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SIMILAR CURVES WITH VARIABLE TRANSFORMATIONS

MOSTAFA F EL-SABBAGH1 AND AHMAD T ALI2,3

Abstract. In this paper, we define a new family of curves and call it a family

of similar curves with variable transformation or briefly SA-curves. Also we

introduce some characterizations of this family and we give some theorems.
This definition introduces a new classification of a space curve. Also, we use

this definition to deduce the position vectors of plane curves, general helices

and slant helices, as examples of a similar curves with variable transformation.

1. Introduction

In the local differential geometry, we think of a curve as a geometric set of points,
or locus. Intuitively, we are thinking of a curve as the path traced out by a particle
moving in E3. So, investigating position vector of the curve is a classical aim to
determine behavior of the particle (curve).

From the view of differential geometry, a straight line is a geometric curve with
the curvature κ(s) = 0. A plane curve is a family of geometric curves with torsion
τ(s) = 0. Helix is a geometric curve with non-vanishing constant curvature κ and
non-vanishing constant torsion τ [8]. The helix may be called a circular helix or W -
curve [22]. It is known that straight line (κ(s) = 0) and circle (κ(s) = a, τ(s) = 0)
are degenerate-helices examples [15]. In fact, circular helix is the simplest three-
dimensional spirals [4, 10].

A curve of constant slope or general helix in Euclidean 3-space E3 is defined
by the property that the tangent makes a constant angle with a fixed straight line
called the axis of the general helix. A classical result stated by Lancret in 1802 and
first proved by de Saint Venant in 1845 (see [25] for details) says that: A necessary
and sufficient condition that a curve be a general helix is that the ratio

τ
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is constant along the curve, where κ and τ denote the curvature and the torsion,
respectively. General helices or inclined curves are well known curves in classical
differential geometry of space curves [19] and we refer to the reader for recent works
on this type of curves [5, 12, 20, 26].

Izumiya and Takeuchi [14] have introduced the concept of slant helix by saying
that the normal lines make a constant angle with a fixed straight line. They char-
acterize a slant helix if and only if the geodesic curvature of the principal image of
the principal normal indicatrix

σ =
κ2

(κ2 + τ2)3/2

( τ
κ

)′
is a constant function. Kula and Yayli [16] have studied spherical images of tan-
gent indicatrix and binormal indicatrix of a slant helix and they showed that the
spherical images are spherical helices. Recently, Kula et al. [17] investigated the
relation between a general helix and a slant helix. Moreover, they obtained some
differential equations which are characterizations for a space curve to be a slant
helix.

A family of curves with constant curvature but non-constant torsion is called
Salkowski curves and a family of curves with constant torsion but non-constant
curvature is called anti-Salkowski curves [23]. Monterde [21] studied some charac-
terizations of these curves and he proved that the principal normal vector makes
a constant angle with fixed straight line. A unit speed curve of constant preces-
sion in Euclidean 3-space e3 is defined by the property that its (Frenet) Darboux
vector W = τ T + κB revolves about a fixed line in space with constant angle
and constant speed. Kula and Yayli [16] proved that the geodesic curvature of the
spherical image of the principal normal indicatrix of a curve of constant precession
is a constant function. So that: Salkowski curves, anti-Salkowski curves and curves
of constant presession are the important examples of slant helices.

Many important results in the theory of curves in E3 were initiated by G. Monge
and G. Darboux pioneered the moving frame idea. Thereafter, F. Frenet defined
his moving frame and his special equations which play important role in mechanics
and kinematics as well as in differential geometry [9].

In this work, we define a new family of curves and we call it a family of similar
curves with variable transformation or in brief SA-curves. Also, we introduce some
characterizations of this family and give some theorems. This definition introduces a
new classification of a space curve. In the last of this paper, we use this definition to
deduce the position vectors of some important special curves. We hope these results
will be helpful to mathematicians who are specialized on mathematical modeling
as well as other applications of interest.

2. Preliminaries

In Euclidean space E3, it is well known that to each unit speed curve with at
least four continuous derivatives, one can associate three mutually orthogonal unit
vector fields T, N and B are respectively, the tangent, the principal normal and
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the binormal vector fields [13]. We consider the usual metric in Euclidean 3-space
E3, that is,

〈, 〉 = dx2
1 + dx2

2 + dx2
3,

where (x1, x2, x3) is a rectangular coordinate system of E3. Let ψ : I ⊂ R → E3,
ψ = ψ(s), be an arbitrary curve in E3. The curve ψ is said to be of unit speed (or
parameterized by the arc-length) if 〈ψ′(s), ψ′(s)〉 = 1 for any s ∈ I. In particular,
if ψ(s) 6= 0 for any s, then it is possible to re-parameterize ψ, that is, α = ψ(φ(s))
so that α is parameterized by the arc-length. Thus, we will assume throughout this
work that ψ is a unit speed curve.

