Konuralp Journal of Mathematics
Volume 1 No. 2 Pp. 41-49 (2013) ©KJM

THE RELATION BETWEEN ADDING MACHINE AND p-ADIC INTEGERS

MUSTAFA SALTAN

Abstract

In this paper, we equip $A u t\left(X^{*}\right)$ with a natural metric and give an elementary proof that the closure of the adding machine group, a subgroup of the automorphism group, is both isometric and isomorphic to the group of p-adic integers. This also shows that the group of p-adic integers can be isometrically embedded into the metric space $\operatorname{Aut}\left(X^{*}\right)$.

1. Introduction

The adding machine group is one of the most important examples of self-similar automorphism groups of the rooted tree X^{*} ([2], [5], [7]). In this paper, we denote this group by $A . A$ is a cyclic group generated by

$$
a=(\underbrace{1,1, \ldots, 1}_{p-1 \text { times }}, a) \sigma
$$

where a is an automorphism of the p-ary rooted tree and $\sigma=(012 \ldots(p-1))$ is a permutation in S_{p} on $X=\{0,1,2, \ldots,(p-1)\}$. Since A is a infinite cyclic group, it is isomorphic to \mathbb{Z}. On the other hand, one can consider the automorphism a as adding one to a p-adic integer. This is a reason of the term adding machine introduced in [3]. In [6], a p-adic integer is pictured on a tree. This picture shows that any ultrametric space can be drawn on a tree. Moreover, in [3], the properties of p-adic adding machine are given in detail.

It is well-known that the closure of the group generated by the adding machine automorphism of a regular rooted tree is topologically isomorphic to the group of p-adic integers. In this paper, more clearly, by using a different way, we present a proof. So, we firstly equip $\operatorname{Aut}\left(X^{*}\right)$ with a natural metric and prove that the group of p-adic integers is both isometric and isomorphic to the closure of the adding machine group which is denoted by \bar{A}, a subgroup of the automorphism group of the p-ary rooted tree. Consequently, we identify any p-adic integers with an element of \bar{A}.

[^0]
2. Preliminaries

The following definitions and notions are given in [4], [8] and [9]. p-adic integers: A p-adic integer is a formal series

$$
\sum_{i \geq 0} x_{i} p^{i}
$$

for each $x_{i} \in\{0,1,2, \ldots,(p-1)\}$ and the set of all p-adic integers is denoted by $\mathbb{Z}_{p}([8])$.

Suppose that $x=\sum_{i \geq 0} x_{i} p^{i}$ and $y=\sum_{i \geq 0} y_{i} p^{i}$ be elements of \mathbb{Z}_{p}. Then, the addition $z=\sum_{i \geq 0} z_{i} p^{i}$ of x and y is defined by

$$
\begin{equation*}
\sum_{i=0}^{m} z_{i} p^{i} \equiv \sum_{i=0}^{m}\left(x_{i}+y_{i}\right) p^{i} \quad\left(\bmod p^{m+1}\right) \tag{2.1}
\end{equation*}
$$

for each $m \in\{0,1,2, \ldots\}$ where $z_{i} \in\{0,1, \ldots,(p-1)\}$. If $x=\sum_{i \geq 0} x_{i} p^{i}$ is an element of \mathbb{Z}_{p}, then $-x=\sigma(x)+1$ is the inverse of x where

$$
\sigma(x)=\sum_{i \geq 0}\left(p-1-x_{i}\right) p^{i}
$$

\mathbb{Z}_{p} is a group with this operation and is called the group of p-adic integers.
Let $x=\sum_{i \geq 0} x_{i} p^{i}$ be an element of \mathbb{Z}_{p} and let $x \neq 0$. Thus, there is a first index $v(x) \geq 0$ such that $x_{v} \neq 0$. This index is called the order of x and is denoted by $\operatorname{ord}_{p}(x)$. If $\operatorname{ord}_{p}(x)=\infty$, then $x_{i}=0$ for $i=0,1,2, \ldots$. On the other hand, the $p-$ adic value of x is denoted by

$$
|x|_{p}= \begin{cases}0 & \text { if } x_{i}=0 \text { for } i=0,1,2, \ldots \\ p^{- \text {ord }_{p}(x)} & \text { otherwise }\end{cases}
$$

