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ON AN OPEN PROBLEM BY B. SROYSANG

JULIUS FERGY T. RABAGO

Abstract. In this short note, we answer an open problem posed by B. Sroysang

[1]. More precisely, we find all solutions of the Diophantine equation 8x+17y =
z2 where x, y and z are non-negative integers.

1. Introduction

In a recent paper [1], B. Sroysang showed that (1, 0, 3) is a unique solution
(x, y, z) to the Diophantine equation 8x+19y = z2 where x, y and z are non-negative
integers. His findings contradicts the result suggested by Peker and Cenberci in [2]:
the Diophantine equation 8x +19y = z2 has no non-negative integer solution. Also,
in the end of his paper, Sroysang [1] posed the question ”What is the set of all
solutions (x, y, z) for the Diophantine equation 8x + 17y = z2 where x, y and z are
non-negative integers?”. In this short note, we answer this question of Sroysang.

2. Main Results

We begin this section by stating Catalan’s conjecture and proving a helpul
Lemma.

Proposition 2.1. [2] The solution to the Diophantine equation ax − by = 1 where
a, b, x and y are integers with min{a, b, x, y} > 1 is unique and is given by (a, b, x, y) =
(3, 2, 2, 3).

Lemma 2.1. Let x and z be non-negative integers. Then, the solutions (x, z) to
the Diophantine equation 8x + 17 = z2 are (1, 5), (2, 9) and (3, 23).

Proof. The case x = 0 and z = 0 are obvious. So we only consider the case when
x, z > 0. We note that 1 ≡ 8x + 17 ≡ z2 (mod 4). So, z is either of the form 4k + 1
or 4k + 3, k = 0 or a natural number. Hence, we have the following cases.

Case 1. z = 4k + 1. If z = 4k + 1 then we have 8x + 17 = (4k + 1)2 =
16k2 + 8k + 1. So, 8x + 16 = 16k2 + 8k and this implies that 8x−1 + 2 = 2k2 + k.
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Thus, (2x−1)3 + 1 = 2k2 + k − 1. Expressing both sides as product of their prime
factors, we have (2x−1 + 1)((2x−1)2 − 2x−1 + 1) = (2k − 1)(k + 1). Therefore, we
have two possibilities.  2x−1 + 1 = k + 1,

(2x−1)2 − 2x−1 + 1 = 2k − 1

or  2x−1 + 1 = 2k − 1,
(2x−1)2 − 2x−1 + 1 = k + 1.

For the first set of equalities, we have 2x−1 + 1 = k + 1 implies that k = 2x−1. So,
(2x−1)2−2x−1 +1 = 2k−1 = 2(2x−1)−1. Hence, (2x−1)2−3(2x−1)+2 = 0, which
is a quadratic equation and is factorable. In particular, (2x−1 − 1)(2x−1 − 2) = 0.
Here we’ll obtain, 2x−1 = 1 and 2x−1 = 2. This gives us the values x = 1 and x = 2,
respectively. This follows that k = 1 and k = 2. For k = 1, we have (x, z) = (1, 5)
and, for k = 2, we have (x, z) = (2, 9). On the otherhand, it could be verified easily
that the second set of equalities will give us the solution (x, z) = (2, 9).

Case 2. z = 4k + 3. If z = 4k + 3 then 8x + 17 = (4k + 3)2 = 16k2 + 24k + 9.
Hence, 8x + 8 = 16k2 + 24k and this implies that 8x−1 + 1 = 2k2 + 3k. Therefore,
(2x−1)3 +1 = (2x−1 +1)((2x−1)2−2x−1 +1) = k(2k +3). So, we have the following
equalities  2x−1 + 1 = k,

(2x−1)2 − 2x−1 + 1 = 2k + 3.

Eliminating k we have, (2x−1)2 − 2x−1 + 1 = 2(2x−1 + 1) + 3 = 2(2x−1) + 5. Here
we obtain the quadratic equation (2x−1)2 − 3(2x−1)− 4 = 0 which is equivalent to
(2x−1 +1)(2x−1−4) = 0. Solving for zeros, we have 2x−1 = −1, which is impossible
and 2x−1 = 4, which is true for x = 3. This gives us the value k = 5. Thus, we have
the solution (x, y) = (3, 23). This completes the proof of the theorem. �

Theorem 2.1. The only solutions to the Diophantine equation 8x + 17y = z2 in
non-negative integers are given by (x, y, z) ∈ {(1, 0, 3), (1, 1, 5), (2, 1, 9), (3, 1, 23)}.

Proof. The case when z = 0 is obvious so we only consider the following cases.

Case 1. x = 0. Suppose 8x + 17y = z2 is possible in non-negative integers for
x = 0 then z2 − 1 = (z + 1)(z − 1) = 17y. So, 2 = (z + 1) − (z − 1) = 17β − 17α,
where α + β = y and α < β. It follows that 7α(7β−α − 1) = 2. Hence, 7α = 1 which
is true for α = 0. Thus, 7β = 3, a contradiction. Therefore, 17y + 1 = z2 is not
possible in non-negative integers.

Case 2. y = 0. If y = 0 we have z2 − 1 = (z + 1)(z − 1) = 23x. Then,
2 = (z+1)−(z−1) = 2β−2α, where α+β = 3x and α < β. So, 2α−1(2β−α−1) = 1.
Here we obtain α = 1 and 2β−1 = 2, which is true for β = 2. Thus, x = 1 and
z = 3. Therefore, we have the solution (x, y, z) = (1, 0, 3) to the Diophantine equa-
tion 8x + 17y = z2.
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Case 3. x, y, z > 0. First note that for y = 1, Lemma 2.2 implies the following
solutions (x, y, z) = (1, 1, 5), (2, 1, 9), (3, 1, 23). Now suppose that 8x + 17y = z2 is
possible in non-negative integers x, y, z for y > 1. We consider two sub-cases.

Subcase 3.1 y is even. If we let y be even, i.e. y = 2n for some natural number
n, then z2 − (17n)2 = 23x. So, (z + 17n)− (z − 17n) = 2β − 2α, again, α + β = 3x
and α < β. Hence, 2α−1(2β−α − 1) = 17n. This gives us a value α = 1. It follows
that, 2β−1−17n = 1, a contradiction to Catalan’s conjecture. Thus, 8x +17y = z2,
for y even is impossible in positive integers.

Subcase 3.2 y is odd. If y = 2n + 1 then we have 8x + 172k+1 = z2. Since
1 ≡ 8x + 172k+1 ≡ z2 (mod 4) then, either z = 4k + 1 or z = 4k + 3, where k = 0
or a natural number. Hence, we have the following

8x−1 + 1 = 2k2 + k −
(

172n+1 − 9
8

)
, for z = 4k + 1 (1),

8x−1 + 1 = 2k2 + 3k −
(

172n+1 − 17
8

)
, for z = 4k + 3 (2).

Take note that k is an integer. Hence, the RHS of (1) must be factorable. That is,

(1)2 − (4)(2)
(
−172n+1 − 9

8

)
= m2,

for some non-negative integer m. Then, 172n+1 − 8 = m2. Adding both sides by
-9 we obtain 17(172n − 1) = (z + 3)(z − 3) = z2 − 9. This gives us a value z = 20.
Thus, 172n = 24 which is a contradiction. On the otherhand, the RHS of (2) must
also be an integer, more precisely

(3)2 − (4)(2)
(
−172n+1 − 17

8

)
= m2,

where m is a non-negative integer. Hence, 172n+1 − 8 = m2, which is again a
contradiction. Thus, 8x + 17y = z2, for y odd is not solvable in positive integers.
This proves the theorem. �
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