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GENERALIZATION OF DIFFERENT TYPE INTEGRAL
INEQUALITIES VIA FRACTIONAL INTEGRALS FOR
FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE
VALUES ARE QUASI-CONVEX

IMDAT iSCAN

ABSTRACT. In this paper, the author establish some new estimates on Hermite-
Hadamard type and Simpson type inequalities via Riemann Liouville fractional
integral for functions whose second derivatives in absolute values at certain
power are quasi-convex.

1. INTRODUCTION

The following definition for convex functions is well known in the mathematical
literature:

Definition 1.1. A function f : [a,b] C R — R is said to be convex on [a, ] if
[tz + (1 =t)y) <tf(z)+ (1 -)f(y)
for all z,y € [a,b] and ¢ € [0,1].

Many inequalities have been established for convex functions but the most fa-
mous is the Hermite-Hadamard inequality, due to its rich geometrical significance
and applications, which is stated as follow:

Let f: I C R — R be a convex function defined on the interval I of real numbers
and a,b € I with a < b. Then

(1.1) f(a“’)s ! /bf@)dng(“”f(b).

2 b—a 2

The following inequality is one of the best-known results in the literature as Simp-
son’s inequality:
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Theorem 1.1. Let f : [a,b] — R be a four times continuously differentiable map-
ping on (a,b) and Hf(4)HOO = sup ‘f(‘l) (33)} < oo. Then the following inequality

z€(a,b)

holds:

b
1 [f(a)+ f(b) a+b 1 1 4
— | F2 -— d <—H (4)H b— .
3 A ) RACR v A Gl
a
In recent years many authors were established an error estimations for both
the Hermite-Hadamard inequality and the Simpson’s inequality, for refinements,
counterparts, generalizations and new inequalities for them see [2, 3, 4, 6, 7, 8, 10,
11].
We recall that the notion of quasi-convex function generalizes the notion of
convex function. More exactly, a function f : [a,b] C R — R is said to be quasi-
convex on [a, b] if

[tz + (1= t)y) < maz{f(z), f(y)}

for all z,y € [a,b] and t € [0,1]. Clearly, any convex function is a quasi-convex
function. Furthermore, there exist quasi-convex functions which are not convex
([5)).

We give some necessary definitions and mathematical preliminaries of fractional
calculus theory which are used throughout this paper.

Definition 1.2. Let f € L[a,b]. The Riemann-Liouville integrals J&, f and J;* f
of oder o > 0 with a > 0 are defined by

T @) = g [@= 0" 0t > a

a

and

b
J f(z) = ﬁ / (t—2)* " f(t)dt, 2 <b

xT

e}
respectively, where I'(a) is the Gamma function defined by I'(a) = [ e t* tdt
0
and J9, () = JOf(2) = f(2).

In the case of a = 1, the fractional integral reduces to the classical integral. For
some recent results connected with fractional integral ineqalities, see [9, 10, 11, 12,
13).

In [4], Barani et al. obtained the following theorems related to the right-hand
side of (1.1) for functions whose second derivatives in absolute values at certain
power are quasiconvex.

Theorem 1.2. Let f : I — R be a twice differentiable function on I° such that
" € Lla,b], where a,b € I° with a < b. If | f"|? is quasi-conver on [a,b] for ¢ > 1,
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then the following inequality holds

o) f(a) + £(b) - /f

2
< O {<max{ () (a)q})‘l’
(el G2 o)

Theorem 1.3. Let f : I — R be a twice differentiable function on I° such that
f" € Lla,b], where a,b € I° with a < b. If |f"|P/P=1 is quasi-convex on [a,b], for
p > 1, then the following inequality holds

)  |f@I0) b_a/f "

2
< SRR (R { (e
+ (o { L (W})é}

where 1/p+1/q=1.
In [2], Alomari et al. established the following result connected with Simpson’s
type inequalities for twice differentiable functions:

Y <a>|‘f});

S

" a+b
/ (2)

Theorem 1.4. Let f': I C [0,00) — R be an absolutely continuous function on I°
and a,b € I° with a < b, such that f" € Lla,b]. If |f"|? is quasi-convez on |[a,b],
q > 1, then the following inequality holds

(1.4) 1[f(a)+4f (a;b>+f ]

6
< (b1—6;)2{<max{f (a—2|—b>
q,|f”<b>|q})q}.