and induces the metric $d_{p}(x, y)=|x-y|_{p}$ for $x, y \in \mathbb{Z}_{p}([8])$.
A p-adic number is a formal series

$$
\sum_{i=-\infty}^{\infty} a_{i} p^{i}
$$

where $a_{i} \in\{0,1,2, \ldots,(p-1)\}$ for each $i \in \mathbb{Z}$ and $a_{-i}=0$ for large i. The set of all p-adic numbers is denoted by \mathbb{Q}_{p}. Addition in \mathbb{Z}_{p} which is defined by equation (2.1) can be naturally extended to \mathbb{Q}_{p}. Hence, \mathbb{Q}_{p} is a group. Moreover, \mathbb{Q}_{p} is the metric completion of \mathbb{Q} with respect to the p-adic metric. It is easily seen that the group of p-adic numbers is a topological group. Moreover, the group of p-adic integers is expressed as

$$
\mathbb{Z}_{p}=\left\{\left.x \in \mathbb{Q}_{p}| | x\right|_{p} \leq 1\right\}
$$

and is an important subgroup of \mathbb{Q}_{p}.
The following definitions and notions are given in [2], [3], [5] and [7].
The automorphism group of the rooted tree: Let X be a finite set (alphabet) and let

$$
X^{*}=\left\{x_{1} x_{2} \ldots x_{n} \mid x_{i} \in X, n \geqslant 0\right\}
$$

be the set of all finite words over the alphabet X, including the empty word \emptyset. In other terms, X^{*} is the free monoid generated by X ([7]). The length of a word $v=x_{1} x_{2} \ldots x_{n} \in X^{*}$ is the number of its letters and is denoted by $|v|$. The product of $v_{1}, v_{2} \in X^{*}$ is naturally defined by concatenation $v_{1} v_{2}$. One can think of X^{*} as vertex set of a rooted tree.

Figure 1. The first three levels of the binary rooted tree X^{*} for $X=\{0,1\}$.
The set $X^{n}=\left\{v \in X^{*}| | v \mid=n\right\}$ is called the $n t h$ level of X^{*}. The empty word \emptyset is the root of the tree X^{*}. Two words are connected by an edge if and only if they are of the form $v, v x$ where $v \in X^{*}$ and $x \in X$.

A map $f: X^{*} \rightarrow X^{*}$ is an endomorphism of the tree X^{*} if it preserves the root and adjacency of the vertices. An automorphism is a bijective endomorphism. The group of all automorphisms of the tree X^{*} is denoted by $\operatorname{Aut}\left(X^{*}\right)$.

If G is a subgroup of the automorphism group $\operatorname{Aut}\left(X^{*}\right)$ of the rooted tree X^{*}, then for $v \in X^{*}$, the subgroup

$$
G_{v}=\{g \in G \mid g(v)=v\}
$$

is called the vertex stabilizer where $g(v)$ is the image of v under the action of g. The $n t h$ level stabilizer is the subgroup

$$
S t_{G}(n)=\bigcap_{v \in X^{n}} G_{v}
$$

We need a useful way to express the automorphisms the rooted tree X^{*} and to perform computations with them. For this aim, we give a definition and a proposition from [7].

Definition 2.1 ([7]). Let H be a group acting (from the right) by permutations on a set X and let G be an arbitrary group. Then the (permutational) wreath product $G\} H$ is the semi-direct product $G^{X} \rtimes H$, where H acts on the direct power G^{X} by the respective permutations of the direct factors.

If $|X|=d$, then the elements of the wreath product are given by the forms $\left(g_{1}, g_{2}, \ldots, g_{d}\right) h$ for $g_{i} \in G$ and $h \in H$. The multiplication in the wreath product is given by

$$
\left(g_{1}, g_{2}, \ldots, g_{d}\right) \alpha\left(h_{1}, h_{2}, \ldots, h_{d}\right) \beta=\left(g_{1} h_{\alpha(1)}, g_{2} h_{\alpha(2)}, \ldots, g_{d} h_{\alpha(d)}\right) \alpha \beta
$$

where $g_{i}, h_{i} \in G, \alpha, \beta \in H$ and $\alpha(i)$ is the image of i under the action of α.
Let $g: X^{*} \rightarrow X^{*}$ be an endomorphism of the rooted tree X^{*}. Then, $g: v X^{*} \rightarrow$ $g(v) X^{*}$ is a morphism of the rooted trees where $v \in X^{*}$. The subtrees $v X^{*}$ and $g(v) X^{*}$ are naturally isomorphic to the whole tree X^{*}. Identifying $v X^{*}$ and $g(v) X^{*}$ with X^{*} we get an endomorphism $\left.g\right|_{v}: X^{*} \rightarrow X^{*}$. It is uniquely determined by the condition

$$
g(v w)=\left.g(v) g\right|_{v}(w) .
$$

We call the endomorphism $\left.g\right|_{v}$ the restriction of g in v (for details see [7]).

