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Abstract 

 

In this research, modelling of the leaves with the help of divisor functions are worked on. 

Given a positive integer k  (1 ≤ k ≤ 100), we investigate solutions of the equation σ(n) = 

σ(n + 2k) with odd square-free integer n. Further, for a positive integer l and odd prime 

q, there are no results of the equation σ2i(n) = σ2i(q). As an application, we pose the basic 

structure of the leaves model for real-time virtual ecosystem construction derived from 

the equation of shifted odd divisor functions. Also, the elliptic, flabellate and five-lobes 

leaves’s area and the growth process of the leaves were made modelling with the help of 

divisor functions. 

 

Keywords: Modelling of the leaves, shifted odd divisor functions, modelling. 

 

 

Değiştirilmiş tek bölen fonksiyonları ve bölen yaprak modeli 
 

 

Öz 

 

Bu araştırmada yaprakların bölen fonksiyonları yardımıyla modellenmesi üzerinde 

çalışılmıştır. Bir pozitif tamsayı k (1 ≤ k ≤ 100) verildiğinde, σ(n) = σ(n + 2k) denkleminin 

tek tam kare olmayan tamsayı n ile çözümlerini araştırıyoruz. Ayrıca, pozitif bir tamsayı 

l ve tek asal q için, σ2i(n) = σ2i(q) denkleminin hiçbir sonucu yoktur. Bir uygulama olarak, 

kaydırılmış tek bölen fonksiyonlarının denkleminden türetilen gerçek zamanlı sanal 

ekosistem inşası için yaprak modelinin temel yapısını oluşturuyoruz. Ayrıca eliptik, 
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flabellate ve beş loblu yaprakların alanı ve yaprakların büyüme süreci bölen 

fonksiyonları yardımıyla modelleme yapılmıştır. 

 

Anahtar kelimeler: Yaprak modeli, değiştirilmiş tek bölen fonksiyonları, modelleme 

yöntemi. 

 

 

1.  Introduction 

 

In number theory, a divisor function 

 

( ) : k

k

d n

n d


=   

 

is defined as the sum of the kth power of positive d divisors of n. If we take k = 1, an odd 

divisor function is defined as  

 

( ) :
d n

d odd

n d


=  . 

 

In 1964, W. Sierpinski [1] made the expression that “we do not know whether there exists 

infinitely many natural numbers n for which σ(n) = σ(n + 1)”. A. Makowski [2] has listed 

nine solutions to σ(n) = σ(n+1) for n < 10000, e.g. n = 14, 206, 957, 1334, 1364, 1634, 

2685, 2974, 4364. W. E. Mientka and R. L. Vogt [3] have found fifteen solutions to σ(n) 

= σ(n + 1) for n = 14841, 18873, 19358, 20145, 24957, 33998, 36566, 42818, 56564, 

64665, 74918, 79826, 79833, 84134, 92685. One might also ask “whether for certain 

values of k there exist an infinite number of solutions to the equation σ(n) = σ(n + k)” 

([4],[5]). For n < 10000 and k = 2, 3, 4, 5 the numbers of solutions of σ(n) = σ(n+k) are 

noted to be 19, 2, 14 and 6 respectively. In the book of  R. Guy [6], B13 part, Paul Erdos 

doubts that “σ2(n) = σ2(n + 2) has infinitely many solutions, and thinks that σ3(n) = σ3(n 

+ 2) has no solutions at all”. In 2004, J. M. De Koninck [7] considered σ2(n) = σ2(n + l), 

where l  is a fixed positive integer.  

This paper consists of three parts. Section 1 is the introduction. Section 2 is to find the 

solutions of the shifted odd divisor functions and to give the proof of the theorems. 

Section 3 is to model the leaves model for real-time virtual ecosystem construction using 

the formula of shifted divisor function. 

 

We will now describe details below. Given a positive integer k (1 ≤ k ≤ 100), q is a prime, 

we shall find all solutions of σ(n) = σ(n + 2k) with odd square-free integer n (Theorem 

1.1). Also, we ask whether n is an odd positive square-free integer with         q = n + 2k 

(k ≥ 1) and there exist solutions of the equation σ2k(n) = σ2k(q). More precisely, in Section 

2, we prove the following theorems. 