Let {T(s),N(s),B(s)} be the moving frame along ψ, where the vectors T,N
and B are mutually orthogonal vectors satisfying 〈T,T〉 = 〈N,N〉 = 〈B,B〉 = 1.
The Frenet equations for ψ are given by ([25])

(2.1)

 T′(s)
N′(s)
B′(s)

 =


0 κ(s) 0

−κ(s) 0 τ(s)
0 −τ(s) 0


 T(s)

N(s)
B(s)

 .
If τ(s) = 0 for all s ∈ I, then B(s) is a constant vector V and the curve ψ

lies in a 2-dimensional affine subspace orthogonal to V , which is isometric to the
Euclidean 2-space E2.

3. Position vector of a space curve

The problem of the determination of parametric representation of the position
vector of an arbitrary space curve according to its intrinsic equations is still open
in the Euclidean space E3 [11, 18]. This problem is not easy to solve in general
case. However, this problem is solved in three special cases only, Firstly, in the
case of a plane curve (τ = 0). Secondly, in the case of a helix (κ and τ are
both non-vanishing constant). Recently, Ali [6, 7] adapted fundamental existence
and uniqueness theorem for space curves in Euclidean space E3 and constructed a
vector differential equation to solve this problem in the case of a general helix ( τ

κ
is constant) and in the case of a slant helix

(3.1)
τ(s)
κ(s)

= ±
m

∫
κ(s)ds√

1−m2
( ∫

κ(s)ds
)2
,

where m = n√
1−n2 , n = cos[φ] and φ is the constant angle between the axis of a

slant helix and the principal normal vector. However, this problem is not solved in
other cases of space curves.

Now we describe this problem within the following theorem:

Theorem 3.1. Let ψ = ψ(s) be an unit speed curve parameterized by the arclength
s. Suppose ψ = ψ(θ) is another parametric representation of this curve by the
parameter θ =

∫
κ(s)ds. Then, the tangent vector T satisfies a vector differential

equation of third order as follows:

(3.2)
( 1
f(θ)

T′′(θ)
)′

+
(1 + f2(θ)

f(θ)

)
T′(θ)− f ′(θ)

f(θ)
T(θ) = 0,
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where f(θ) = τ(θ)
κ(θ) .

The Proof: Let ψ = ψ(s) be a unit speed curve. If we write this curve in
another parametric representation ψ = ψ(θ), where θ =

∫
κ(s)ds, we have new

Frenet equations as follows:

(3.3)

 T′(θ)
N′(θ)
B′(θ)

 =


0 1 0
−1 0 f(θ)
0 −f(θ) 0


 T(θ)

N(θ)
B(θ)

 ,
where f(θ) = τ(θ)

κ(θ) . If we substitute the first equation of the new Frenet equations
(3.3) to second equation of (3.3), we have

(3.4) B(θ) =
1

f(θ)

[
T′′(θ) + T(θ)

]
.

Substituting the above equation in the last equation from (3.3), we obtain a vector
differential equation of third order (3.2) as desired.

The equation (3.2) is not easy to solve in general case. If one solves this equation,
the natural representation of the position vector of an arbitrary space curve can be
determined as follows:

(3.5) ψ(s) =
∫

T(s) ds+ C,

or in parametric representation

(3.6) ψ(θ) =
∫

1
κ(θ)

T(θ) dθ + C,

where θ =
∫
κ(s)ds and C is a constant vector.

4. Similar curves with variable transformations

Definition 4.1. Let ψα(sα) and ψβ(sβ) be two regular curves in E3 parameterized
by arclengths sα and sβ with curvatures κα and κβ , torsion τα and τβ and Frenet
frames {Tα,Nα,Bα} and {Tβ ,Nβ ,Bβ}. ψα(sα) and ψβ(sβ) are called similar
curves with variable transformation λα

β if there exist a variable transformation

(4.1) sα =
∫

λα
β(sβ) dsβ

of the arclengths such that the tangent vectors are the same for the two curves i.e.,

(4.2) Tβ(sβ) = Tα(sα),

for all corresponding values of parameters under the transformation λα
β .

