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Abstract. In this paper, we take into consideration the boundedness character of positive solutions of the differ-
ence system

xn = α +
k∏

i=1
yai

n−i,

yn = β +
k∏

i=1
xbi

n−i,

where ai, bi ∈ R, i = 1, k, ak , 0, bk , 0 and α and β are nonnegative real numbers.
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1. Introduction

A number of problems in many branches of science like biology, economics, control theory, etc. can be modelled
and solved by using discrete conceptions. In particular, difference operators are great mathematical tools for this aim.
In this context, studying long-term behavior and boundedness character of difference operators is a crucial research
area since this helps investigation of stability and periodicity of solutions of difference equations and systems [1–33].
In recent years, various authors have studied equations and systems with non-integer powers of their variables [10–12,
15, 19, 20, 23–27].

The boundedness character of positive solutions of the recursive sequence

xn = α +

k∏
j=1

xa j

n− j, n ∈ N,

where α > 0, a j ∈ R, j ∈ {1, ..., k} and ak , 0 was considered in [24]. Based on the conceptions in the studies [24], we
construct a recursive system of difference equations as follows:

xn = α +
k∏

i=1
yai

n−i,

yn = β +
k∏

i=1
xbi

n−i,
(1.1)
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where ai, bi ∈ R, i = 1, k, ak , 0, bk , 0, α > 0, β > 0 and we expand the results to the system.

2. Boundedness Character of the System

We will investigate the boundedness character of the system (1.1) for three cases based on α and β, that is, α = β = 0,
α = 0 or β = 0, and α , 0 and β , 0.

Let us begin with the first case. If α = β = 0, then (1.1) turns into the system

xn =
k∏

i=1
yai

n−i,

yn =
k∏

i=1
xbi

n−i.
(2.1)

From the system (2.1), we get

xn =

k∏
i=1

 k∏
j=1

xb j

n−2 j


ai

.

After a simple calculation, we obtain

xn =

k∏
i=1

xci
n−2i (2.2)

for ci = bi(a1+a2+ ...+ak), ∀i = 1, k. If we take the logarithm of both sides of the difference equation (2.2) and change
the variables by yn = ln xn, then we get

yn − c1yn−2 − c2yn−4 − ... − ckyn−2k = 0, n ∈ N, (2.3)

which is a 2k degree of a linear difference equation with constant coefficients. Note that the associated characteristic
polynomial for (2.3) is

P2k(t) = t2k − c1t2k−2 − c2t2k−4 − ... − ck = 0. (2.4)
As a matter of convenience, we will take x = t2. So, (2.4) becomes

Pk(x) = xk − c1xk−1 − c2xk−2 − ... − ck = 0. (2.5)
We’ll investigate the boundedness character of the system (1.1) in terms of the roots of (2.5). In this paper, we assume
that all characteristic roots of Pk(x) belongs to the interval (0, 1) which is equivalent to the the case that all characteristic
roots of P2k(t) lies in the interval (−1, 0) ∪ (0, 1).

Let us introduce the following result, which tell us the solutions of (1.1) are bounded from below.

Theorem 2.1. Let k ∈ N⧹ {1} , and that a sequence of positive numbers (xn)n⩾−2k satisfies the following difference
inequality

k∏
j=1

xc j

n−2 j ≤ xn, n ∈ N0, (2.6)

where c j ∈ R, j = 1, k, ck , 0, and all the zeros of polynomial (2.5) belong to the interval (0,1). Then, there is a
positive number m1,k such that

xn ⩾ m1,k f or n ⩾ −2k. (2.7)

Proof. Assume that λ j, j = 1, k are the roots of polynomial (2.5). It is known from linear algebra that coefficients of
the polynomial Pk(x) can be found in terms of the basic symetric polynomials of λ j for j = 1, k. That is,

c j = (−1) j−1σ j(λ1, λ2, ..., λk), j = 1, k. (2.8)

Let us begin the proof with the case k = 2. Then, from (2.8) we get

c1 = λ1 + λ2 and c2 = −λ1λ2. (2.9)

Using (2.9) in (2.6), we have
xλ1+λ2

n−2 x−λ1λ2
n−4 ≤ xn, n ∈ N0.