 

Theorem 1. 1. For 1 ≤ k ≤ 100, all the solutions of the equation  

 

( ) ( ) ( )2n n k q  = + =          (1.1) 

 

for an odd square-free integer n and a prime integer q are 
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(2k, n, q) = (8, 3.5, 23), (10, 3.7, 31), (12, 5.7, 47), (14, 3.11, 47), (16, 5.11, 71), (18, 5.13, 

83), (20, 3.17, 71), (22, 3.19, 79), (22, 5.17, 107), (24, 11.13, 167), (30, 7.23, 191), (30, 

11.19, 239), (30, 13.17, 251), (34, 3.31, 127), (34, 5.29, 179), (36, 5.31, 191), (36, 7.29, 

239), (36, 17.19, 359), (40, 3.37, 151), (40, 11.29, 359), (40, 17.23, 431), (42, 5.37, 227), 

(42, 11.31, 383), (42, 13.29, 419), (42, 19.23, 479), (44, 3.41, 167), (46, 5.41, 251), (48, 

5.43, 263), (48, 19.29, 599), (50, 3.47, 191), (52, 11.41, 503), (52, 23.29, 719), (54, 7.47, 

383), (54, 13.41, 587), (54, 17.37, 683), (60, 7.53, 431), (60, 19.41, 839), (60, 23.37, 911), 

(62, 3.59, 239), (64, 5.59, 359), (64, 11.53, 647), (64, 17.47, 863), (66, 7.59, 479), (70, 

3.67, 271), (70, 11.59, 719), (70, 17.53, 971), (70, 23.47, 1151), (70, 29.41, 1259), (72, 

11.61, 743), (72, 13.59, 839), (72, 29.43, 1319), (76, 5.71, 431), (76, 29.47, 1439), (78, 

5.73, 443), (82, 11.71, 863), (82, 23.59, 1439), (82, 29.53, 1619), (84, 5.79, 479), (84, 

11.73, 887), (84, 17.67, 1223), (84, 23.61, 1487), (84, 37.47, 1823), (84, 41.43, 1847), 

(86, 3.5.7, 191), (88, 5.83, 503), (90, 19.71, 1439), (90, 43.47, 2111), (92, 3.89, 359), (94, 

41.53, 2267), (96, 7.89, 719), (96, 17.79, 1439), (96, 29.67, 2039), (100, 17.83, 1511), 

(100, 47.53, 2591), (102, 5.97, 587), (102, 13.89, 1259), (106, 17.89, 1619), (106, 47.59, 

2879), (108, 29.79, 2399), (110, 3.107, 431), (112, 3.109, 439), (112, 5.107, 647),              

(112, 11.101, 1223), (112, 41.71, 3023), (114, 5.109, 659), (114, 7.107, 863), (114, 

13.101, 1427), (114, 31.83, 2687), (114, 43.71, 3167), (114, 53.61, 3347), (118, 5.113, 

683), (118, 29.89, 2699), (120, 7.113, 911), (120, 11.109, 1319), (120, 13.107, 1511), 

(120, 17.103, 1871), (120, 19.101, 2039), (120, 23.97, 2351), (120, 31.89, 2879), (120, 

37.83, 3191), (120, 41.79, 3359), (120, 53.67, 3671), (120, 59.61, 3719), (124, 11.113, 

1367), (124, 23.101, 2447), (124, 41.83, 3527), (126, 17.109, 1979), (126, 29.97, 2939), 

(126, 59.67, 4079), (130, 23.107, 2591), (130, 41.89, 3779), (132, 29.103, 3119), (132, 

61.71, 4463), (138, 29.109, 3299), (138, 59.79, 4799), (142, 5.137, 827), (142, 11.131, 

1583), (142, 41.101, 4283), (142, 59.83, 5039), (144, 5.139, 839), (144, 7.137, 1103), 

(144, 13.131, 1847), (144, 47.97, 4703), (148, 59.89, 5399), (150, 13.137, 1931), (150, 

43.107, 4751), (150, 67.83, 5711), (152, 3.149, 599), (152, 3.7.11, 383), (154, 3.151, 

607), (154, 23.131, 3167), (154, 41.113, 4787), (154, 53.101, 5507), (154, 71.83, 6047),  

(156, 5.151, 911), (156, 47.109, 5279), (156, 59.97, 5879), (160, 3.157, 631), (160, 

47.113, 5471), (162, 5.157, 947), (162, 11.151, 1823), (162, 13.149, 2099), (162, 23.139, 