Proposition 2.1 ([7]). Denote by $S(X)$ the symmetric group of all permutations of X. Fix some indexing $\left\{x_{1}, x_{2}, \ldots, x_{d}\right\}$ of X. Then we have an isomorphism

$$
\psi: \operatorname{Aut}\left(X^{*}\right) \rightarrow \operatorname{Aut}\left(X^{*}\right) \text { ¿S(X), }
$$

given by

$$
\psi(g)=\left(\left.g\right|_{x_{1}},\left.g\right|_{x_{2}}, \ldots,\left.g\right|_{x_{d}}\right) \alpha
$$

where α is the permutation equal to the action of g on $X \subset X^{*}$.
Thus, $g \in \operatorname{Aut}\left(X^{*}\right)$ is identified with the image $\psi(g) \in A u t\left(X^{*}\right)$ 乙 $S(X)$ and it is written as

$$
g=\left(\left.g\right|_{x_{1}},\left.g\right|_{x_{2}}, \ldots,\left.g\right|_{x_{d}}\right) \alpha .
$$

The adding machine group: Let a be the transformation on X^{*} defined by the wreath recursion

$$
a=(\underbrace{1,1, \ldots, 1}_{p-1 \text { times }}, a) \sigma
$$

where $\sigma=(012 \ldots(p-1))$ is a permutation in S_{p} on $X=\{0,1,2, \ldots,(p-1)\}$.

Figure 2. Portrait of the transformation a for $X=\{0,1\}$ and $X=\{0,1, \ldots, p-$ 1\}

The transformation a generates an infinite cyclic group on X^{*}. This group is called the adding machine group and we denote this group by A. For example, using permutational wreath product we obtain that

$$
\begin{aligned}
a^{p} & =(1, \ldots, 1, a) \sigma(1, \ldots, 1, a) \sigma \ldots(1, \ldots, 1, a) \sigma \\
& =(a, a, \ldots, a) \sigma^{p} \\
& =(a, a, \ldots, a)
\end{aligned}
$$

(for details see [2], [7]).
The Metric Space $\left(\operatorname{Aut}\left(X^{*}\right), d\right)$: In the following definition, we equip the automorphism group of the p-ary rooted tree X^{*} with a natural metric where $X=$ $\{0,1,2, \ldots, p-1\}$. This metric is also used in [1].

Definition 2.2. The metric function $d: \operatorname{Aut}\left(X^{*}\right) \times \operatorname{Aut}\left(X^{*}\right) \rightarrow \mathbb{R}$ can be defined by

$$
d\left(g_{1}, g_{2}\right)= \begin{cases}\frac{1}{p^{k}} & \text { for } g_{1}^{-1} g_{2} \in S t_{\operatorname{Aut}\left(X^{*}\right)}(k) \text { and } g_{1}^{-1} g_{2} \notin S t_{A u t\left(X^{*}\right)}(k+1) \\ 0 & \text { for } g_{1}=g_{2}\end{cases}
$$

where $g_{1}, g_{2} \in \operatorname{Aut}\left(X^{*}\right)$. In other words, if g_{1} and g_{2} agree on all vertices of the level k but do not agree at least one vertex of the level $(k+1)$ of the tree X^{*}, then the distance between g_{1} and g_{2} is $\frac{1}{p^{k}}$.
$\left(\underline{A} \underline{u} t\left(X^{*}\right), d\right)$ is a compact metric space and is a topological group. It is obvious that \bar{A}, the closure of A, is a subgroup of $\operatorname{Aut}\left(X^{*}\right)$.

3. An Isometry between the Group of p-adic Integers and the Closure of Adding machine group

Now we give a formula for the distance between two elements of the adding machine group. Notice that this expression is similar to the distance between two p-adic integers.

