−1B∗ + AB∗) ≤ sj((| A |2 + | B |2)r + (| A |2 + | B |2)),
for j = 1, 2, ..., n.

Proof. Let X =
(

A 0
B 0

)
. Then,

X∗X =
(

A∗A + B∗B 0
0 0

)
, XX∗ =

(
AA∗ AB∗

BA∗ BB∗

)
.

So, we have

(X∗X)r =
(

(A∗A + B∗B)r 0
0 0

)
,

and

(XX∗)r = X(X∗X)(r−1)X∗

=
(

A(A∗A + B∗B)(r−1)A∗ A(A∗A + B∗B)(r−1)B∗

B(A∗A + B∗B)(r−1)A∗ B(A∗A + B∗B)(r−1)B∗

)
.

Therefore, we obtain

(X∗X)r + X∗X =
(

(A∗A + B∗B)r + A∗A + B∗B 0
0 0

)
,

and

(XX∗)r + XX∗

=
(

A(A∗A + B∗B)(r−1)A∗ + AA∗ A(A∗A + B∗B)(r−1)B∗ + AB∗

B(A∗A + B∗B)(r−1)A∗ + BA∗ B(A∗A + B∗B)(r−1)B∗ + BB∗

)
.

So, by Lemma 2.3, from the positive semidefinite block matrix (XX∗)r +XX∗, we
have

2sj(A(A∗A + B∗B)(r−1)B∗ + AB∗) ≤ sj((XX∗)r + XX∗)
= sj((X∗X)r + X∗X)
= sj((A∗A + B∗B)r + (A∗A + B∗B)),

for j = 1, 2, ..., n.
The proof is completed. ¤

When A,B ∈ Mn be positive semidefinite in Theorem 2.5 and A is replaced by
A

1
2 and B is replaced by B

1
2 , then we obtain the following promised generalization

of the inequality (1.6).
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Corollary 2.6. Let A,B ∈ Mn be positive semidefinite and r be a positive integer.
Then,

2sj(A
1
2 (A + B)(r−1)B

1
2 + A

1
2 B

1
2 ) ≤ sj((A + B)r + (A + B)),

for j = 1, 2, ..., n.
Remark 2.7. When we take r = 2 in Corollary 2.6 , then we obtain the inequality
(1.6).

To give the X-version of the inequality (1.8), first we obtain the following result.

Theorem 2.8. Let A1, A2, B1, B2, X ∈ Mn. If f and g be nonnegative func-
tions on [0,∞) which are continuous and satisfying the relation f(t)g(t) = t, for all
t ∈ [0,∞), then

sj(A∗1XB1 + A∗2XB2)

≤ sj((A∗1f
2(| X∗ |)A1 + A∗2f

2(| X∗ |)A2)⊕ (B∗
1g2(| X |)B1 + B∗

2g2(| X |)B2)),

for j = 1, 2, ..., n.

Proof. Let T1 =
(

A1 0
0 B1

)
, T2 =

(
A2 0
0 B2

)
.

Since the block matrix
( | X∗ | X

X∗ | X |
)

is positive semidefinite (by Lemma 2.1)

and the block matrix Y =
(

f2(| X∗ |) X
X∗ g2(| X |)

)
is positive semidefinite (by

Lemma 2.2), so, T ∗1 Y T1 =
(

A∗1f
2(| X∗ |)A1 A∗1XB1

B∗
1X∗A1 B∗

1g2(| X |)B1

)
≥ 0 and also,

T ∗2 Y T2 =
(

A∗2f
2(| X∗ |)A2 A∗2XB2

B∗
2X∗A2 B∗

2g2(| X |)B2

)
≥ 0. That is, we have

T ∗1 Y T1 + T ∗2 Y T2

=
(

A∗1f
2(| X∗ |)A1 + A∗2f

2(| X∗ |)A2 A∗1XB1 + A∗2XB2

B∗
1X∗A1 + B∗

2X∗A2 B∗
1g2(| X |)B1 + B∗

2g2(| X |)B2

)
≥ 0

So, our desired result now follows by invoking inequality (2.2).
The proof is completed. ¤

Following is our desired X-version of the inequality (1.8).

Corollary 2.9. Let A,B, X ∈ Mn, then

sj(A∗XB + B∗XA)
≤ sj((A∗ | X∗ | A + B∗ | X∗ | B)⊕ (A∗ | X | A + B∗ | X | B)),

for j = 1, 2, ..., n.
Proof. By taking f(t) = g(t) = t

1
2 , A1 = B2 = A and A2 = B1 = B in Theorem

2.8, we get the desired result.
The proof is completed. ¤

One another important case follows from Corollary 2.9 for normal matrices.



ON SOME SINGULAR VALUE INEQUALITIES FOR MATRICES 89

Corollary 2.10. Let A,B, X ∈ Mn such that X is normal matrix,then

sj(A∗XB + B∗XA)
≤ sj((A∗ | X | A + B∗ | X | B)⊕ (A∗ | X | A + B∗ | X | B)),

for j = 1, 2, ..., n.
In particular, when X is positive semidefinite matrix , then

sj(A∗XB + B∗XA)
≤ sj((A∗XA + B∗XB)⊕ (A∗XA + B∗XB)),

for j = 1, 2, ..., n.
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