3359), (162, 53.109, 5939), (162, 61.101, 6323), (162, 73.89, 6659), (162, 79.83, 6719), 

(166, 17.149, 2699), (166, 29.137, 4139), (168, 5.163, 983), (168, 19.149, 2999), (168, 

59.109, 6599), (172, 83.89, 7559), (174, 17.157, 2843), (174, 43.131, 5807), (174, 47.127, 

6143), (174, 71.103, 7487), (174, 73.101, 7547), (176, 3.5.17, 431), (180, 13.167, 2351), 

(180, 31.149, 4799), (180, 41.139, 5879), (180, 53.127, 6911), (180, 71.109, 7919), (180, 

83.97, 8231), (182, 3.179, 719), (184, 3.181, 727), (184, 11.173, 2087), (184, 17.167, 

3023), (184, 53.131, 7127), (186, 5.181, 1091), (186, 7.179, 1439), (186, 19.167, 3359), 

(186, 47.139, 6719), (186, 89.97, 8819), (190, 41.149, 6299), (190, 53.137, 7451), (190, 

59.131, 7919), (192, 29.163, 4919), (192, 43.149, 6599), (192, 53.139, 7559), (192, 

83.109, 9239), (194, 3.5.19, 479), (196, 5.191, 1151), (196, 29.167, 5039), (196, 89.107, 

9719), (198, 5.193, 1163). 

 

Theorem 1. 2. Let n be an odd positive square-free integer with q = n + 2k (k ≥ 1). Then 

there does not exist σ2k(n) = σ2k(q).  

 

Furthermore, let 1 2

1 2 ... r

rn p p p
  

=
 
and ip , q are odd distinct positive primes ( )1 i r  .  

If  

i)   # : ,1 2ii is odd i r   
 
or  

ii) ( )1 2 31 mod 4  and ... 0r    = = = =
 
or 
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iii) 3 (mod4) and   is even ( )  1 ,  i j i j for all j r    
 

then ( ) ( )1 2

2 1 2 2... .r

k r kp p p q
     

 

Mathematics is a universal language to understand the science and nature. In 2013, J. 

Kim, D. Kim and H. Cho [8] proposed procedural modeling method using convolution 

sums of divisor functions to model a variety of natural trees in a virtual ecosystem 

efficiently. With a similar perspective, we think of modeling methods using the divisor 

function. 

 

Main purpose of Section 3 is to model the basic structure of the leaves modeling method. 

In (1.1), we define (2k, n, q)−Divisor Leaves Model (DLM). To introduce key idea of 

DLM easily, we put 
1 2n p p=

 
with 

1 2, ,p p q
 
odd primes. There are some nice (2k, n, 

q)−DLM connecting the shifted divisor functions and it is proposed along with general 

natural number n. Firstly, we give it between prime numbers in (1.1) and areas, base and 

heights of leaf of (2k, n, q)−DLM. Considering this, we create elliptic, flabellate and five-

lobed divisor leaves model. Leaves have different growing sizes (depending on time) 

when they live on the earth. For animation model, we suggest  four-steps growing 

patterns. Finally, we give real examples of (2k, p1p2, q)−DLM. Real leaf samples are used 

in this article. 

 

 

2.  Proofs of theorem 1.1 and theorem 1.2 

 

To prove Theorem 1.1, we need the following three lemmas. 

 

Lemma 2.1. Let p be positive prime integer, q = p + 2k with k ≥ 1 is fixed positive integer 

and q is prime. Then there does not exist p and q satisfying ( ) ( )p q = . 

Proof. We assume that p and q satisfying ( ) ( )p q = . Then ( ) 1p p = + , 

( ) 1q q = + and p = q. It is a contradiction. This completes the Lemma 2.1. 

 

Lemma 2.2. Let 1 2,  ,  p p q
 
be odd distinct positive prime integers and k be fixed positive 

integer with 1 2 2q p p k= + , (1 ≤ k ≤ 100). Then, there does not exist k = 1, 2, 3, 13, 14, 

16, 19, 28, 29, 34, 37, 40, 43, 49, 52, 58, 61, 64, 67, 68, 70, 73, 79, 82, 85, 88, 89, 94, 97, 

100 satisfying 1 2( ) ( )p p q = . 

