Konuralp Journal of Mathematics
Volume 1 No. 2 Pp. 30-32 (2013) ©KJM

# ON AN OPEN PROBLEM BY B. SROYSANG 

JULIUS FERGY T. RABAGO

Abstract. In this short note, we answer an open problem posed by B. Sroysang [1]. More precisely, we find all solutions of the Diophantine equation $8^{x}+17^{y}=$ $z^{2}$ where $x, y$ and $z$ are non-negative integers.

## 1. Introduction

In a recent paper [1], B. Sroysang showed that $(1,0,3)$ is a unique solution $(x, y, z)$ to the Diophantine equation $8^{x}+19^{y}=z^{2}$ where $x, y$ and $z$ are non-negative integers. His findings contradicts the result suggested by Peker and Cenberci in [2]: the Diophantine equation $8^{x}+19^{y}=z^{2}$ has no non-negative integer solution. Also, in the end of his paper, Sroysang [1] posed the question "What is the set of all solutions $(x, y, z)$ for the Diophantine equation $8^{x}+17^{y}=z^{2}$ where $x, y$ and $z$ are non-negative integers?". In this short note, we answer this question of Sroysang.

## 2. Main Results

We begin this section by stating Catalan's conjecture and proving a helpul Lemma.

Proposition 2.1. [2] The solution to the Diophantine equation $a^{x}-b^{y}=1$ where $a, b, x$ and $y$ are integers with $\min \{a, b, x, y\}>1$ is unique and is given by $(a, b, x, y)=$ $(3,2,2,3)$.

Lemma 2.1. Let $x$ and $z$ be non-negative integers. Then, the solutions $(x, z)$ to the Diophantine equation $8^{x}+17=z^{2}$ are $(1,5),(2,9)$ and $(3,23)$.
Proof. The case $x=0$ and $z=0$ are obvious. So we only consider the case when $x, z>0$. We note that $1 \equiv 8^{x}+17 \equiv z^{2}(\bmod 4)$. So, $z$ is either of the form $4 k+1$ or $4 k+3, k=0$ or a natural number. Hence, we have the following cases.

Case 1. $z=4 k+1$. If $z=4 k+1$ then we have $8^{x}+17=(4 k+1)^{2}=$ $16 k^{2}+8 k+1$. So, $8^{x}+16=16 k^{2}+8 k$ and this implies that $8^{x-1}+2=2 k^{2}+k$.

[^0]Thus, $\left(2^{x-1}\right)^{3}+1=2 k^{2}+k-1$. Expressing both sides as product of their prime factors, we have $\left(2^{x-1}+1\right)\left(\left(2^{x-1}\right)^{2}-2^{x-1}+1\right)=(2 k-1)(k+1)$. Therefore, we have two possibilities.

$$
\left\{\begin{array}{rll}
2^{x-1}+1 & = & k+1 \\
\left(2^{x-1}\right)^{2}-2^{x-1}+1 & =2 k-1
\end{array}\right.
$$

or

$$
\left\{\begin{aligned}
2^{x-1}+1 & =2 k-1 \\
\left(2^{x-1}\right)^{2}-2^{x-1}+1 & =k+1
\end{aligned}\right.
$$

For the first set of equalities, we have $2^{x-1}+1=k+1$ implies that $k=2^{x-1}$. So, $\left(2^{x-1}\right)^{2}-2^{x-1}+1=2 k-1=2\left(2^{x-1}\right)-1$. Hence, $\left(2^{x-1}\right)^{2}-3\left(2^{x-1}\right)+2=0$, which is a quadratic equation and is factorable. In particular, $\left(2^{x-1}-1\right)\left(2^{x-1}-2\right)=0$. Here we'll obtain, $2^{x-1}=1$ and $2^{x-1}=2$. This gives us the values $x=1$ and $x=2$, respectively. This follows that $k=1$ and $k=2$. For $k=1$, we have $(x, z)=(1,5)$ and, for $k=2$, we have $(x, z)=(2,9)$. On the otherhand, it could be verified easily that the second set of equalities will give us the solution $(x, z)=(2,9)$.

Case 2. $z=4 k+3$. If $z=4 k+3$ then $8^{x}+17=(4 k+3)^{2}=16 k^{2}+24 k+9$. Hence, $8^{x}+8=16 k^{2}+24 k$ and this implies that $8^{x-1}+1=2 k^{2}+3 k$. Therefore, $\left(2^{x-1}\right)^{3}+1=\left(2^{x-1}+1\right)\left(\left(2^{x-1}\right)^{2}-2^{x-1}+1\right)=k(2 k+3)$. So, we have the following equalities

$$
\left\{\begin{aligned}
2^{x-1}+1 & =k, \\
\left(2^{x-1}\right)^{2}-2^{x-1}+1 & =2 k+3
\end{aligned}\right.
$$

Eliminating $k$ we have, $\left(2^{x-1}\right)^{2}-2^{x-1}+1=2\left(2^{x-1}+1\right)+3=2\left(2^{x-1}\right)+5$. Here we obtain the quadratic equation $\left(2^{x-1}\right)^{2}-3\left(2^{x-1}\right)-4=0$ which is equivalent to $\left(2^{x-1}+1\right)\left(2^{x-1}-4\right)=0$. Solving for zeros, we have $2^{x-1}=-1$, which is impossible and $2^{x-1}=4$, which is true for $x=3$. This gives us the value $k=5$. Thus, we have the solution $(x, y)=(3,23)$. This completes the proof of the theorem.