Proposition 3.1. For $a^{n}, a^{m} \in A$, the distance $d\left(a^{n}, a^{m}\right)$ can be defined by

$$
\begin{array}{rll}
d: A \times A & \rightarrow A \\
& \left(a^{n}, a^{m}\right) & \mapsto
\end{array} d\left(a^{n}, a^{m}\right)= \begin{cases}0 & \text { for } n=m \\
\frac{1}{p^{k}} & \text { for } n-m=t p^{k}\end{cases}
$$

where $t, k \in \mathbb{Z}$, p is prime number and $(p, t)=1$.
Proof. First we compute $S t_{A}(1)$. Using permutational wreath product we obtain that

$$
\begin{aligned}
a^{p} & =(1,1, \ldots, a) \sigma(1,1, \ldots, a) \sigma \ldots(1,1, \ldots, a) \sigma \\
& =(a, a, \ldots, a)
\end{aligned}
$$

This shows that $S t_{A}(1)=\left\langle a^{p}\right\rangle$. Moreover, we get

$$
\begin{aligned}
a^{p^{2}} & =a^{p} a^{p} \ldots a^{p} \\
& =(a, a, \ldots, a)(a, a, \ldots, a) \ldots(a, a, \ldots, a) \\
& =\left(a^{p}, a^{p}, \ldots, a^{p}\right)
\end{aligned}
$$

We have $a^{p^{2}} \in S t_{A}(2)$ because $a^{p} \in S t_{A}(1)$. Therefore, it is obtained that $S t_{A}(2)=$ $\left\langle a^{p^{2}}\right\rangle$. By proceeding in a similar manner, we compute $S t_{A}(k)=\left\langle a^{p^{k}}\right\rangle$.

So, elements of A which are in $S t_{A}(1)$ but are not in $S t_{A}(2)$ can be expressed as

$$
S t_{A}(1)-S t_{A}(2)=\left\{a^{t p}:(p, t)=1\right\}
$$

and by using the induction method, it is easily seen that

$$
S t_{A}(k)-S t_{A}(k+1)=\left\{a^{t p^{k}}:(p, t)=1\right\}
$$

Let us take arbitrary $a^{n}, a^{m} \in A$. If $n=m$, then it is $a^{n}=a^{m}$ and $d\left(a^{n}, a^{m}\right)=0$. If $n \neq m$, then there exists a unique expression $n-m=t p^{k}$ such that $(p, t)=1$. Then we obtain

$$
a^{-m} a^{n}=a^{n-m}=a^{t p^{k}} \in S t_{A}(k)-S t_{A}(k+1)
$$

and thus it is $d\left(a^{n}, a^{m}\right)=\frac{1}{p^{k}}$.

Proposition 3.2. Let $\sum_{i \geq 0} \alpha_{i} p^{i} \in \mathbb{Z}_{p}$. Then, the sequence

$$
a^{\alpha_{0}}, a^{\alpha_{0}+\alpha_{1} p}, a^{\alpha_{0}+\alpha_{1} p+\alpha_{2} p^{2}}, \ldots
$$

is convergent.
Proof. For any $\varepsilon>0$, there is a positive integer n_{0} such that $\frac{1}{p^{n_{0}}}<\varepsilon$. If $k>l$ and $k, l \geq n_{0}$, then it is obtained that

$$
d\left(a^{\alpha_{0}+\alpha_{1} p+\ldots+\alpha_{k} p^{k}}, a^{\alpha_{0}+\alpha_{1} p+\ldots+\alpha_{l} p^{l}}\right)=\frac{1}{p^{l}}<\varepsilon
$$

from Proposition 3.1. Thus, it is a Cauchy sequence. Since $\operatorname{Aut}\left(X^{*}\right)$ is a complete metric space, this sequence is convergent.

Now we give our main proposition:
Proposition 3.3. We define

$$
\varphi: \mathbb{Z}_{p} \rightarrow \bar{A}
$$

such that $\varphi\left(\sum_{i \geq 0} \alpha_{i} p^{i}\right)$ is the limit of the sequence $a^{\alpha_{0}}, a^{\alpha_{0}+\alpha_{1} p}, a^{\alpha_{0}+\alpha_{1} p+\alpha_{2} p^{2}}, \ldots$. Then, φ is both an isometry and a group isomorphism.