 

Proof. We note that 

( ) ( )1 2 1 2(1 )(1 ) (1 )p p p p q q = + + = + =                (2.1) 

and 

1 2 2p p k+ = .                                           (2.2) 

 

It is well known that p1 ≥ 3 and p2 ≥ 5, with p1 < p2. By (2.2) there does not exist 2k = 2, 

4, 6 satisfying (2.1). Thus, we consider the case of 2k ≥ 8 in (2.1) and (2.2). First, we get 

p1 + p2 = 8, p1 = 3 and p2 = 5 with p1 < p2 and q = 23. In a similar way, when working 

with p1 + p2 = 2k (5 ≤ k ≤ 100), we derive Lemma 2.2. 
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Lemma 2.3. Let 
1 2 3, , ,p p p q

 
be odd distinct positive prime integers, k be fixed positive 

integer with 1 2 3 2q p p p k= + . For 1 ≤ k ≤ 100, all the solutions of the equation 

 

( ) ( )1 2 3p p p q =  

are 

1 2 3(2 , , )k p p p q
 
= (86, 3.5.7, 191), (152, 3.7.11, 383), (176, 3.5.17, 431),             (194, 

3.5.19, 479). 

 

Proof. We assume that p and q satisfy ( ) ( )1 2 3p p p q = . Then 

 

( ) ( )( )( ) ( ) ( )1 2 3 1 2 31 1 1 1p p p p p p q q = + + + = + = , 

( )( )( ) ( )1 2 3 1 2 31 1 1 1 1 2p p p q p p p k+ + + = + = + +  

and 

        1 2 3 1 2 1 3 2 3 2p p p p p p p p p k+ + + + + = .                     (2.3) 

 

Consider the lower bound of 2k satisfying (2.3), it is well known that p1 ≥ 3, p2 ≥ 5,     p3 

≥ 7 and 2k ≥ 86. So we do not consider 2 ≤ 2k ≤ 86. By (2.3), we consider the case of 2k 

≥ 86, that is, 1 2 3q p p p 86 3.5.7 86 191= +  + = . Since 191 is a prime number, we choose 

,  . . ,  ( , , ) ( )1 2 3 86 3 5 72k p p p q 191= . Likely, with the same method of Lemma 2.2, we 

check all numbers 88 ≤ 2k ≤ 200. This completes Lemma 2.3. 

 

Remark 2.4. We ask a general question as follows: 

(Question) For fixed 2k, does there exist n satisfying ( ) ( )2n n k = +
 
with an odd n? 

If n is an odd square-free integer and q prime number, then our (Question) is false by 

Theorem 1.1. 

Proof of the Theorem 1.1. Assume that n is an odd square-free integer, that is, 

1 2 ... rn p p p= with pi odd distinct prime integers. The cases of 1n p=
 
or 1 2n p p=  or 

1 2 3n p p p=  are considered Lemma 2.1, Lemma 2.2, Lemma 2.3. Let 1 2 3 4n p p p p=
 
and 

assume 

 

( ) ( ) ( )2n n k q  = + = .                            (2.4) 

 

Hence, we have 

 

( )( )( )( ) ( )1 2 3 4 1 2 3 4( ) ( ) 1 1 1 1 1n p p p p p p p p q = = + + + + = +  

and 

     
( )( )( )( )1 2 3 4 1 2 3 41 1 1 1 (1 ) 2p p p p p p p p k+ + + + − + = .                (2.5) 

 

We know that p1 ≥ 3, p2 ≥ 5, p3 ≥ 7 and p4 ≥ 11 with p1 < p2 < p3 < p4. The lower bound 

of 2k in (2.5) is 

 
2 (1 3)(1 5)(1 7)(1 11) (1 3.5.7.11) 1148k  + + + + − +  . 
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This is not a case of 2k ≤ 200. If r = 4, then the lower bound of 2k in (2.5) is bigger than 

200. Consider ( )( ) ( )1 2 1 2( ... ) 1 1 ... 1r rp p p p p p = + + +  and  

 

( )( ) ( )1 2 1 22 1 1 ... 1 (1 ... )r rk p p p p p p= + + + − +        (2.6) 

 

with r > 4. Similarly, the lower bound of 2k in (2.6) is bigger than 200. So this completes 

the proof of the theorem. 

