

ESKİSEHİR TEKNİK ÜNİVERSİTESİ BİLİM VE TEKNOLOJİ DERGİSİ **B- TEORİK BİLİMLER**

Eskişehir Technical University Journal of Science and Technology B- Theoretical Sciences

2023, 11(1), pp. 56-59, DOI: 10.20290/estubtdb.1200851

RESEARCH ARTICLE

THE NOWICKI CONJECTURE FOR TRACELESS GENERIC MATRIX ALGEBRAS

Sehmus FINDIK^{1,}*, Osman KELEKCİ²

¹Department of Mathematics, Faculty of Science and Letters, Çukurova University, Adana, Türkiye ²Department of Mathematics, Faculty of Science and Letters, Niğde Ömer Halisdemir University, Niğde, Türkiye

ABSTRACT

A locally nilpotent linear derivation δ of the commutative polynomial algebra $K[X_d] = K[x_1, ..., x_d]$ of rank d is called Weitzenböck. It is well known that the subalgebra $K[X_d]^{\delta}$ of $K[X_d]$ consisting of polynomials which are sent to zero by δ is finitely generated. Let the Weitzenböck derivation δ act on $K[X_d, Y_d]$ such that $\delta(y_i) = x_i$, $\delta(x_i) = 0$, i = 1, ..., d. The explicit form of generators of the algebra $K[X_d, Y_d]^{\delta}$ was conjectured by Nowicki in 1994. In this study, we consider the Nowicki conjecture in the algebra W generated by two traceless generic matrices with entries from commutative associative unitary polynomial algebra with six variables, and obtain the free generators of the algebra W^{δ} of constants in this algebra.

Keywords: Algebra of constants, Generic matrix algebra, The Nowicki conjecture

1. INTRODUCTION

Let $K[X_d]$ be the free algebra of rank d in the variety of associative commutative unital algebras over a field K of characteristic zero, and let $GL_d(K)$ be the group of $d \times d$ invertible matrices so called the general linear group. The fourteenth of twenty three questions proposed by Hilbert [1] is the initiation of the classical invariant theory. The statement of the problem is that "Is the algebra $K[X_d]^H$ of invariants of any subgroup H of $GL_d(K)$ finitely generated?", which was negated by Nagata [2] in 1959. However, the algebra $K[X_d]^H$ is finitely generated for finite groups H via Noether [3].

Weitzenböck [4] utilized locally nilpotent derivations δ to approach the finite generation problem in 1932. Such derivations have been called the Weitzenböck derivations in the modern algebra papers, recently. He showed that the algebra $K[X_d]^{\delta}$ of constants is finitely generated, and using this algebraic technique, gave a partial affirmative answer to the fourteenth problem of Hilbert.

Let $K[X_d, Y_d] = K[x_1, ..., x_d, y_1, ..., y_d]$ be the polynomial algebra of rank 2d, and let the Weitzenböck derivation δ ack on $K[X_d, Y_d]$ as $\delta(y_i) = x_i$, $\delta(x_i) = 0$, i = 1, ..., d. In 1994, Nowicki [5] conjectured generators of the algebra $K[X_d, Y_d]^{\delta}$. The conjecture was proved by different mathematicians with distinct techniques [6,7,8,9] in 2008-2009. The Nowicki conjecture is that the algebra $K[X_d, Y_d]^{\delta}$ is generated by $x_1, ..., x_n$ and the elements $x_i y_j - x_j y_j$, where $1 \le i < j \le d$.

In the period 2020-2022, many noncommutative nonassociative analogues of the Nowicki conjecture have been studied. One may count the Nowicki conjecture for the free metabelian Lie algebra F_{2d} of rank 2d [10], in which a finite generating set for the algebra $(F'_{2d})^{\delta}$ as a $K[X_d, Y_d]^{\delta}$ -module was given. Additinally, the Nowicki conjecture was studied for the free metabelian associative algebra of rank 2d [11]. Also, generators were obtained for algebras of invariants in Grassmann algebras [11]. Finally, the free metabelian Possion algebra was considered in [12].

*Corresponding Author:<u>sfindik@cu.edu.tr</u>

Received: 08.11.2022 Published: 28.02.2023 Let X and Y be two traceless generic matrices with entries from polynomial algebra and W be the associative unital algebra generated by the set $\{X, Y\}$ over a field of characteristic zero. We consider the Nowicki conjecture for the algebra W and determine the generators of the algebra W^{δ} of constants of the Weitzenböck derivation $\delta: Y \to X \to 0$, in the present paper.