Theorem 2.1. The only solutions to the Diophantine equation $8^{x}+17^{y}=z^{2}$ in non-negative integers are given by $(x, y, z) \in\{(1,0,3),(1,1,5),(2,1,9),(3,1,23)\}$.
Proof. The case when $z=0$ is obvious so we only consider the following cases.
Case 1. $x=0$. Suppose $8^{x}+17^{y}=z^{2}$ is possible in non-negative integers for $x=0$ then $z^{2}-1=(z+1)(z-1)=17^{y}$. So, $2=(z+1)-(z-1)=17^{\beta}-17^{\alpha}$, where $\alpha+\beta=y$ and $\alpha<\beta$. It follows that $7^{\alpha}\left(7^{\beta-\alpha}-1\right)=2$. Hence, $7^{\alpha}=1$ which is true for $\alpha=0$. Thus, $7^{\beta}=3$, a contradiction. Therefore, $17^{y}+1=z^{2}$ is not possible in non-negative integers.

Case 2. $y=0$. If $y=0$ we have $z^{2}-1=(z+1)(z-1)=2^{3 x}$. Then, $2=(z+1)-(z-1)=2^{\beta}-2^{\alpha}$, where $\alpha+\beta=3 x$ and $\alpha<\beta$. So, $2^{\alpha-1}\left(2^{\beta-\alpha}-1\right)=1$. Here we obtain $\alpha=1$ and $2^{\beta-1}=2$, which is true for $\beta=2$. Thus, $x=1$ and $z=3$. Therefore, we have the solution $(x, y, z)=(1,0,3)$ to the Diophantine equation $8^{x}+17^{y}=z^{2}$.

Case 3. $x, y, z>0$. First note that for $y=1$, Lemma 2.2 implies the following solutions $(x, y, z)=(1,1,5),(2,1,9),(3,1,23)$. Now suppose that $8^{x}+17^{y}=z^{2}$ is possible in non-negative integers $x, y, z$ for $y>1$. We consider two sub-cases.

Subcase $3.1 y$ is even. If we let $y$ be even, i.e. $y=2 n$ for some natural number $n$, then $z^{2}-\left(17^{n}\right)^{2}=2^{3 x}$. So, $\left(z+17^{n}\right)-\left(z-17^{n}\right)=2^{\beta}-2^{\alpha}$, again, $\alpha+\beta=3 x$ and $\alpha<\beta$. Hence, $2^{\alpha-1}\left(2^{\beta-\alpha}-1\right)=17^{n}$. This gives us a value $\alpha=1$. It follows that, $2^{\beta-1}-17^{n}=1$, a contradiction to Catalan's conjecture. Thus, $8^{x}+17^{y}=z^{2}$, for $y$ even is impossible in positive integers.

Subcase $3.2 y$ is odd. If $y=2 n+1$ then we have $8^{x}+17^{2 k+1}=z^{2}$. Since $1 \equiv 8^{x}+17^{2 k+1} \equiv z^{2}(\bmod 4)$ then, either $z=4 k+1$ or $z=4 k+3$, where $k=0$ or a natural number. Hence, we have the following

$$
\begin{cases}8^{x-1}+1=2 k^{2}+k-\left(\frac{17^{2 n+1}-9}{8}\right), & \text { for } z=4 k+1  \tag{1}\\ 8^{x-1}+1=2 k^{2}+3 k-\left(\frac{17^{2 n+1}-17}{8}\right), & \text { for } z=4 k+3\end{cases}
$$

Take note that $k$ is an integer. Hence, the RHS of (1) must be factorable. That is,

$$
(1)^{2}-(4)(2)\left(-\frac{17^{2 n+1}-9}{8}\right)=m^{2}
$$

for some non-negative integer $m$. Then, $17^{2 n+1}-8=m^{2}$. Adding both sides by -9 we obtain $17\left(17^{2 n}-1\right)=(z+3)(z-3)=z^{2}-9$. This gives us a value $z=20$. Thus, $17^{2 n}=24$ which is a contradiction. On the otherhand, the RHS of (2) must also be an integer, more precisely

$$
(3)^{2}-(4)(2)\left(-\frac{17^{2 n+1}-17}{8}\right)=m^{2}
$$

where $m$ is a non-negative integer. Hence, $17^{2 n+1}-8=m^{2}$, which is again a contradiction. Thus, $8^{x}+17^{y}=z^{2}$, for $y$ odd is not solvable in positive integers. This proves the theorem.

## 3. Acknowledgement

I would like to thank the anonymous referee for his valuable suggestions and comments in improving the manuscript.

## References

[1] Sroysang, B., More on the Diophantine Equation $8^{x}+19^{y}=z^{2}$, Int. J. of Pure App. Math. Vol:81, No. 4 (2012), 601-604.
[2] Peker, B., Cenberci, S., On the Diophantine equations of $\left(2^{n}\right)^{x}+p^{y}=z^{2}$ type, Amer. J. Math. Sci. Vol:1, (2012), 195-199.
[3] Mihailescu, P., Primary cycolotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math. Vol:27, (2004), 167-195.

Central Luzon State University, College of Arts and Sciences, Department of Mathematics and Physics, Science City of Muñoz 3120, Nueva Ecija, Philippines

E-mail address: julius_fergy.rabago@up.edu.ph


[^0]:    Date: February 24, 2013 and, in revised form, April 18, 2013.
    1991 Mathematics Subject Classification. 11D61.
    Key words and phrases. Exponential Diophantine equation, integer solutions.