 

Proof of the theorem 1.2. Assume 
1 2 ... rn p p p= . Then 2 1 2( ... )l rp p p

2 2 2

1 2( 1)( 1)...( 1)l l l

rp p p= + + +  and 2

2 ( ) 1 l

l q q = + . Thus 
2 2 2

1 22 ( 1)( 1)...( 1)r l l l

rp p p + + +
 

and 22 )lq  (+ , where ap n  and 1ap n+   is  ap n . 

 

If r ≥ 2, then 

2 1 2( ... ) 0 (mod 4)l rp p p   

and 

         2 ( ) 2 (mod 4)l q  .                                           (2.7) 

 

Thus, we get 2 1 2 2( ... ) ( )l r lp p p q  . 

 

If r = 1, then 2 2

1( 1) (q 1)l lp + = +
 
and 1p q= . This contradicts to l > 0. So 2 1 2( ) ( )l lp q 

. Therefore, n is an odd square-free integer, then 2 2(n) ( )l l q 
 
with n q . Furthermore, 

we assume 1 2

1 2 ... r

rn p p p
  

=  with  i# i :  is odd , 1 i r 2    . Assume 

1 2 1 (mod 2)   . Then 

 
1 12 ( )2

2 1 1 1( ) 1 ... 0 (mod  2) ( 1,2).
ll

l p p p i
  = + + +  =

 

By (2.7) and 2 (n)l , we derive that 2 2( ) ( )l ln q  . 

 

If 1 (m1 od 4) 
 
and 2 3 ... 0r  = = = = , then 

 
1 4 1 2 2(2 ) (4m 1)(2 )

2 1 2 1 1 1 1( ) ( ) 1 ...m l l l

l lp p p p p
  + += = + + + + , 

 
2

2 ( ) 1 l

l q q = +
 

 

and 

      
2 2 8m 2

1 1 1(1 ... ) .l l l lp p p q+ + + =                    

 

It is easy to verify that 1p q  and 1

1( ) ( )p q  .  

 

If (m d3 o 4)i   and 
j  is even ( )i j  for all 1 j r  , then 

 
1 1(2 ) (2 )2 2

2 1 1 1( ... ) (1 ... )...(1 ... ) 0 (mod4).r rl ll l

l r r rp p p p p p
    = + + + + + +    (2.8) 
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By (2.7) and (2.8), 2 2(n) ( )l l q  . From the above computations, the proof of this 

theorem is completed. 

 

Remark 2.5. The results of Table 1 and Table 2 were realized by combining several 

computers and by using Mathematica 9.0 Software: 

 

Table 1. The number of 1 2(2 , .# , )k p p q , 1 2 3(2 , . ,# . )k p p p q  and 1 2 3 4(2 , . . . , )# k p p p p q
 

 

 
1 2(2 , .# , )k p p q  1 2 3(2 , . ,# . )k p p p q  1 2 3 4(2 , . . . , )# k p p p p q  

2 2 100k   73 1 0 

102 2 1000k   1808 57 0 

1002 2 10000k   63906 1261 53 

10002 2 100000k 
 

2911232 18356 1571 

 

Table 1 gives us many different leaves model types derived from Theorem 1.1. In general, 

we have considered the solutions of the shifted divisor functions 

 

      1( ... ) ( )rp p q =                                    (2.9) 

 

with 1 2... 2rq p p p k= +
 
by using Mathematica 9.0 Software. This is a very big list. So, in 

this article, we only write the lower bound of 2k (LB(2k)) in (2.9) as follows: 

 

Table 2. The list of LB(2k) 

 
n  LB( 2k ) n  LB( 2k ) 

1 2.p p  8 
1 7...p p  10015844 

1 2 3. .p p p  86 
1 8...p p  302391704 

1 4...p p  1322 
1 9...p p  7465944254 

1 5...p p  25178 
1 10...p p  249278458694 

1 6...p p  325352 
1 18...p p  8389624896636703538812454 

 

Let 1,1( ) : k

d n
d odd

n d


=   in Table 3, we find  31

1,1 1,1t : (# ) ( ), 1 2k n n n k n =  = +   }. The 

computation by Mathematica 9.0 Software took about one month. 
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Table 3. A list of t k  (1 ≤ k ≤ 42). 