Proof. From Proposition 3.2, φ is well-defined. Now we show that φ is an isometry. In other words, we show that $d_{p}(\alpha, \beta)=d(\varphi(\alpha), \varphi(\beta))$ for every $\alpha, \beta \in \mathbb{Z}_{p}$. Let $\alpha=\sum_{i \geq 0} \alpha_{i} p^{i}$ and $\beta=\sum_{i \geq 0} \beta_{i} p^{i}$.

If $d_{p}(\alpha, \beta)=0$, then we obtain $d(\varphi(\alpha), \varphi(\beta))=0$ since $\alpha_{i}=\beta_{i}$ for $i=0,1,2, \ldots$.
If $d_{p}(\alpha, \beta)=\frac{1}{p^{k}}$, then $\alpha_{i}=\beta_{i}$ for $i<k$ and $\alpha_{k} \neq \beta_{k}$. We must show that $d(\varphi(\alpha), \varphi(\beta))=\frac{1}{p^{k}}$. Because $\varphi(\alpha)$ and $\varphi(\beta)$ are the limits of the sequences

$$
a^{\alpha_{0}}, a^{\alpha_{0}+\alpha_{1} p}, a^{\alpha_{0}+\alpha_{1} p+\alpha_{2} p^{2}}, \ldots \text { and } a^{\beta_{0}}, a^{\beta_{0}+\beta_{1} p}, a^{\beta_{0}+\beta_{1} p+\beta_{2} p^{2}}, \ldots
$$

respectively, it is written the equality

$$
\lim _{k \rightarrow \infty}\left(a^{\alpha_{0}+\alpha_{1} p+\ldots+\alpha_{k} p^{k}}, a^{\beta_{0}+\beta_{1} p+\ldots+\beta_{k} p^{k}}\right)=(\varphi(\alpha), \varphi(\beta))
$$

Since any metric function is continuous, we obtain that

$$
d\left(a^{\alpha_{0}}, a^{\beta_{0}}\right), d\left(a^{\alpha_{0}+\alpha_{1} p}, a^{\beta_{0}+\beta_{1} p}\right), \ldots \rightarrow d(\varphi(\alpha), \varphi(\beta))
$$

From Proposition 3.1, we get

$$
0,0, \ldots, 0, \frac{1}{p^{k}}, \frac{1}{p^{k}}, \ldots, \frac{1}{p^{k}}, \ldots \rightarrow \frac{1}{p^{k}}
$$

This shows that $d(\varphi(\alpha), \varphi(\beta))=\frac{1}{p^{k}}$. Namely, φ is an isometry map.
Moreover, φ is injective since φ is an isometry map.
Now we show that φ is surjective. Let b be an arbitrary element of \bar{A}. Thus, there exists a sequence

$$
a^{n_{0}}, a^{n_{1}}, \ldots, a^{n_{k}}, \ldots \rightarrow b
$$

whose elements are in A. Furthermore, every integer n_{k} can be expressed in \mathbb{Z}_{p} as

$$
\begin{align*}
n_{0} & =\alpha_{0}^{0}+\alpha_{1}^{0} p+\alpha_{2}^{0} p^{2}+\ldots \\
n_{1} & =\alpha_{0}^{1}+\alpha_{1}^{1} p+\alpha_{2}^{1} p^{2}+\ldots \\
& \vdots \tag{3.1}\\
n_{k} & =\alpha_{0}^{k}+\alpha_{1}^{k} p+\alpha_{2}^{k} p^{2}+\ldots \\
& \vdots
\end{align*}
$$

At least one of the numbers $0,1,2, \ldots,(p-1)$ occurs infinitely many times in the sequence $\left(\alpha_{0}^{k}\right)_{k}$. We choose one of them and denote it by β_{0}. Let $\left(\alpha_{1}^{k_{l}}\right)_{l}$ be a subsequence of $\left(\alpha_{1}^{k}\right)_{k}$ such that $\alpha_{0}^{k_{l}}=\beta_{0}$ for $l=0,1,2, \ldots$. Similarly, we denote by β_{1}, any one of the numbers that appears infinitely many times in the sequence $\left(\alpha_{1}^{k_{l}}\right)_{l}$. Proceeding in this manner, we obtain a sequence

$$
a^{\beta_{0}}, a^{\beta_{0}+\beta_{1} p}, \ldots, a^{\beta_{0}+\beta_{1} p+\ldots+\beta_{k} p^{k}}, \ldots .
$$