2. PRELIMINARIES

Let K be a field of characteristic zero, $K[x_1, x_2, x_3, y_1, y_2, y_3]$ be the polynomial algebra generated by six algebraically independent commuting variables. We fix the traceless generic matrices

$$X = \begin{pmatrix} x_1 & x_2 \\ x_3 & -x_1 \end{pmatrix}, \ Y = \begin{pmatrix} y_1 & y_2 \\ y_3 & -y_1 \end{pmatrix},$$

over the field *K*. Let *W* be the free associative algebra generated by *X* and *Y*. It is well known by [13] that the center of *W* is a free K[t, u, v]-module generated by I, X, Y, [X, Y] = XY - YX, where *I* is the 2×2 identity matrix, and

$$t = \operatorname{trace}(X^2) = 2(x_1^2 + x_2 x_3)I = 2X^2,$$

$$u = \operatorname{trace}(Y^2) = 2(y_1^2 + y_2 y_3)I = 2Y^2,$$

$$v = \operatorname{trace}(XY) = (2x_1y_1 + x_2y_3 + x_3y_2)I = XY + YX,$$

that are algebraically independent variables.

Let δ be the locally nilpotent linear derivation of W sending Y to X, and X to the zero matrix. As an analogue of the Nowicki conjecture in W, we give a free generating set for the algebra

$$W^{\delta} = \{ p \in W \colon \delta(p) = 0 \},\$$

which is a $K[t, u, v]^{\delta}$ -module. An easy observation gives that

$$\delta(t) = \delta(2X^2) = 0,$$

$$\delta(u) = \delta(2Y^2) = 2XY + 2YX = 2v,$$

$$\delta(v) = \delta(XY + YX) = XX + XX = t$$

It is known, see e.g. [5], that $K[x, y, z]^{\delta:z \to y \to x \to 0} = K[x, y^2 - 2xz]$ for algebraically independent variables x, y, z. Therefore,

$$K[t, u, v]^{\delta: Y \to X \to 0} = K[t, u, v]^{\delta: u \to 2v \to 2t \to 0} = K[t, v^2 - tu].$$

In the next section, we provide free generators for the $K[t, u, v]^{\delta}$ -module W^{δ} .

3. MAIN RESULTS

We start by the constants in the submodule $K[t, u, v]X \oplus K[t, u, v]Y$ of W.

Lemma 1. $(K[t, u, v]X \oplus K[t, u, v]Y)^{\delta} \subset W^{\delta}$ is generated by X and vX - tY as a $K[t, u, v]^{\delta}$ -module.

Proof. Let $p(X,Y) = p_1(t,u,v)X + p_2(t,u,v)Y \in K[t,u,v]X \oplus K[t,u,v]Y$ such that $\delta(p(X,Y)) = 0$. Then we get that Findik and Kelekci // Eskişehir Technical Univ. J. of Sci. and Tech. B – Theo. Sci. 11 (1) – 2023

$$0 = \delta\bigl(p_1(t,u,v)\bigr)X + \delta\bigl(p_2(t,u,v)\bigr)Y + p_2(t,u,v)X$$

or

$$\delta(p_1(t,u,v)) + p_2(t,u,v) = 0, \qquad \delta(p_2(t,u,v)) = 0,$$

in the free K[t, u, v]-submodule generated by X and Y. Thus, $p_2(t, u, v) \in K[t, u, v]^{\delta}$,

$$\delta^2\bigl(p_1(t,u,v)\bigr)=\delta\bigl(\delta\bigl(p_1(t,u,v)\bigr)\bigr)=0,$$

and that $p_2(t, u, v) = -\delta(p_1(t, u, v))$. Direct computations give that

$$K[t, u, v]^{\delta^{2}} = \{ w \in K[t, u, v] \colon \delta^{2}(w) = 0 \} = K[t, u, v]^{\delta} \oplus vK[t, u, v]^{\delta},$$

and hence, there exist $q_1(t, u, v), q_2(t, u, v) \in K[t, u, v]^{\delta}$ such that

$$p_1(t, u, v) = q_1(t, u, v) + vq_2(t, u, v).$$

Now,

$$\delta(p_1(t, u, v)) = tq_2(t, u, v) = -p_2(t, u, v)$$

and

or

$$p(X,Y) = (q_1(t,u,v) + vq_2(t,u,v))X - tq_2(t,u,v)(t,u,v)Y$$
$$p(X,Y) = q_1(t,u,v)X + q_2(t,u,v)(vX - tY).$$

This yields that

$$(K[t, u, v]X \oplus K[t, u, v]Y)^{\delta} = K[t, u, v]^{\delta}X \oplus K[t, u, v]^{\delta}(vX - tY),$$

which completes the proof.