 

k  t k  k  t k  k  t k  

1 53 15 3 29 60 

2 731 16 1877 30 4027 

3 2 17 54 31 70 

4 1394 18 2857 32 2973 

5 3 19 77 33 2 

6 1967 20 2340 34 999 

7 32 21 3 35 4 

8 1850 22 1050 36 5750 

9 2 23 54 37 77 

10 784 24 5684 38 1054 

11 55 25 3 39 3 

12 2767 26 1012 40 3422 

13 60 27 2 41 69 

14 251 28 2203 42 3563 

 

 

3.  Divisor leaves model (DLM) derived from the shifted divisor function 

 

Leaves are the vital part of plants and aid the plants in a variety of ways, including 

producing food, oxygen through photosynthesis, etc. The basic formula in the procedural 

modeling has been proposed in this study and the properties of divisor functions have 

been used to model the area of the leaves and describes the growth process of various 

leaves [9]. 

 

 
 

Figure 1. Elliptic DLM (Cotoneaster sp.) and Flabellate DLM (Ginkgo) 
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3.1. Elliptic and flabellate divisor leaves model 

 

3.1.1. Main structure of divisor leaves model. The area of leaves (Elliptic or Flabellate) 

can be modeled using the divisor function (Figure 1). First, the leaf is separated into three 

areas as 1 2 3, ,S S S . 1S  is equal to the area of an isosceles triangle. The height of isosceles 

triangle is equal to p2. The base of isosceles triangle is equal to 2p1. Then, we have 
 

1 1 2: ( ) / 2S base x height p p= = . 

 

Archimedes’s sum of geometric series was used to calculate the area enclosed by a 

parabola and a line [10]. The underlying method is defined as the separation of the many 

infinite areas of the triangle. We note that the area of each triangle B1 is one eighth of the 

area of the triangle A1 (See Figure 2). 

 

 

Figure 2. S2, S3 and check list of Elliptic DLM (Euphorbia pulcherrima) 

 

Then the area of S2 can be expressed by 

 

( )1 1 1
2 1 1 1 1 1 12 3

A A A 1
S A 2 4 8 ... with A 2 p h p h

8 8 8 2

     
= + + + + = =     

     
 

 

and   2 1 1

4

3
S p h=  . Similarly, we get 

 

( )2 22 2 2
3 2 1 2 22 3

4
2 4 8 ...

8 8 8 3

A A A
S A p p h

     
= + + + + = +     

     
 . 

 

Put 2 1
1 2

2 2
1 1 2

3 3
  and  

4 4

p p
h h

p p p
= =

+
. We get 

 

and  

 

1 2 3 1 2 1 2: .S S S S p p p p= + + = + +  
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Let p1, p2, q be odd distinct primes and fixed k be positive integer. By Theorem 1.1, we 

consider the shifted divisor function ( ) ( )1 2p p q =
 
with q = p1p2 + 2k. For example, 

if we choose fix k = 4, p1 = 3, p2 = 5, then we get (8, 3.5, 23)-DLM  

 

1 2 3S 3.5, S 5, S 3 and S 23= = = =
 

derived from 

( ) ( )3.5 23 . =  

 

For k = 4, 5, 6, 7, 8, 9, 10, 11 we can give the following table. 

 

Table 4. The First Eight Values of 1
1 2 1 2

2

(2 , , , , , , , ).
p

k p p n q h h
p

 

2k  1p  2p  n  q  2 1/p p  1h  2h  

8 3 5 15 23 1,666667 1,250000 0,385872 

10 3 7 21 31 2,333333 1,750000 0,295439 

12 5 7 35 47 1,400000 1,050000 0,435929 

14 3 11 33 47 3,666667 2,750000 0,197338 

16 5 11 55 71 2,200000 1,650000 0,310352 

18 5 13 65 83 2,600000 1,950000 0,269234 

20 3 17 51 71 5,666667 4,250000 0,130339 

22 5 17 85 107 3,400000 2,550000 0,211625 

 

 

3.1.2. Shape of S3 in divisor leaves model. We make leaves with ordered pairs 

1 2(2 , , , , )k p p n q  that meet the equation, σ(n) = σ(n + 2k) when p1, p2, q are odd primes, 

n = p1p2 and q = n + 2k. We embody the leaves like Figure 3. 

 

 

 
 

Figure 3. Area of Divisor Leaves Model. 
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First, the triangle (S1) with red line at the center is an isosceles triangle and its height is 

p2, base line is 2p1 and the area is p1.p2. We make S2 and S3 using Archimedes’s idea. S2’s 

area is p2. S3 is made by using modified Archimedes’s idea. The number of triangles in 

each step increases twice, but the area of triangles decreases 8 times. So common ratio 

becomes 
1

4
. 

