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Abstract

The problems of stability system that arises in the construction of di�erent automatic systems of indirect
control are considered. It is known that a given program is not always exactly performed, since there
are always initial, constantly acting perturbations. Therefore, it is also reasonable to require the program
manifold's stability itself relatively to some quality indicator. In the �rst part, the stability being investigated
of automatic indirect control systems with rigid and tachometric feedback. Necessary and su�cient conditions
of the program manifold's absolute stability are established separately. In the second part, automatic systems
of indirect control in the presence of an external load are considered. The equations of the hydraulic actuator,
taking into account the action of an external load, are presented in a convenient form for research. Then
it reduces to studying the stability of the system of equations with respect to a given program manifold.
By constructing Lyapunov's functions for the system in canonical form, su�cient conditions of the program
manifold's absolute stability are obtained. The results obtained can be used in the formation of stable
indirect systems automatic control.
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1. Introduction and Motivation

Inverse problems of ordinary di�erential equations dates back to the �fties of the last century. The �rst
work in this domain was published by N.P. Erugin in [1]. Where he set and solved the problem of formation a
system of di�erential equations along the speci�ed curve. Futher, this problem was developed in the following
works [2, 3, 4, 5, 6, 7, 8] as a problem formation of di�erential equations' systems, to construct automatic
systems control for a given manifold, for dynamics inverse problems, for the construction program motion's
systems. These problems have aroused great interest among mathematicians and mechanics because of their
viability. Due to the fact that the program manifold is exposed to various in�uences when solving di�erent
problems, it became necessary to study the stability of the manifold itself [4], [5], [9], [10], [11], [12]. A
detailed review of these studies can be found in the following papers [2], [8], [9], [12]. Nowadays, the study
of the stability of program manifold in relation to some indicators has become a separate theory.

De�nition 1.1. A set Ω(t) is called a program manifold of ordinary di�erential equation if, from that

x0 ∈ Ω(t0) follows x(t, t0, x0)) ∈ Ω(t) for all t ≥ t0.

For a given smooth program manifold Ω(t) we consider the problem of constructing the following system
of di�erential equations

ẋ = f (t, x) , (1)

where f, x are n dimensional vectors, continuous in all variables f ∈ Rn is satis�ed to existence conditions
of the solution x(t) = 0, and Ω(t) is described as next equations

Ω (t) ≡ ω(t, x) = 0, (2)

where an sdimensional vector ω (s ≤ n) is continuous together with its partial derivatives, in the following
domain:

G (ρ) = {(t, x) : t ∈ I ∧ ‖ω (t, x)‖ ≤ ρ <∞, I = [0,∞)} ,

including the manifold Ω(t), and the Jacobian rank H =
∂ω

∂x
is equal to rankH = s at all points of Ω(t).

This program manifold (2) is performed exactly only if it satis�es the conditions of the initial values
ω(t0, x0) = 0 of the system state vector. However, these conditions are not always satis�ed due to the
presence of other perturbing forces. Therefore, when constructing program motion systems, advisable to
take into consideration of the program manifold's stability.

We �nd the derivative of the manifold Ω(t) with respect to time t due to the system (1), we obtain

ω̇ =
∂ω

∂ t
+Hf (t, x) = F (t, x, ω), (3)

whereH =
∂ω

∂x
is the Jacobi matrix and F (t, x, ω) is a certain s dimensional Erugin vector function, satisfying

conditions F (t, x, 0) ≡ 0 [1].
Together with equation (3), we consider the system with rigid and tachometric feedback of the next type

ẋ = f(t, x)−Bξ −Dξ̇, t ∈ I = [0,∞),

ξ̇ = ϕ(σ), σ = P Tω −Qξ −Nξ̇, (4)

where x ∈ Rn is a state vector of the object, continuous in all variables f ∈ Rn is satis�ed to existence
conditions of the solution x(t) = 0, B ∈ Rn×r, D ∈ Rn×r, P ∈ Rs×r, Q ∈ Rr×r, N = diag‖N1, ..., Nr‖ are
matrices, Q and N are matrices, respectively, of rigid and tachometric feedback, ξ, ϕ, σ ∈ Rr are vectors,
ω ∈ Rs(s ≤ n) is a vector, ϕ(σ) ∈ Rr is a continuous and di�erentiable to σ control vector function on
deviation from the speci�ed program manifold, satisfying to conditions:

ϕ(0) = 0 0 < ϕi(σi)σi ≤ kiσ2i ∀σi 6= 0, (5)
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− k(1)i ≤
dϕi(σi)

dσi
≤ k(2)i ∀ir1, (6)

where ki, k
(1)
1 , . . . , k

(1)
r are non-negative �nite numbers, k

(2)
1 , . . . , k

(2)
r are real positive numbers or in�nities,

and all integrals

lim
|σν |→∞

Φ = lim
|σν |→∞

|σν |∫
0

κi(σi)ϕi(σi)dσi →∞ (7)

diverge at |σν | → ∞,where

κi(σi) = 1 +N
dϕi(σi)

dσi
. (8)

In order to manifold (2) to be integral also for the system (4) at ω = 0 condition ξ = 0 must be satis�ed.
The latter takes place if and only if Q > 0.

