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ABSTRACT

A locally nilpotent linear derivation § of the commutative polynomial algebra K[X;] = K[x4, ..., x4] of rank d is called
Weitzenbock. It is well known that the subalgebra K [X,]¢ of K[X4] consisting of polynomials which are sent to zero by & is
finitely generated. Let the Weitzenbdck derivation § act on K[X4,Y;] such that §(y;) = x;, 6(x;) =0, i =1,...,d. The
explicit form of generators of the algebra K[Xg,,Y,]% was conjectured by Nowicki in 1994, In this study, we consider the
Nowicki conjecture in the algebra W generated by two traceless generic matrices with entries from commutative associative
unitary polynomial algebra with six variables, and obtain the free generators of the algebra W?¢ of constants in this algebra.
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1. INTRODUCTION

Let K[X,] be the free algebra of rank d in the variety of associative commutative unital algebras over
a field K of characteristic zero, and let GL,(K) be the group of d x d invertible matrices so called the
general linear group. The fourteenth of twenty three questions proposed by Hilbert [1] is the initiation
of the classical invariant theory. The statement of the problem is that “Is the algebra K[X,]" of
invariants of any subgroup H of GL;(K) finitely generated?”, which was negated by Nagata [2] in
1959. However, the algebra K[X ;] is finitely generated for finite groups H via Noether [3].

Weitzenbock [4] utilized locally nilpotent derivations & to approach the finite generation problem in
1932. Such derivations have been called the Weitzenbock derivations in the modern algebra papers,
recently. He showed that the algebra K[X,]% of constants is finitely generated, and using this algebraic
technique, gave a partial affirmative answer to the fourteenth problem of Hilbert.

Let K[X4 Yyl = Kl[x4,...,Xq, Y1, -, ¥q] be the polynomial algebra of rank 2d, and let the
Weitzenbock derivation § ack on K[X,4,Y;] as 6(y;) = x;, 6(x;) =0, i =1,...,d. In 1994, Nowicki
[5] conjectured generators of the algebra K[X,, Y;]%. The conjecture was proved by different
mathematicians with distinct techniques [6,7,8,9] in 2008-2009. The Nowicki conjecture is that the
algebra K[X,, Y,419 is generated by x, ..., x,, and the elements x;yj — xjy;, where 1 <i<j<d.

In the period 2020-2022, many noncommutative nonassociative analogues of the Nowicki conjecture
have been studied. One may count the Nowicki conjecture for the free metabelian Lie algebra F,; of
rank 2d [10], in which a finite generating set for the algebra (F,;)® as a K[Xg,Y,]®-module was
given. Additinally, the Nowicki conjecture was studied for the free metabelian associative algebra of
rank 2d [11]. Also, generators were obtained for algebras of invariants in Grassmann algebras [11].
Finally, the free metabelian Possion algebra was considered in [12].
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Let X and Y be two traceless generic matrices with entries from polynomial algebra and W be the
associative unital algebra generated by the set {X,Y} over a field of characteristic zero. We consider
the Nowicki conjecture for the algebra W and determine the generators of the algebra W9 of constants
of the Weitzenbock derivation §:Y — X — 0, in the present paper.

2. PRELIMINARIES

Let K be a field of characteristic zero, K[x4, X3, X3, ¥1, Y2, 3] be the polynomial algebra generated by
six algebraically independent commuting variables. We fix the traceless generic matrices

X= (2 —x;1) Y= (z?l, —)’;1)

over the field K. Let W be the free associative algebra generated by X and Y. It is well known by [13]
that the center of W is a free K[t, u, v]-module generated by I, X, Y, [X, Y] = XY — YX, where I is the
2 X 2 identity matrix, and

t = trace(X?) = 2(x] + x2x3)1 = 2X?,
u = trace(¥?) = 2(y] + y,y3)I = 2Y?,
v = trace(XY) = (2x1y1 + x2y3 + x3y2)] = XY + YX,

that are algebraically independent variables.