Here λα
β is arbitrary function of the arclength sβ . It is worth noting that λα

β λ
β
α =

1. All curves satisfy equation (4.2) are called a family of similar curves with variable
transformations. If we integrate the equation (4.2) we have the following important
theorem:
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Theorem 4.1. The position vectors of the family of similar curves with variable
transformations can be written in the following form:

(4.3) ψβ(sβ) =
∫

Tβ

(
sβ(sα)

)
dsβ =

∫
Tα

(
sα

)
λα

β dsα.

Theorem 4.2. Let ψα(sα) and ψβ(sβ) be two regular curves in E3. Then ψα(sα)
and ψβ(sβ) are similar curves with variable transformation if and only if the prin-
cipal normal vectors are the same for all curves

(4.4) Nβ(sβ) = Nα(sα),

under the particular variable transformation

(4.5) λβ
α =

dsβ

dsα
=
κα

κβ

of the arc-lengths.

The Proof: (⇒) Let ψα(sα) and ψβ(sβ) be two regular similar curves with
variable transformation in E3. Differentiating the equation (4.2) with respect to sβ

we have

(4.6) κβ(sβ)Nβ(sβ) = κα(sα)Nα(sα)
dsα

dsβ
.

The above equation leads to the two equations (4.4) and (4.5).
(⇐) Let ψα(sα) and ψβ(sβ) be two regular curves in E3 satisfying the two

equations (4.4) and (4.5). If we multiplying equation (4.4) by κβ(sβ) and integrate
the result with respect to sβ we have

(4.7)
∫

κβ(sβ)Nβ(sβ) dsβ =
∫

κβ(sβ)Nβ(sβ)
dsβ

dsα
dsα.

From the equations (4.4) and (4.5), equation (4.7) takes the form

(4.8) Tβ(sβ) =
∫

κβ(sβ)Nβ(sβ) dsβ =
∫

κα(sα)Nα(sα) dsα = Tα(sα).

The proof is completed.

Theorem 4.3. Let ψα(sα) and ψβ(sβ) be two regular curves in E3. Then ψα(sα)
and ψβ(sβ) are similar curves with variable transformation if and only if the binor-
mal vectors are the same, i.e.,

(4.9) Bβ(sβ) = Bα(sα),

under arbitrary variable transformation sβ = sβ(sα) of the arclengths.
The Proof: (⇒) Let ψα(sα) and ψβ(sβ) be two regular similar curves with

variable transformations in E3. Then there exists a variable transformation of the
arclengths such that the tangent vectors and the principal normal vectors are the
same (definition 4.1 and theorem 4.2). From equations (4.2) and (4.4) we have

(4.10) Bβ(sβ) = Tβ(sβ)×Nβ(sβ) = Tα(sα)×Nα(sα) = Bα(sα).

(⇐) Let ψα(sα) and ψβ(sβ) be two regular curves in E3 which the same binormal
vector under the arbitrary variable transformation sβ = sβ(sα) of the arclengths.
If we differentiate the equation (4.9) with respect to sβ we have

(4.11) −τβ(sβ)Nβ(sβ) = −τα(sα)Nα(sα)
dsα

dsβ
.
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The above equation leads to the following two equations

(4.12) Nβ(sβ) = Nα(sα) and
dsβ

dsα
=
τα
τβ

From equations (4.9) and (4.12) we have

(4.13) Tβ(sβ) = Nβ(sβ)×Bβ(sβ) = Nα(sα)×Bα(sα) = Tα(sα).

The proof is complete.

Theorem 4.4. Let ψα(sα) and ψβ(sβ) be two regular curves in E3. Then ψα(sα)
and ψβ(sβ) are two similar curves with variable transformation if and only if the
ratios of torsion and curvature are the same for all curves

(4.14)
τβ(sβ)
κβ(sβ)

=
τα(sα)
κα(sα)

,

under the particular variable transformations (λβ
α = dsβ

dsα
= κα

κβ
) keeping equal total

curvatures, i.e.,

(4.15) θβ(sβ) =
∫

κβ dsβ =
∫

κα dsα = θα(sα).

of the arclengths.

The Proof: Let ψα(sα) and ψα(sβ) are two similar curves with variable trans-
formation. Then from (4.5) and second equation of (4.12), we obtain the equation
(4.14) under the variable transformations (4.15), which leads from (4.5) by integra-
tion.