De�nition 1.2. A program manifold Ω(t) of the system control with rigid and tachometric feedbacks is called

absolutely stable in relation to a vector function ω, if it is asymptotically stable on the whole at all functions

ω(t0, x0) and ϕ(σ) satisfying to the conditions (5)-(7).

Formulation of the problem.To get the condition of absolute stability of a program manifold Ω(t) of

the control systems with rigid and tachometric feedbacks with regard to the speci�ed vector function ω.

2. Necessary conditions for the absolute stability of the program manifold of feedback control

systems

Consider a feedback control system (4) with a given linear integral manifold with regard to the vector
function ω:

ω ≡ Ux+ g(t) = 0, (9)

where U ∈ Rs×n is given constant matrix, g(t) ∈ Rs is given continuous vector function.
We �nd the derivative of the manifold (9) with respect to time t due to the system (4), and in expression

(3) assuming that
F (t, x, ω) = −Aω, (10)

where −A ∈ Rs×s is stable matrix, we obtain

ω̇ = −Aω − UBξ − UDξ̇, t ∈ I = [0,∞),

ξ̇ = ϕ(σ), σ = P Tω −Qξ −Nξ̇, (11)

here nonlinearity ϕ(σ) satis�es conditions (5)-(7).
We suppose that

det

∥∥∥∥ A UB
−P T Q

∥∥∥∥ 6= 0. (12)

Then in the system (11) we can go to the new coordinate system (η, σ) using a non-singular transformation

η = −Aω − UBξ; y = P Tω −Qξ, (13)

where
y = σ +Nϕ(σ). (14)

Di�erentiating (13) with respect to time t due to the system (11) and taking into account (14) we obtain

η̇ = −Aη −Gϕ(σ),
κ(σ)σ̇ = P T η −Mϕ(σ),

(15)
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here
G = −AUD + UB, M = P TUD + q,

κ(σ) = diag‖κ1(σ1), . . . , κr(σr)‖,

κi(σi) is de�ned by formula (8).

Theorem 2.1. Let the Erugin function F (t, x, ω) have the form (10) and the nonlinearity ϕ(σ) satis�es the

conditions (5)-(7). Then for absolute stability of program manifold of the control system with feedback (4),
it is necessary that matrix (−A) there be Hurwitz and the following inequality is valid

|κ−1UQ+ P TA−1UB| > 0. (16)

Proof. For absolute stability of program manifold of the feedback control system (4) it is necessary that the
following system

η̇ = −Aη −Ghσ,
σ̇ = κ−1P T η − κ−1Mhσ,

(17)

was asymptotically stable. Here ϕ(σ) = hσ, h = diag‖h1, . . . , hr‖, κ = E + h ·N.
For systems (17) to be asymptotically stable, the following inequality must be satis�ed

det

∥∥∥∥ A Gh
−κ−1P T κ−1Mh

∥∥∥∥ 0 ∨ |κ−1| · |A| · |M + P TA−1G| · |h| > 0

or taking into account the values of the matrices G,M :

|κ−1| · |h| ·∆ > 0. (18)

Due to the fact that
∆ = |A| · |Q+ P TA−1UB| ∧ |h| > 0

from (18), taking into account the Hurwitz property of the matrix (−A), we obtain inequality (16).

3. Su�cient conditions for absolute stability of program manifold of feedback control systems

We express the vector σ in terms of η and ξ. From (13) we de�ne

ω = −A−1η −A−1UBξ

and substituting it into (11) we obtain

σ = CT η − Γξ −Nϕ(σ), (19)

where
C = −A−TP, Γ = P TA−1B +Q.

We compose for system (15) the Lyapunov function of the type

V = ηTLη + ζT τζ + 2

σ∫
0

ϕT (σ)βκ(σ)dσ,

where L, τ, β are constant symmetric matrices

L = LT > 0 ∧ τ = τT > 0, β = diag‖β1, . . . , βr‖, (20)

signβν = signκν(σν),
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and ζ is a variable vector
ζ = P TA−1η +Nϕ(σ) = −Γξ.