Boundedness Character of the System of Recursive Difference Equations 72

Since (xn)n⩾−4 is a positive sequence from the assumption, the following can be written xn−2

xλ1
n−4

λ2

≤
xn

xλ1
n−2

, n ∈ N0. (2.10)

Let us use the change of variables

yn =
xn

xλ1
n−2

. (2.11)

So, from (2.10) and (2.11), we have
0 < yλ2

n−2 ≤ yn, n ∈ N0. (2.12)
If the use of (2.12) is iterated, we obtain that there exists a constant d0 such that d0 ≤ yn, n ∈ N0, that is,

d0xλ1
n−2 ≤ xn, n ∈ N0. (2.13)

Since λ1 ∈ (0, 1), we can iterate the use of (2.13) and obtain that there exists an m1,2 > 0 such that m1,2 ≤ xn, n ∈ N0.
So, the proof of the theorem is completed for k = 2.

From induction method, assume that (2.6) is satisfied for k − 1. Let us represent this as every sequence of positive
numbers (zn)n⩾−2k+2 satisfies the inequality

k−1∏
j=1

z f j

n−2 j ≤ zn, n ∈ N0, (2.14)

where f j ∈ R, j = 1, k − 1, fk−1 , 0, and all the zeros of the polynomial

P1(x) = xk−1 − f1xk−2 − ... − fk−1,

lie in (0, 1).
From (2.8), we can write inequality (2.6) as

k∏
j=1

x(−1) j−1σ j(λ1,λ2,...,λk)
n−2 j ≤ xn, for n ∈ N0. (2.15)

Since

Pk(λ) = (λ − λ1)

λk−1 −

k−1∑
i=1

(−1)i−1σ̃i (λ2, ..., λk)

 ,
for every λ ∈ R, we have the following

1 −
k∑

j=1

(−1) j−1σ j(λ1, λ2, ..., λk) = (1 − λ1)

1 − k−1∑
i=1

(−1)i−1σ̃i (λ2, ..., λk)

 , (2.16)

where σ̃i(s1, ..., sk−1), i = 1, k − 1, are basic symetric polynomials of degree k − 1 of variables s1, s2, ..., sk−1.

If the inequality (2.15) is divided by xλ1
n−2, and the change of variables (2.11) is used for n ⩾ −2k + 2, then (2.6)

becomes the next one
k−1∏
j=1

y f j

n−2 j ≤ yn, n ∈ N0, (2.17)

from (2.16) with
f j = (−1) j−1σ̃i (λ2, ..., λk) , j = 1, k − 1.

It is clear that, the sequence (yn)n⩾−2k+2 in (2.17) satisfies the assumption (2.14). Hence, from the induction hypoth-
esis, we can say that the sequence (yn)n⩾−2k+2 is bounded from below. Therefore, there exists a positive number d1 such
that d1 ≤ yn, n ⩾ −2k + 2, which is equivalent to

d1xλ1
n−2 ≤ xn, n ⩾ −2k + 2. (2.18)

From iterating the use of (2.18), we find that there is a positive constant m1,k such that (2.7) holds. The proof is
completed. □
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Now, we will consider the case that one of α and β is zero and the other one is nonzero. Without lost of generality,
we will assume that β = 0 and α , 0. In this case, we can write the system (1.1) by following:

xn = α +

k∏
i=1

xci
n−2i. (2.19)

From (2.19), we have
k∏

i=1

xci
n−2i ≤ xn ≤ α +

k∏
i=1

xci
n−2i.

Now, let us introduce the following lemma that will be used later to prove that the solutions of the system (1.1) is
bounded from above.

Lemma 2.2. Let λ ∈ (0, 1), b, c > 0, and (xn)n∈N0 is a sequence of positive numbers satisfying

xn+2 ≤ bxλn + c, n ∈ N0. (2.20)

Then, there is a positive number M3 such that xn ≤ M3, n ∈ N0.