The following theorem is our main result, which describes the free $K[t, u, v]^{\delta}$ -module structure of the algebra W^{δ} .

Theorem 2. W^{δ} is the free $K[t, u, v]^{\delta}$ -module generated by I, X, vX - tY, [X, Y].

Proof. Since, K[t, u, v]I and K[t, u, v][X, Y] are δ -invariant submodules, then by Lemma 1, it is straightforward to see that

$$W^{\delta} = (K[t, u, v]I \oplus K[t, u, v]X \oplus K[t, u, v]Y \oplus K[t, u, v][X, Y])^{\delta}$$

= $(K[t, u, v]I)^{\delta} \oplus (K[t, u, v]X \oplus K[t, u, v]Y)^{\delta} \oplus (K[t, u, v][X, Y])^{\delta}$
= $K[t, u, v]^{\delta}I \oplus K[t, u, v]^{\delta}X \oplus K[t, u, v]^{\delta}(vX - tY) \oplus K[t, u, v]^{\delta}[X, Y]$

which means that I, X, vX - tY, [X, Y] generate the $K[t, u, v]^{\delta}$ -module W^{δ} . It sufficies to show that these are free generators. Let

$$aI + bX + c(vX - tY) + d[X,Y] = 0$$

for some $a, b, c, d \in K[t, u, v]^{\delta}$. Then,

Findik and Kelekci // Eskişehir Technical Univ. J. of Sci. and Tech. B – Theo. Sci. 11 (1) – 2023

$$aI + (b + cv)X - ctY + d[X, Y] = 0$$

or

$$a = b + cv = -ct = d = 0$$

in the free module generated by I, X, Y, [X, Y]. Consequently a = b = d = 0.

CONFLICT OF INTEREST

The authors stated that there are no conflicts of interest regarding the publication of this article.

REFERENCES

- [1] Hilbert D. Mathematische probleme. Göttinger Nachrichten 1900; 253-297, Arch. Math. u. Phys. 1901; 3(1): 44-63, Bull. Amer. Math. Soc. 1902; 8(10): 437-479.
- [2] Nagata M. On the 14-th problem of Hilbert. Amer J Math 1959; 81: 766-772.
- [3] Noether E. Der Endlichkeitssatz der Invarianten endlicher Gruppen, Math Ann 1916; 77: 89-92.
- [4] Weitzenböck R. Über die Invarianten von linearen Gruppen. Acta Mathematica 1932; 58: 231-293.
- [5] Nowicki A. Polynomial derivations and their rings of constants. Toruń: Uniwersytet Mikolaja Kopernika, 1994.
- [6] Khoury J. A Groebner basis approach to solve a conjecture of Nowicki. Journal of Symbolic Computation 2008; 43(12): 908-922.
- [7] Drensky V, Makar-Limanov L. The conjecture of Nowicki on Weitzenböck derivations of polynomial algebras. J Algebra Appl 2009; 8(01): 41-51. doi: 10.1142/S0219498809003217
- [8] Kuroda S. A Simple Proof of Nowicki's Conjecture on the Kernel of an Elementary Derivation. Tokyo Journal of Mathematics 2009; 32(1): 247-251.
- [9] Drensky V. Another proof of the Nowicki conjecture. Tokyo Journal of Mathematics 2020; 43 (2): 537-542. doi: 10.3836/tjm/1502179320
- [10] Drensky V, Findik Ş. The Nowicki conjecture for free metabelian Lie algebras. International Journal of Algebra and Computation 2020; 19 (5): 2050095. doi: 10.1142/S0219498820500954
- [11] Centrone L, Fındık Ş. The Nowicki conjecture for relatively free algebras. Journal of Algebra 2020; 552: 68-85.
- [12] Centrone L, Dushimirimana A, Fındık Ş. On Nowicki's conjecture: a survey and a new result. Turkish Journal of Mathematics 2022; 46(5): 1709-1734. doi: 10.55730/1300-0098.3228
- [13] Le Bruyn L, Trace rings of generic 2 by 2 matrices, Mem Amer Math Soc 1987; 66(363): VI-110.