From Proposition 3.2, this sequence is convergent. Now we show this sequence converges to b. Due to the construction of (3.1), there exists a subsequence $\left(n_{k_{s}}\right)$ of the sequence $\left(n_{k}\right)$ whose p-adic expression of term s th such that

$$
\beta_{0}+\beta_{1} p+\beta_{2} p^{2}+\ldots+\beta_{s} p^{s}+\gamma_{s+1} p^{s+1}+\gamma_{s+2} p^{s+2}+\ldots
$$

Owing to the fact that

$$
\lim _{s \rightarrow \infty} d\left(a^{\beta_{0}+\beta_{1} p+\ldots+\beta_{s} p^{s}}, a^{n_{k_{s}}}\right)=0
$$

and from the triangle inequality, the sequence $\left(a^{\beta_{0}+\beta_{1} p+\ldots+\beta_{k} p^{k}}\right)$ converges to b. This shows that $\varphi\left(\sum_{i>0} \beta_{i} p^{i}\right)=b$ and hence φ is surjective.

Finally, we prove that φ is a homomorphism. In other words, we prove that

$$
\varphi(\alpha+\beta)=\varphi(\alpha) \varphi(\beta)
$$

for every $\alpha, \beta \in \mathbb{Z}_{p}$. Let

$$
\begin{aligned}
& \alpha=\alpha_{0}+\alpha_{1} p+\alpha_{2} p^{2}+\ldots \\
& \beta=\beta_{0}+\beta_{1} p+\beta_{2} p^{2}+\ldots
\end{aligned}
$$

and

$$
\alpha+\beta=\gamma_{0}+\gamma_{1} p+\gamma_{2} p^{2}+\ldots
$$

From the definition of φ, we have

$$
a^{\gamma_{0}}, a^{\gamma_{0}+\gamma_{1} p}, a^{\gamma_{0}+\gamma_{1} p+\gamma_{2} p^{2}}, \ldots \rightarrow \varphi(\alpha+\beta)
$$

Moreover, it follows that

$$
a^{\left(\alpha_{0}+\beta_{0}\right)}, a^{\left(\alpha_{0}+\beta_{0}\right)+\left(\alpha_{1}+\beta_{1}\right) p}, a^{\left(\alpha_{0}+\beta_{0}\right)+\left(\alpha_{1}+\beta_{1}\right) p+\left(\alpha_{2}+\beta_{2}\right) p^{2}}, \ldots \rightarrow \varphi(\alpha) \varphi(\beta)
$$

due to the fact that $\operatorname{Aut}\left(X^{*}\right)$ is a topological group,

$$
a^{\alpha_{0}}, a^{\alpha_{0}+\alpha_{1} p}, a^{\alpha_{0}+\alpha_{1} p+\alpha_{2} p^{2}}, \ldots \rightarrow \varphi(\alpha)
$$

and

$$
a^{\beta_{0}}, a^{\beta_{0}+\beta_{1} p}, a^{\beta_{0}+\beta_{1} p+\beta_{2} p^{2}}, \ldots \rightarrow \varphi(\beta)
$$

In \mathbb{Z}_{p}, we have

$$
\begin{aligned}
\alpha_{0}+\beta_{0}= & \gamma_{0}+\overline{\gamma_{0}} p+0 p^{2}+0 p^{3}+0 p^{4}+\ldots \\
\left(\alpha_{0}+\beta_{0}\right)+\left(\alpha_{1}+\beta_{1}\right) p= & \gamma_{0}+\gamma_{1} p+\overline{\gamma_{1}} p^{2}+0 p^{3}+0 p^{4}+0 p^{5}+\ldots \\
\vdots & \\
\left(\alpha_{0}+\beta_{0}\right)+\ldots+\left(\alpha_{k}+\beta_{k}\right) p^{k}= & \gamma_{0}+\gamma_{1} p+\ldots+\gamma_{k} p^{k}+\overline{\gamma_{k}} p^{k+1}+0 p^{k+2} \\
& +0 p^{k+3}++0 p^{k+4}+\ldots .
\end{aligned}
$$