b

5 o
})

b
Ll (57)
2
In [10], Sarikaya et al. established some results connected with the left-hand side

of (1.1) as follows:

Theorem 1.5. Let f: I CR — R be twice differentiable function on I° such that
" € Lla,b], where a,b € I° with a < b. If | f"|? is quasi-convez on [a,b] for ¢ > 1,
then the following inequality holds:

s (5 -5 /f ~ ) amax |7 (@I 17" @I}
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Theorem 1.6. Let f: I C R — R be twice differentiable function on I° such that
" € Lla,b], where a,b € I° with a <b. If |f"|? is quasi-convex on [a,b] for ¢ > 1,
then the following inequality holds:

(1.6) f (a‘;b> - (bia) /bf(q:)dx
< ot (e {J (5] @)

where 1/p+1/q=1.
We will establish some new results using the following Lemma:

Lemma 1.1. Let f : I — R be a twice differentiable function on I° such that
f" € Lla,b], where a,b € I with a <b. Then for all x € [a,b] , A € [0,1] and & > 0
we have:

(1_A){(x—a) + (b~ 2) }f(x)ﬁ{(x—a) fa) + (b— )" f(b)

b—a b—a
— ) — (=)™ a
+(¢LQ[“ Lol ]f@%ﬁj%@ﬂ@ﬂﬁﬂw
_ a+2 1
- (a+1 b_a O/t (o + 1)\ —19) " (2 + (1 — £) a) dt
(1.7) + t((a+1D)X=t%) f" (tz + (1 —t)b) dt.
( b—ao/

A simple proof of equality can be given by performing an twice integration by
parts in the integrals from the right side and changing the variable (see [6]).

The main aim of this article is to establish a generalization of Hermite Hadamard-
type and Simpson-type inequalities via fractional integrals for functions whose ab-
solute values of second derivatives are quasi-convex. By using the integral equal-
ity (1.7), the author establish some new inequalities of the Simpson-like and the
Hermite-Hadamard-like type for these functions.

2. MAIN RESULTS

Let f: I CR — R be a differentiable function on 7°, the interior of I, throughout
this section we will take

Sy (z, A\, o;a,b)
_ (1A)[<x_a)bjib_w) ]f@;HA{(SE—a) f(ab)jéb—x) f(b)
_mOé+1_ x_aa+1 a
+Qi{d)w . ]ﬂm—ﬁgfkwﬂ@%@ﬂm

where a,b € T with a < b, z € [a,b] , A € [0,1], @ > 0 and T is Euler Gamma
function.
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Theorem 2.1. Let f : I C R — R be a twice differentiable function on I° such
that f" € Lla,b], where a,b € I° with a < b. If | f"|? is quasi-convezr on [a,b] for
some fized ¢ > 1, then for x € [a,b], A € [0,1] and o > 0, the following inequality
for fractional integrals holds

IS¢ (x, A, o a,b)|
a+2 1
ey < a(a,»{M(maXﬂf’ I @)

+W(max{|f” |q |fH ‘ })q}

where

a[(a+1))\] 6 +1 _ (a4D)A 0< A<

Cy (a ,\) = 2 = a+1
’ (a+1)(a+2))\72
2(at2) ) a+1 <A<

Proof. From Lemma 1.1, property of the modulus and using the power-mean in-
equality we have

1

. ) s et (L 14
|Sf(x’/\’a’a’b)|§(a+1)(b_a)0/|t||( + D)X=t |f (tx + (1 —t)a)| dt
SCEL) . e e 1
+(a+1)(b_a)0/|t||(0‘+1)/\ 7 (b + (1 — t) b)| dt
Cw-a? [ A
(a+1)(b—a) /t|(a+1),\ | dt

0

Q=

1

« /t|(a—|—1))\—t“||f”(tx+(1—t)a)\th

0
1 -3
b—$a+2 N
0

Q=

1
(2.2) x /t|(a—|— DA =t | (b + (1 — ) b)|* dt
0
Since |f”|? is quasi-convex on [a, b] we get

1 1
/t|(a+1))\—t“\|f”(tx+(1—t)a)|th < /t|(a+1) ) max {|f" @)|7, 1" (a)°) dt
0 0

(2.3) = max {|f" ()", /" ()"}
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1 1
/t|<a+1>x—ta\|f”<tx+<1—t>b>\qczt < /t|<a+> —t max {|f" @), | (b)) dt
0 0