(⇐) Let ψα(sα) and ψβ(sβ) be two curves such that the equation (4.14) is
satisfied under the variable transformation (4.15) of the arclengths. From theorem
(3.1), the tangent vectors Tα(sα) and Tβ(sβ) of the two curves satisfy vector
differential equations of third order as follows:

(4.16)
( 1
fα(θα)

T′′
α(θα)

)′
+

(1 + f2
α(θα)

fα(θα)

)
T′

α(θα)− f ′α(θα)
fα(θα)

Tα(θα) = 0,

(4.17)
( 1
fβ(θβ)

T′′
β(θβ)

)′
+

(1 + f2
β(θβ)

fβ(θβ)

)
T′

β(θβ)−
f ′β(θβ)
fβ(θβ)

Tβ(θβ) = 0,

where fα(θα) = τα(θα)
κα(θα) , fβ(θβ) = τβ(θβ)

κβ(θβ) , θα =
∫
κα(sα) dsα and θβ =

∫
κβ(sβ) dsβ .

The equation (4.14) leads to

(4.18) fβ(θβ) = fα(θα),

under the variable transformation θβ = θα. So that the two equations (4.16) and
(4.17) under the equation (4.14) and the transformation (4.15) are the same. Hence
the solution is the same, i.e., the tangent vectors are the same which completes the
proof of the theorem.
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5. New classifications of curves

In this section, we will apply our definition of similar curves with variable trans-
formations to deduce the position vectors of some special curves. First we can call
the two curves ψα(sα) and ψβ(sβ) similar curves with variable transformation if
and only if there exists an arbitrary function λα

β = dsα

dsβ
such that the curvature and

torsion of the curve ψβ are the curvature and torsion of the curve ψα multiplied by
this arbitrary function i,e.,

(5.1) κβ = κα λ
α
β , τβ = τα λ

α
β .

Class 1. If the curve is straight line then the curvature is κ = 0. Under the
variable transformation λ the curvature does not change. So we have the following
lemma:

Lemma 5.1. The straight line alone forms a family of similar curves with variable
transformation.

Class 2. If the curve is a plane curve then the torsion is τα = 0. Under the
variable transformation λ the torsion does not change. So we have the following
lemma:

Lemma 5.2. The family of plane curves forms a family of similar curves with
variable transformations.

We can deduce the position vector of a plane curve using the definition of similar
curves with variable transformation as follows:

The simplest example of a plane curve is a circle of radius 1. The natural
representation of this circle can be written in the form:

(5.2) ψα(u) =
(

sin[u],− cos[u], 0
)
,

where sα = u is the arclength of the circle and the curvature is κα(u) = 1. The
tangent vector of this circle takes the form:

(5.3) Tα(u) =
(

cos[u], sin[u], 0
)
.

From theorem (4.1) we can write any plane curve as the following:

(5.4) ψβ(s) =
∫ (

cos
[
u[s]

]
, sin

[
u[s]

]
, 0

)
ds.

where sβ = s. From the equation (5.1), we have

(5.5) dsα = λα
β dsβ =

κβ

κα
dsβ .

or

(5.6) sα(sβ) =
∫

κα

κβ
dsβ .

If we put the curvature κβ = κ(s) (sβ = s), we have

(5.7) u(s) =
∫

κ(s) ds.
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Then the position vector of the plane curve with arbitrary curvature κ(s) takes the
following form:

(5.8) ψ(s) =
∫ (

cos
[ ∫

κ(s) ds
]
, sin

[ ∫
κ(s) ds

]
, 0

)
ds.

which is the position vector of a plane curve introduced in [18].

Class 3. If the curve ψα is a general helix ( τα

κα
= m), where m is a constant, in

the form m = cot[φ] and φ is the angle between the tangent vector and the axis of
the helix. Then any similar curve ψβ with this helix has the the property τβ

κβ
= m.

So that we have the following lemma:

Lemma 5.3. The family of general helices with fixed angle φ between the axis of a
general helix and the tangent vector forms a family of similar curves with variable
transformations.

We can deduce the position vector of a general helix using the definition of similar
curves with variable transformations as follows:

The simplest example of a general helix is a circular helix or W -curve. The
natural representation of a circular helix is:

(5.9) ψα(u) =
(√

1− n2 sin[u],−
√

1− n2 cos[u], n u
)
,

where u is the arclength of the circular helix and n = cos[φ], where φ is the constant
angle between the tangent vector and the axis of a circular helix. The curvature of
this circular helix is κα(u) =

√
1− n2. The tangent vector of this curve takes the

form:

(5.10) Tα(u) =
(√

1− n2 cos[u],
√

1− n2 sin[u], n
)
.