Proof. Let (yn)n∈N0 be the solution of the following difference equation

yn+2 = byλn + c, n ∈ N0, (2.21)

such that y1 = x1 and y0 = x0. Then, from (2.20), (2.21) and by induction we obtain

xn ≤ yn for n ∈ N0. (2.22)

We can rewrite (2.21) in the form of
z2n+m = bzλ2(n−1)+m + c, n ∈ N1,

where m = 0, 1. The solutions of this equation are formally similar to the solutions of

wn+1 = bwλn + c, n ∈ N0,

which the boundedness of sequence (wn)n∈N0 was proved essentially in [25]. From this result and (2.22), we obtain a
positive number M3 such that xn ≤ M3, n ∈ N0. □

Theorem 2.3. Let k ∈ N⧹ {1} , and a sequence of positive numbers (xn)n⩾−2k holds the following difference inequalities
k∏

j=1

xc j

n−2 j ≤ xn ≤ α +

k∏
j=1

xc j

n−2 j, n ∈ N0, (2.23)

where α > 0, c j ∈ R, j = 1, k, ck , 0, and all the zeros of the polynomial (2.5) are in the interval (0,1). Then, there
exists two positive numbers M1,k and M2,k such that

M1,k ≤ xn ≤ M2,k for n ⩾ −2k. (2.24)

Proof. From Theorem 2.1 existence of such M1,k is clear. Hence, we need to show the existance of M2,k > 0 for the
second inequality in (2.24). Let λ j, j = 1, k, be the roots of (2.5). Then, (2.8) holds.

Let k = 2. Then, from (2.9), we can rewrite (2.23) as in the following form

xλ1+λ2
n−2 x−λ1λ2

n−4 ≤ xn ≤ α + xλ1+λ2
n−2 x−λ1λ2

n−4 , n ∈ N0.

After dividing both sides by xλ1
n−2 in the second part of above inequality, we get

xn

xλ1
n−2

≤
α

xλ1
n−2

+

 xn−2

xλ1
n−4

λ2

, n ∈ N0. (2.25)

If we use the change of variables (2.11) in (2.25), we obtain

yn ≤ yλ2
n−2 +

α

Mλ1
1,2

, n ∈ N0. (2.26)
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See that Lemma 2.2 is applicable in (2.26) since λ2 ∈ (0, 1). Hence, we find that there exists a positive constant d2
such that yn ≤ d2, n ⩾ −2, that is,

xn ≤ d2xλ1
n−2, n ⩾ −2.

By iterating the above inequality we can find that there exists a positive constant M2,2 such that xn ≤ M2,2 for
n ⩾ −4. Therefore, Theorem 2.3 satisfies for k = 2.

In able to prove the general case, we assume that (2.23) holds for k − 1 from induction method. That is, every
sequence of positive numbers (zn)n⩾−2k+2 satisfies the next inequalities

k−1∏
j=1

z f j

n−2 j ≤ zn ≤ α̃ +

k−1∏
j=1

z f j

n−2 j, (2.27)

where α̃ > 0, f j ∈ R, j = 1, k − 1 , fk−1 , 0, and where the zeros of the polynomial

P1(x) = xk−1 − f1xk−2 − ... − fk−1,

lies in the interval (0, 1).
By using (2.8), we can rewrite the inequalities in (2.23) in the following form

k∏
j=1

x(−1) j−1σ j(λ1,λ2,...,λk)
n−2 j ≤ xn ≤ α +

k∏
j=1

x(−1) j−1σ j(λ1,λ2,...,λk)
n−2 j , n ∈ N0. (2.28)

Now, we will divide the inequalities in (2.28) by xλ1
n−2, and use the change of variables (2.11) for n ⩾ −2k + 2. So,

we get
k−1∏
j=1

y f j

n−2 j ≤ yn ≤
α

xλ1
n−2

+

k−1∏
j=1

y f j

n−2 j, n ∈ N0, (2.29)

for f j = (−1) j−1σ̃i (λ2, ..., λk) , j = 1, k − 1. If we use the first inequality in (2.24) for (2.29), we obtain
k−1∏
j=1

y f j

n−2 j ≤ yn ≤
α

Mλ1
1,k

+

k−1∏
j=1

y f j

n−2 j, n ∈ N0. (2.30)