 

In the process of making S3, the common ratio is r. Let’s call the triangle’s area, base line, 

height An, Kn, Hn. Then, each of the An, Kn, Hn’s relational equation is named as Table 5. 

And Nn means the total number of triangles that are newly made at nth step of geometric 

series. 

 

Table 5. An, Kn, Hn and Nn . 

 

 1n =  Recurrence Relation ( 2)n   

nA  
1 1

1

2

r
A p

−
=  1

2
n n

r
A A −=  

nK  2 2

1 1 2K p p= +  
( )

2
2

1 1

1

2
n n nK K H− −

 
= + 

 
 

nH  1
1

2 2

1 2

2A
H

p p
=

+
 1n

n

n

rA
H

K

−=  

nN  1 12n

nN −=  

The common ratio is 
1

4
 that 

1
x2

8
 (decrease ratio of triangle’s area X increase ratio of 

the number of triangles). When we calculate S3, we use common ratio r that is

1 12 .
2

n n

n n

A Nr
x

A N

+ +
   

= =   
   

 The Figure 4 is S3’s shape according to r. We use Python 2.7.9 

(Turtle Module) to draw illustrations in Figure 4 and Figure 5. 

Figure 4. r connected to S3 (p1 = 3, p2 = 5, n = 10). 
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Here, n means that we draw S3 with nth step of geometric series in Python 2.7.9 (Turtle 

Module). The Figure 5 is the shape of leaves according to r. 

 

   
1

r
21

=  1
r

16
=  1

r
8

=  

   

1
r

4
=  1

r
2

=  3
r

4
=  

 

Figure 5. Shape of Leaves (p1 = 3, p2 = 5, n = 10) 

 

3.2. Five-lobed divisor leaves model. A similiar new model can be created for    five-

lobed leaves in Figure 6. This can be done similary to the other leaves model. Also, the 

area of five-lobed leaves can be calculated using the divisor function. First, the five-lobed 

leaves are separated into three areas as S1, S2, S3, that is, S:=S1 + S2 + S3. 

 

S1 is equal to the area of an isosceles triangle. The height of isosceles triangle is equal to 

p2. The base of isosceles triangle is equal to 2p1. Then S1 = p1p2. 

 
 

Figure 6. S2, S3 and check list of Five-Lobed DLM (Pelargonium sp.) 
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The area of S2 can be expressed by 

 

1 1 1
2 1 2 3

2 2 4 8 ...
8 8 8

A A A
S A

      
= + + + +      

      
 

 

with ( )1 1 1

1

2
A p h= . Put 2

1

1

3

4

p
h

p
=  and we get S2:= p2. 

 

Then the area of S3 can be represented as 

 

 

2 2 2
3 2 2 3

: 2 2 2 4 8 ...
8 8 8

A A A
S A

       
= + + + +       

      
 

3 3 3
3 2 3

2 2 4 8 ...
8 8 8

A A A
A

      
+ + + + +      

      
 

4 4 4
4 2 3

2 2 4 8 ...
8 8 8

A A A
A

      
+ + + + +       

        

 2 3 4

16

3
A A A= + +

 

with 
2 2

1 2 ,x y z p p+ + = +  ( )2 2

1

2
A xh= , ( )3 3

1

2
A yh=  and ( )4 4

1

2
A zh= .  

Put 1
2

8

p
h

x
= , 1

3
8

p
h

y
=  and 1

4
8

p
h

z
= . We obtain S3:= p1. 

 

Finally, we have S:= p1 + p2 + p1p2. 

 

3.3. Four-growing step. A leaf model in this study is a structure for determining the 

growth pattern of a leaf based on the shifted divisor functions. The mathematical meaning 

of divisor functions are analyzed, and the advantages when divisor functions are applied 

to a leaf model are discovered. The propagation rules must be rule-based modeling and 

not simple and intuitive, and this method also required the assignment of complex 

parameters.  

 

With the general perspective of leaf’s growth, the early phase of young leaf seems to grow 

slowly. At the second phase, the growing speed of leaf becomes fast and at the apotheosis 

of leaf’s growth, we can observe that leaf grows very large. Finally, when the leaf almost 

has grown, we can find that the leaf’s growing speed becomes slower. We suggest more 

natural leaf’s growing model by applying four phases that have four different growing 

speeds in the same period (Figure 7). 
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Figure 7. Growing step of DLM 

 

Let t be time and I  be fixed period,  0 10,I T=
 
and  1,i i iI T T +=

 
with time  ( 1,2,3)iT i = . 