From theorem (4.1) we can write any general helix as the following:

(5.11) ψβ(s) =
∫ (√

1− n2 cos
[
u(s)

]
,
√

1− n2 sin
[
u(s)

]
, n

)
ds.

From equation (5.6) we have

(5.12) u(s) =
∫

κ(s)√
1− n2

ds.

where κβ = κ(s), (sβ = s). Then the position vector of the general helix with
arbitrary curvature κ(s) takes the following form:

(5.13) ψ =
∫ (√

1− n2 cos
[ ∫

κ(s)√
1− n2

ds
]
,
√

1− n2 sin
[ ∫

κ(s)√
1− n2

ds
]
, n

)
ds.

which is the position vector of a general helix introduced in [6].

Class 4. If the curve is a slant helix then the relation (3.1) between the torsion
and curvature is satisfied. Let ψα and ψβ be two slant helices such that the trans-
formation (4.15) is satisfied. Using the relation (3.1) and (4.15), it is easy to prove
that:

τβ
κβ

=
mθβ√

1−m2θ2β

=
mθα√

1−m2θ2α
=
τα
κα
,
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where m is a constant value, m = cot[φ] and φ is the angle between the principal
normal vector and the axis of a slant helix. So that we have the following lemma:

Lemma 5.4. The family of a slant helices with fixed angle φ between the axis of
a slant helix and the principal normal vector forms a family of similar curves with
variable transformation.

Now, we can deduce the position vector of a slant helix using the definition of
similar curves with variable transformations as follows:

The simplest example of a slant helix is Salkowski curve [7, 21, 23]. The explicit
parametric representation of a Salkowski curve ψα(u) =

(
ψ1(u), ψ2(u), ψ3(u)

)
takes

the form:

(5.14)


ψ1(u) = − n

4m

[
n−1
2n+1 cos[(2n+ 1)t] + n+1

2n−1 cos[(2n− 1)t]− 2 cos[t]
]
,

ψ2(u) = − n
4m

[
n−1
2n+1 sin[(2n+ 1)t]− n+1

2n−1 sin[(2n− 1)t]− 2 sin[t]
]
,

ψ3(u) = n
4m2 cos[2nt],

where t = 1
narcsin(mu), m = n√

1−n2 , n = cos[φ] and φ is the constant angle between
the axis of a slant helix and the principal normal vector. The curvature of the above
curve is 1 and the torsion is

τ(u) = tan[nt] =
mu√

1−m2 u2
.

It is worth noting that: the variable t is a parameter while the variable u is the
natural parameter.

The tangent and the principal normal vectors of the Salkowski curve (5.14) take
the forms:
(5.15)
Tα(u) = −

(
n cos[t] sin[nt]− sin[t] cos[nt], n sin[t] sin[nt] + cos[t] cos[nt],

n

m
sin[nt]

)
.

(5.16) Nα(u) =
(√

1− n2 cos[t],
√

1− n2 sin[t], n
)
,

It is easy to write the tangent vector (5.15) in the simple form:

(5.17) Tα(u) =
∫

N(u)du =
∫ (√

1− n2 cos[t],
√

1− n2 sin[t], n
)
du.

From theorem (4.1) we can write any slant helix as the following:

(5.18) ψβ(s) =
∫ [ ∫ (√

1− n2 cos[t],
√

1− n2 sin[t], n
)
du

]
ds.

From equation (5.6) we have

(5.19) u(s) =
∫

κ(s) ds, du = κ(s) ds,

where κβ = κ(s), (sβ = s). Substituting equation (5.19) in (5.18) we obtain the
position vector of a similar curve ψβ(s) =

(
ψ1(s), ψ2(s), ψ3(s)

)
of a slant helix with
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arbitrary curvature κ(s) as follows:

(5.20)



ψ1(s) = n
m

∫ [ ∫
κ(s) cos

[
1
narcsin

(
m

∫
κ(s)ds

)]
ds

]
ds,

ψ2(s) = n
m

∫ [ ∫
κ(s) sin

[
1
narcsin

(
m

∫
κ(s)ds

)]
ds

]
ds,

ψ3(s) = n
∫ [ ∫

κ(s)ds
]
ds,

which is the position vector of a slant helix introduced in [7].

Finally, we hope that we can introduce new classes of similar curves and deduce
the position vectors of these classes in future work.
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