Let & be the locally nilpotent linear derivation of W sending Y to X, and X to the zero matrix. As an
analogue of the Nowicki conjecture in W, we give a free generating set for the algebra

wé ={pew:5(p) =0},
which is a K[t, u, v]®-module. An easy observation gives that
5@) = 8(2x%) =0,
5(w) = 8(2Y?) = 2XY + 2YX = 2v,
Sv)= XY +YX)=XX+XX=t

It is known, see e.g. [5], that K[x,y,z]%*°Y>*>% = K|[x,y* — 2xz] for algebraically independent
variables x, y, z. Therefore,

K[t,u,v]%Y=%>0 = K[t,u, v]¥*~2v>220 = K[, v? — tul.
In the next section, we provide free generators for the K[¢, u, v]®-module W?.
3. MAIN RESULTS
We start by the constants in the submodule K [t, u, v]X®K|t,u, v]Y of W.
Lemma 1. (K[t,u, v]X®K|[t,u,v]Y)® c W9 is generated by X and vX — tY as a K[t,u, v]®-module.

Proof. Let p(X,Y) = p,(t,u, v)X + p,(t,u, v)Y € K[t,u, v]XD®K|[t,u, v]Y such that 8(p(X, Y)) =0.
Then we get that

57



Findik and Kelekci | / Eskisehir Technical Univ. J. of Sci. and Tech. B — Theo. Sci. 11 (1) — 2023

0= 6(p1 (t,u, v))X + S(pz (t,u, v))Y + p,(t,u, v)X
or
S(pl(t, u, v)) +p,(t,Lu,v) =0, 6(p2(t, u, v)) =0,

in the free K[t, u, v]-submodule generated by X and Y. Thus, p, (t, u, v) € K[t,u, v]°,

8% (p(tu,v)) =6 (S(pl(t, u, v))) =0,
and that p,(t,u,v) = —8(p4(t,u, v)). Direct computations give that
K[t,u,v]® = {w € K[t,u,v]: 52(w) = 0} = K[t,u, v]*®vK[t, u, v]°,
and hence, there exist g, (t, u, v), g, (t,u, v) € K[t,u, v]® such that

p1(t,u,v) = q1(t, u,v) + vq,(t, u,v).

Now,
6(}91 (t' u, 17)) = tqZ (t: u, 17) =—D2 (t' u, 17)
and
p(X,Y) = (q1(t, u, v) + vq, (¢, u, v)X — tq, (¢, u, v) (¢, u, V)Y
or

p(X,Y) = q,(t, u,v)X + q,(t,u, v)(VX — tY).
This yields that
(K[t,u, vV]X®K[t,u,v]Y)® = K[t,u, vV]°XBK[t, u, v]® (vX — t¥),
which completes the proof.

The following theorem is our main result, which descibes the free K[t, u, v]®-module structure of the
algebra W9,

Theorem 2. W? is the free K[t, u, v]®-module generated by I, X, vX — tY, [X,Y].

Proof. Since, K[t,u,v]I and K[t,u,v][X,Y] are §-invariant submodules, then by Lemma 1, it is
straightforward to see that

W = (K[t,u, v]I®K[t, u, vIXDK[t, u, vV]Y ®K[t, u, v][X, Y])®
= (K[t,u, vV]DS®(K[t, u, vIXDBK[t, u, v]Y)]®(K[t, u, v][X,Y])?
= K[t,u, v]°I®K[t, u, v’ XBK[t, u, v]° (WX — tY)BK[t,u, v]°[X, Y]

which means that I, X, vX — tY, [X, Y] generate the K [t, u, v]®-module W¥. It sufficies to show that
these are free generators. Let

al +bX + c(vX —tY) +d[X,Y] = 0
for some a, b, c,d € K[t,u,v]%. Then,
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al + (b + cv)X —ctY +d[X,Y] =0

a=b+cv=—ct=d=0

in the free module generated by I, X, Y, [X,Y]. Consequentlya =b =b =d = 0.
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