Di�erentiating the function V with respect to t, by virtue of (15) and on the basis of properties (20), we
obtain

−V̇ = ηTΛη + 2ηTΛ1ϕ(σ) + ϕT (σ)Λ2ϕ(σ) + 2σT τΓϕ(σ),

where
Λ = AL + LA, Λ1 = LG− Pβ −A−TPτΓ,

Λ2 = NτΓ + ΓT τN + βM +MTβ.

Let it be satis�ed
τΓ = E. (21)

Then, based on properties (5), for any −V̇ > 0, it is su�cient to satisfy Sylvester's condition

det

∥∥∥∥ Λ Λ1

ΛT1 Λ2

∥∥∥∥ > 0. (22)

Theorem 3.1. Let the Erugin function F (t, x, ω) have the form (10), the matrix (−A) is Hurwitz and the

conditions (12), (16), (20) be satis�ed. Then, for absolute stability of program manifold of feedback control

systems (4), it su�ces to satisfy equality (21) and inequality (22).

4. Stability of the program manifold with rigid and tachometric feedbacks control systems,

with external load

Together with equation (1), now we consider the following system of indirect automatic control with rigid
and tachometric feedbacks, taking into account the external load

ẋ = f (t, x)− b1ξ, t ∈ I = [0, ∞) ,

ξ̇ = ϕ (σ)ψ(ν), σ = pTω − qξ −Nξ̇, (23)

where b1 ∈ Rn, p ∈ Rs are constant values, q,N are rigid and tachometric feedbacks constant coe�cients, σ is
the impulse-signal total control, a di�erentiable with regard to σ function ξ satis�es the following conditions

ϕ(0) = 0 ∧ ϕ(σ)σ > 0 ∀σ 6= 0,
∂ϕ

∂σ

∣∣∣
σ=0

< χ > 0,
(24)

and the function ψ(ν) points to the actions of an external load. In order to manifold (2) to be integral also
for the system (23), (24) at ω = 0 condition ξ = 0 must be satis�ed. This condition is satis�ed for q 6= 0.

When the coordinates ξ, σ change multiplier ψ(ν) deforms the function ϕ(σ). Here, ν is a complex
discontinuous function of the automatic control system. In the general case, ν has the following form [13]:

ν = 1− (aξ̈ + bξ̇ + cξ) signσ,

in the simplest case, it looks like this:
ν = 1− cξ signσ, (25)

here a, b, c are real numbers, and signσ is the Kroneker function:

signσ =


+1 at σ > 0,
0 at σ = 0,
−1 at σ < 0.
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The functions ϕ(σ), ψ(ν) were described by A.M. Letov in [14]:

ξ̇ = ϕ(σ) · ψ(ν),

where the function ϕ(σ) is continuous in σ and satis�es condition (5).
He led to a convenient form for the study of the equation of the hydraulic actuator, taking into account

the external load, obtained by V.A. Khokhlov [13]:

ẋ = µ

√
g

γ
· l
F

√
p0 −4p signσ · σ.

Here µ
√

g
γ ·

l
F is the constructive constant, µ is the �ow coe�cient, σ is the spool displacement, p0 =

pk− pσ, pk is pressure in the supply line, pσ is pressure at the drain, 4p is pressure di�erence in the cameras
of the actuator, determined by the load.

The function ϕ(σ) denotes the expression
√

gp0
γ ·

l
F , which de�nes the speed of an unloaded executor,

and the multiplier ψ(ν) =
√

1− 4pp0 signσ points to the actions of an external load.

From a physical point of view, the throttle control of a hydraulic actuator is always p0 > 4p signσ is
satis�ed in the presence of a positional load.

The multiplier ψ(ν), when ν depends on the de�ection of the control element ξ, its speed ξ̇ and its
acceleration ξ̈ is determined as follows:

ψ(ν) =


1 at ν ≥ 1,√
ν at 0 < ν < 1,

0 at ν ≤ 0.
(26)

Considering that the manifold (2) is also an integral for system (18), (19) and selecting the Erugin
function of the type (11), we arrive at the next system with relation to ω:

ω̇ = −Aω − bξ, t ∈ I = [0, ∞) ,

ξ̇ = ϕ (σ)ψ(ν),

σ = pTω − qξ −Nξ̇,
(27)

where b = Hb1, H =
∂ω

∂x
, and −A(s × s) is a constant Hurwitz matrix, the nonlinearity ϕ(σ) satis�es

conditions (24), and the multiplier ψ(ν) is determined by formula (26).
Statement of the problem. To get the condition of absolute stability of a program manifold Ω(t)

of the control systems (27) with rigid and tachometric feedbacks in the presence of an external load with
relation to ω under conditions (24), (25).