Assume l(t) is the height of leaf at time t. Then the height of 1 2(2 , , )k p p q -DLM  is 

 

( )

( ) ( )

1 2
0

1 2 1 2 1

2 1 2 1 2 2 1 2

1 2 1 2 2 1 1 2 1 2 2 1

                                                                                         , if  

( ) ( )
                      

( ) ( )
( )

p p
t t I

p p p p T

p p p p T p T p
t

p p p p T T p p p p T T
l t


+ +

− −
+

+ + − + + −
=

( ) ( )

( )

( )

1

3 2 2 1 22 1 2
2

1 2 1 2 3 2 1 2 1 2 3 2

1 2 2 1 2 4 2 1 1 3 2 1 2 1 2

1 2 1 2 4 3

               , if   

( )( 1)
                                     , if

( ) ( )

(1 ) ( (2 1) ) ( ( ))

( )

t I

T p T p pp p p
t t I

p p p p T T p p p p T T

p p p p p T p p p T p p p p p
t

p p p p T T p



−−
+ 

+ + − + + −

− + + − − − + +
+

+ + − ( )
3

1 2 1 2 4 3

      , if  
( )

t I
p p p T T














 + + −

 

 

This is the formula that provides leaf size when the real-time model of growing leaves is 

embodied by animation. By this observation, we propose 4-growing steps derived from 

1 2(2 , , )k p p q -DLM. 

 

Remark 3.3.1. In the leaves, sunflower, pine cones, palm, ... , we can see the golden ratio 

a lot 
1 5

1,618033
2

 +
  

 
 and Fibonacci numbers. In the following table, for p1, p2 are 

primes, 1 2/p p
 
ratio, the golden ratio is very close to the values given. In Table 6, using 

Mathematica 9.0 Software (0 < 2k < 199900), we find almost the golden ratio leaves of 

1 2(2 , , )k p p q -DLM  as follows. 
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Table 6. Golden ratio 1 2(2 , , )k p p q -DLM. 

 

2k  
1p  2p  q  1 2/p p  

13962 8629 5333 46032419 1,618039 

41200 25463 15737 400752431 1,618034 

60144 37171 22973 853989527 1,618030 

63490 39239 24251 951648479 1,618036 

68616 42407 26209 1111513679 1,618032 

68878 42569 26309 1120016699 1,618039 

75868 46889 28979 1358872199 1,618034 

83052 51329 31723 1628392919 1,618037 

85314 52727 32587 1718300063 1,618038 

87780 54251 33529 1819069559 1,618032 

92304 57047 35257 2011398383 1,618033 

98488 60869 37619 2289929399 1,618039 

113730 70289 43441 3053538179 1,618034 

114636 70849 43787 3102379799 1,618037 

117390 72551 44839 3253231679 1,618033 

125904 77813 48091 3742230887 1,618037 

130030 80363 49667 3991519151 1,618036 

134664 83227 51437 4281081863 1,618038 

137790 85159 52631 4482141119 1,618039 

 

 

Using Mathematica 9.0 Software, we deduce that (842538, 321821.520717, 74783651) 

represents the closest golden ratio leaves of 1 2(2 , , )k p p q -DLM of (0 < 2k < 1000000). 

Let p1 and p2 be prime integers smaller than 100000. Then the smallest of 1

2

p

p
is 

1,000020056358367 with (199440, 99721.99719, 9944277839)-DLM and the biggest of 

1

2

p

p
 is 33323,666666666664 with (99974, 99971.3, 399887)-DLM. Finally, we compared 

the real leaf size in Balikesir University in Turkey with 1 2(2 , , )k p p q -DLM (Figure 8). 
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Figure 8. Examples leaves of 1 2(2 , , )k p p q -DLM  in Balikesir. 

 

In this study, a procedural modeling method based on odd divisor functions generated 

various leaves constructed in a real-time virtual ecosystem. We establish a relationship 

between the area of leaves and prime numbers using odd divisor functions. We have also 

established a model associated with the growing patterns of the leaves. In future, other 

ways to model different leaves may become possible through research on methods using 

the divisor functions. 
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