Equation (2.30) shows that the sequence (yn)n⩾−2k+2 holds our assumption in (2.27) with α̃ = α

Mλ11,k

. Therefore, we have

that the sequence (yn)n⩾−2k+2 is bounded from above. That is, there exists a positive constant M2,k > 0 such that the
second part of the (2.24) is satisfied. So, the proof is finished by the induction hypothesis. □

Now, we will consider the case both α and β are different from zero. Note that there is a number B which is large
enough, such that

k∏
i=1

β + k∏
j=1

xb j

n−2 j


ai

≤

k∏
i=1

B k∏
j=1

xb j

n−2 j


ai

, n ∈ N0.

Without lost of generality, in this case the system (1.1) can be rewritten as

xn = α +

k∏
i=1

β + k∏
j=1

xb j

n−2 j


ai

≤ α +

k∏
i=1

B k∏
j=1

xb j

n−2 j


ai

= α + Ba1+a2+...+ak

k∏
j=1

xc j

n−2 j.

Hence, we have
k∏

j=1
xc j

n−2 j ≤ xn ≤ α + Bk
k∏

j=1
xc j

n−2 j, for n ∈ N0 and Bk = Ba1+a2+...+ak . Since a j ∈ R for j = 1, k, we can

find a positive constant P such that Bk ≤ P, ∀k ∈ N⧹ {1} .We will use the constant P in the next theorem.
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Theorem 2.4. Let k ∈ N⧹ {1} , and a sequence of positive numbers (xn)n⩾−2k holds the following difference inequalities
k∏

j=1

xc j

n−2 j ≤ xn ≤ α + P
k∏

j=1

xc j

n−2 j, n ∈ N0,

where α > 0, c j ∈ R, j = 1, k, ck , 0, and all the zeros of the polynomial (2.5) are in the interval (0,1). Then, there
exists two positive numbers M1,k and M2,k such that

M1,k ≤ xn ≤ M2,k for n ⩾ −2k.

Proof. Proof of Theorem 2.4 can be showed in a similar way to the proof of Theorem 2.3. □

Throughout the paper, we investigated the boundedness character of the system (1.1) in terms of the sequence (xn).
Note that the calculations become in same manner for the sequence (yn) except change of variables.

3. Applications

Exercise 3.1. Let initial conditions x−1 = 0.2, x−2 = 2, y−1 = 0.4, y−2 = 4 and parameters a1 = 0.4, a2 = 0.6, b1 = 0.6,
b2 = −0.8 in the system (1.1) with α = β = 0. The solution (xn, yn)n≥−2 is given by Figure 3.1. The Figure 3.1 corrects
the Theorem 2.1.
Exercise 3.2. Let initial conditions x−1 = 2, x−2 = 0.1, , x−3 = 4, y−1 = 0.4, y−2 = 5, y−3 = 4 and parameters a1 = 0.1,
a2 = 0.4, a3 = 0.5, b1 = 1.4, b2 = −0.56, b3 = 0.064 in the system (1.1) with α = 2, β = 0. The solution (xn, yn)n≥−3 of
the system (1.1) is given by Figure 3.2. The Figure 3.2 corrects the Theorem 2.3.
Exercise 3.3. Let initial conditions x−1 = 0.2, x−2 = 0.3, x−3 = 0.4, x−4 = 5, y−1 = 1, y−2 = 3, y−3 = 0.5, y−4 = 0.6
and parameters a1 = 0.4, a2 = 0.3, a3 = 0.2, a4 = 0.1, b1 = 1, b2 = −0.35, b3 = 0.05, b4 = −0.0024. The solution
(xn, yn)n≥−4 of the system (1.1) with k = 4, α = 2 and β = 0 is given by Figure 3.3. The Figure 3.3 corrects the Theorem
2.4.
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[25] Stević, S., On the recursive sequence xn+1 = α + (xp

n−1/x
p
n ), J. Appl. Math. Comput., 18 (1-2)(2005), 229–234.
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