In the area of operation of the hydraulic actuator (ξ̇ 6= 0) by introducing the following notation

ξ̇ = z (28)

due to (24), (25), from the third equation of system (27) we obtain

z = ϕ(σ)
√

1− ((aż + bz + cξ) signσ). (29)

Solving equation (29) with respect to ż, under the condition σ 6= 0, also taking into account notation (28),
instead of the second equation of system (27) we obtain the following system

ξ̇ = z,
ż = λ1ξ + λ2z + φ(σ, z) signσ,

(30)



S. Zhumatov, S. Mynbayeva, Adv. Theory Nonlinear Anal. Appl. 7 (2023), 405�412. 411

where

λ1 = − c
a
, λ2 = − b

a
,

φ(σ, z) =
ϕ2(σ)− z2

aϕ2(σ)
.

Here the constants λ1 and λ2 are negative numbers, and the function ψ(σ, z) in the work area for all
σ 6= 0, due to the second equation in (27) and (24), (25) satis�es the condition

σ ≤ φ(σ, z) ≤ 1

σ
,

and in the stooping region (ξ̇ = 0) we have ξ = const.
In the domain of hydraulic actuator operation due to (30) system of equations (27) can be written as:

ω̇ = −Aω − bξ, t ∈ I = [0, ∞) ,

ξ̇ = z,
ż = λ1ξ + λ2z + φ(σ, z) signσ,

σ = pTω − qξ −Nξ̇,

(31)

In order to investigate the stability of the system (31), it is necessary to reduce it to the canonical form.
Assume that q 6= 0 and N 6= 0. Taking into account the second equation of (31), we write the last

equation as follows
σ = pTω − qξ −Nz. (32)

Introducing the notation

ωs+1 = ξ, ak,s+1 = b, as+1,j =
pj
N
,

ps+1 = −q, mk = εk = 0, ms+1 = 1,

εs+1 =
c

b
N,

g = pTA1ω +
b

a
(pj + εj), M =

b

a
+

1

N
pTm,

and excluding the variable z by virtue of (32) and di�erentiating σ from the second and third equations of
(31), we obtain a system of equations

ω̇ = −Aω − mk

N
σ, t ∈ I = [0, ∞) ,

σ̇ = gTω −Mσ −Nφ(σ, z) signσ,
(33)

where mT = (0, . . . , 0, 1)T , and g,M are expressed in terms of the coe�cients of the initial equation.
System (33) is reduced to the canonical form [14]

η̇ = −ρη + σ,
σ̇ = βT η −Mξ −Nφ(σ, z)signσ,

(34)

where ρ = diag(ρ1, . . . , ρs), β is a constant vector.
We will compose the Lyapunov function for system (34) of the following type

V =

s+1∑
i=1

s+1∑
k=1

lilk
ρ1 + ρk

η1ηk +
1

2

n∑
k=1

Lkη
2
K +

s−m∑
i=1

Ciηm+iηm+i+1 +
1

2
ls+2σ

2. (35)

Here l1, . . . , lm are real and lm+1, . . . , lm+s+1 are complex pairwise conjugate numbers.
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Di�erentiating (35) with respect to time t, we �nd the derivative V̇ by virtue of the system (34). In order
for −V̇ > 0 to be, it is enough to satisfy the next equalities

Lk + ls+2βk + 2lk

n+1∑
i=1

li
ρi + ρk

= 0 ∀ k = 1,m, (36)

Cj + ls+2βm+j + 2lm+j

s+1∑
i=1

li
ρi + ρk

= 0 ∀ m = 1, s−m+ 1. (37)

Theorem 4.1. If the Erugin function is linear with respect to ω and there are Lk, Ci positive real numbers,

ls+2, in addition, nonlinearity ϕ(σ) satis�es the conditions (24) and the function ψ(ν) de�ned by (25), (26).
Then in order that, the program manifold of feedbacks system control in the presence of an external load was

absolute stability with relation to ω it is enough ful�llment of the equalities (36) and (37).

5. Conclusion

The necessary and su�cient conditions of absolute stability for the program manifold of automatic indirect
control systems are established separately relative to the given function. Also the su�usion conditions are
obtained of automatic systems rigid and tachometric feedbacks in the presence of the external load. The
results can be used in the formation of stable automatic systems indirect control.
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