Let

$$
x=\left(\alpha_{0}+\beta_{0}\right)+\ldots+\left(\alpha_{k}+\beta_{k}\right) p^{k}
$$

and

$$
y=\gamma_{0}+\gamma_{1} p+\ldots+\gamma_{k} p^{k}+\overline{\gamma_{k}} p^{k+1}+0 p^{k+2}+0 p^{k+3}+\ldots
$$

Then, we have

$$
d\left(a^{x}, a^{y}\right)= \begin{cases}\frac{1}{p^{k}} & \text { if } \overline{\gamma_{k}} \neq 0 \\ 0 & \text { if } \overline{\gamma_{k}}=0\end{cases}
$$

It follows that $\varphi(\alpha+\beta)=\varphi(\alpha) \varphi(\beta)$ since

$$
d\left(a^{\alpha_{0}+\beta_{0}}, a^{\gamma_{0}}\right), d\left(a^{\alpha_{0}+\beta_{0}+\left(\alpha_{1}+\beta_{1}\right) p}, a^{\gamma_{0}+\gamma_{1} p}\right), \ldots \rightarrow d(\varphi(\alpha) \varphi(\beta), \varphi(\alpha+\beta))
$$

and

$$
\lim _{k \rightarrow \infty} d\left(a^{x}, a^{y}\right)=0
$$

Hence, the proof is completed.
Consequently, the group of p-adic integers \mathbb{Z}_{p} can be isometrically embedded into the metric space $\operatorname{Aut}\left(X^{*}\right)$ since $\bar{A} \subseteq \operatorname{Aut}\left(X^{*}\right)$.

Example 3.1. We show $\varphi(-1)$ for $p=2$ in Figure ??. It is well-known that

$$
-1=1+1.2^{1}+1.2^{2}+\ldots+1.2^{k}+\ldots \in \mathbb{Z}_{2}
$$

Due to the definition of $\varphi, \varphi(-1)$ is the limit of the sequence

$$
a^{1}, a^{1+1 \cdot 2^{1}}, a^{1+1 \cdot 2^{1}+1 \cdot 2^{2}}, \ldots
$$

in A for $X=\{0,1\}$. This limit equals to $a^{-1}=\left(a^{-1}, 1\right) \sigma$ because of Proposition 3.1.

Figure 3. The image of $-1 \in Z_{2}$ under the map φ.

References

[1] G. N. Arzhantseva and Z. Sunic, Construction of elements in the closure of Grigorchuk group, arXiv:math/0607778v2.
[2] L. Bartholdi, R. Grigorchuk and V. Nekrashevych, From Fractal Groups to Fractal Sets, Fractals in Graz, (Peter Grabner and Wolfgang Woess, eds.), Birkhëuser Verlag, Basel, (2003), 25-118.
[3] H. Bass, M.V. Otera-Espinar, D. Rockmore and C. Tresser, Cyclic Renormalition and Automorphism Groups and Rooted Trees, Lecture Notes in Math., Springer-Verlag, Berlin, 1996.
[4] F. Q. Gouvêa, p-adic Numbers, Springer-Verlag, Berlin, 1997.
[5] R. Grigorchuk, V.V. Nekrashevich and V.I. Sushchanskii, Automata, Dynamical systems and infinite groups, Proc. Steklov Inst. Math., 231 (2000), 134-214.
[6] J. E. Holly, Pictures of Ultrametric Spaces, the p-adic numbers, and valued fields, Amer. Math. Monthly, 108 (2001), 721-728.
[7] V. Nekrashevych, Self-similar Groups, Mathematical Surveys and Monographs, Amer. Math. Soc., Providence, RI, 117, 2005.
[8] A. M. Robert, A Course in p-adic Analysis, Springer, 2000.
[9] W. H. Schikhof, Ultrametric Calculus an Introduction to p-adic Calculus, Cambridge University Press, New York, 1984.

Anadolu University, Faculty of Science, Department of Mathematics, EskişehirTURKEY

E-mail address: mustafasaltan@anadolu.edu.tr

[^0]: 1991 Mathematics Subject Classification. 20E08, 11E95.
 Key words and phrases. p-adic integers, Adding machine, Automorphism group, $p-$ ary rooted tree.