(2.4) max {| /" ()", [/ (@)|"},

where we use the fact that

1
(2.5) o) (a,/\):/t|(a+1))\—t“|dt
0
[(a+1)A] & [(a+1)A] &
(a+1)X [ tdt— [ totldt
0 1 0 1 ’ O S A S ﬁ
= —(a+D)X [ tdt+ [ Tt
[(a+1)A] & [(a+1)A] &
1 1
(a+1))\0ftdt70fto‘“dt, <A<l

(a+1)(a+2))\72 1y < 1

afl(a+1)A a +1 a+1)\
_ (@A 1 (@) g )< L
2(a+2) ’ a+1

Hence, If we use (2.3), (2.4) and (2.5) in (2.2), we obtain the desired result. This
completes the proof. O

Corollary 2.1. In Theorem 2.1, if we take ¢ = 1, then we have

1St (z, X, a3 a,b)|
@m0 @ @)
(a+1)(b—a) 7

(b—x)a+2 " "
+m(max{\f @)L L)1) ¢ -

Corollary 2.2. In Theorem 2.1, if we take © = ‘IT“’, then we have

2a—1
0 )a_ISf (a;—b,k,a;a,b>
—a

_ ‘(1—)\)f<a;b)+>\(f( )+f()> Fla+1)2e {J(Oéa+b)f(a)+Jgazﬂ,)+f(b)H

=07 :
S(ZZJr)l)Cl (a, )\){(max{ (a—I—b) Af7 (a }>q
(ol () )
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Corollary 2.3. In Theorem 2.1, if we take x = %2 and X\ = %, then we have

)
b) } - Wlifaal {J(aa;b)_f(a) + J(“a;,,yf(b)} ‘

B ‘ { )+4 ( G 1
@)

a+b
b—aa 1Sf< 2’
+

wl

e (%5{( =W ()
(sl (55 o))}

Remark 2.1. In Corollary 2.3, if we choose o = 1, we have the following Simpson
type inequality

§ @ (S50 0] - 2 /bf(fv)d:v

= o (GG
o (ome{lr () o))

which is the same of the inequality (1.4).

Corollary 2.4. In Theorem 2.1, if we take x = %rb and A = 0, then we have

7 faa_)lalsf (a;—b,&a;mb)
= [ (557) - H T Py 10+ 10
([ )

s (|

ol (5 o))}
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Remark 2.2. In Corollary 2.4, if we choose o = 1, we have the following midpoint
inequality

O
el (e5)

which is better than the inequality (1.5).

Corollary 2.5. In Theorem 2.1, if we take x = “T'H’ and A =1, then we have

201 b
oo (5 been)
—a

LORSTEN STy

a(a+3)(b—a)’
S et @t {(ma"{

2 (a;rb>
 (mac{jr (3°)

L <a>|q});
TS <b>|q});}.

Remark 2.3. In Corollary 2.5, if we choose @ = 1, we have the following midpoint
inequality

b
J@+f0) 1
““‘)a/f( )d

2
< “’gﬁ{(mx{ (45 TS <a>q}>3’
+ (wa | ()1 <b>|Q})é}7

which is the same of the inequality (1.2).

Theorem 2.2. Let f: I CR — R be twice differentiable function on I° such that
f" € Lla,b], where a,b € I° with a < b. If |f"|? is quasi-convex on [a,b] for some
fized ¢ > 1, then for x € [a,b], A € [0,1] and a > 0, the following inequality for
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fractional integrals holds

(26) ‘Sf (.T,/\,OL,CL,I))‘
1
1 (z —a)*" Lla+0\T )\
< Cr &—a) a+b
< C; (a’)\’p){(a—i—l) 6=a) (max{ f 5 1f” (a)
1
(b—x)a+2 Llasb\ "\
T arno_a )10 ,
where p = % ,
Ca (o, A, p)
1 pr—
pla+D)+1° A=0
(ot 2 1 .
- [1—(oz+1)/\]ﬁ1+ﬂ (51+9) , 0<a< L
o amrn e (1= S Lp 21— (a+ 1)) :
[(a+1)/\]1+(i+1)p . 14 X
a B((a+1)>\;Tp71+p)a a7-1-1<>‘§1

oFy is Hypergeometric function defined by
1

oF1 (a,b;¢;2) = M/tb*1 (L—t) " (L= 2t)%dt, c>b>0, |2| <1 (see [1]),
0 is FEuler Beta function de;ined by
1
B(z,y) = m = /tIil (11—t "dt, z,y>0,
and 0

B(a,z,y) = /t"”’l (1 ft)yfldt, 0<a<l, z,y>0,
0
is incomplete Beta function.

Proof. From Lemma 1.1, property of the modulus and using the Holder inequality
we have

ISt (z, A\, a;a,b)| < m/lw(wrl))\t”‘||f”(m+(1t)a)|dt
0
+mo/|t||(a+l)>\—ta|f”(tm+(1—t)b)|dt
(a(”i_l)% O/tp|(a+1)>\—ta|pdt p 0/1|f”(t:r+(1—t)a)|th E
(2.7) +% O/tp|(a+1))\t°‘|pdt B 0/1|f”(tac+(1t)b)|th E
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Since |f”|? is quasi-convex on [a, b] we get

1 b q
e [1rwsa-gorasm{|r (50)] 1 @r]
0
1 b q
29 [ a-oyra<m]r (S0 o)
0
and
1
(2.10) /tp|(a+1))\—ta|pdt
0
1
ft(aJrl)Pdt A=0
0
[(a+1)A] & !
— [ tlla+)A—tePat+ [ Pt —(a+ )N dt, 0<A< 5
0 [(a+1)A] ™
1
St [(a+1)N—te]Pdt, <A<l
0
1 —
FICERIESE A=0
[(a+1))\]l+(f¥a+1)p 14p .
= [—(a+DAPH 1+€ (%5 1 t) ; 0<AS o
+W.2F1 (1 T ,1,p+2,1 — (Oé‘i’l))\)
(a+1)p+1
(e (s 22,14 9). A <ac

Hence, If we use (2.8), (2.9) and (2.10) in (2.7), we obtain the desired result. This
completes the proof. ([

Corollary 2.6. In Theorem 2.2, if we take x = %‘H’, then we have

Sy (z, A, s a,b)|
< CF (o \p) m { (max{ r (a;b)
i (s i <b>|q});}~

sf{a+b
/ (2)

Corollary 2.7. In Theorem 2.2, if we take © = “T“’ and \ = %, then we have

[ (50) + s - HE R {J(aa;b)—f(al) Tty 0|
) Sl )
(ol (o))

1

L)
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Corollary 2.8. In Theorem 2.2, if we take x = %rb, A= % and o = 1 then we

have
Hf()+4f<a+b)+f } /b
L)
(ol (2w}
where

3
Corollary 2.9. In Theorem 2.2, if we take x = %rb and A =0, then we have

(50) - HO T [ 1@ + Ty )

GO E |
()] @)

< © I;) <p<a +11) T 1); {(max{
(el o))

Remark 2.4. In Corollary 2.9, if we choose o = 1, we have the following midpoint
inequality which is better than the inequality (1.6)

(55 -t o
0 () {2
(ol (=50 o))}

Corollary 2.10. In Theorem 2.2, if we take x = "’T'H’ and A =1, then we have

LCESREE Ll PO 0|

b—a)® 1 b
< ( 16@) Ccs (a,l,p){(max{f” a;_ )

({2

1 2\ 1P 1\ P 1
Cs (1,719) = (3> B(l+p,1+p)+ (3) 2 F (—p,l;p+2; 3> .

L)

17 (0)
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where

(+o)(+p)—a
[e3

(1+a)

CQ (aa ]-vp) =

o 14+a’

1 1+
ﬂ( ; p,1+p>~
(07

Remark 2.5. In Corollary 2.10, if we choose a = 1, we have the following trapezoid
inequality which is the same of the inequality (1.3)

b
fla) + f(b) 1
2 (b—a)a/f(‘””)d“‘”
(b—a)? i

(B +p,1+p))

() (b)"})é ,

=
/N
=
]
"
—N

<
- 4

- (max {

where

1
B(l+p1+p) =28 (1;1+p71+p> =2_2p_1w, r (1> = V.

(1
2]
(3]

(4]

(5]

6

8

(9]

(10]

(11]

(12]

(13]

2 2

L@ +r)
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