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Abstract: The notion of source of semi-primeness is firstly given by Aydin, Demir and Camci in 2018 as
the set of all elements a of R that satisfy aRa = (0) for any associative ring R. They investigated some
basic properties of this set and defined three types of rings which have not appeared in literature before.
The theory of gamma ring has been introduced by Nobusawa in 1964 as a generalization of rings. In this
work, we generalized the notion of source of semi-primeness for gamma rings and investigated its basic
algebraic properties. We also defined |S|-strongly reduced I'-ring, |Sas|-domain, |Sas|-division ring and
examined the relationship between these structures. We determined all possible characteristic values of a

|Sar|-domain and proved every finite |Sas|-domain I'-ring M is a |Sy|-division I'-ring.
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1. Introduction

The theory of gamma rings has been introduced by Nobusawa as a generalization of rings by
defining triple products on two abelian groups [11]. His model was a pair (I, M), where M is a
subgroup of Hom (A, B) and I" is a subgroup of Hom (B, A) for additive abelian groups A and B
and products M xI'x M and I' x M x I", which are defined as ordinary composition of mappings.
W. Barnes dropped the closedness of multiplications in I" and then defined slightly generalized
gamma rings [2]. After Barnes’ definition a number of authors have done a lot of works and have
obtained various generalizations analogous to the corresponding results in ring theory [3-6, 8, 9].

Prime and semiprime ideals of a I'-ring M are beneficial to obtain the algebraic structure
of M. The notion of a prime ideal was firstly defined by W. Barnes as an ideal P that satisfies
AB c P implies Ac P or B c P for any ideals A and B of M [2]. Barnes also defined prime
ideal and prime radical in this work. He obtained some equivalent conditions that of an ideal to

be a prime ideal and introduced prime radical of a I'-ring M by defining m-system in a manner
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analogous to that of McCoy [10]. Kyuno is also obtained some results on prime ideal, semiprime
ideal and prime radical of a I'-ring M [6].

The source of semi-primeness of a ring R which is denoted by Sr was firstly defined by
Aydin et al. in 2018 as the set of all elements a of R satisfying aRa = (0) [1]. They proved some of
basic properties of the set Sg. Aydn et al. also defined other new notions which are |Sg|-strongly
reduced ring, |Sg|-domain and |Sg|-field and obtained their relations with each other.

Our main interest is to define the source of semi-primeness Sy;(A) for any subset A of a
I-ring M and to introduce some new notions such as |Sys|-strongly reduced ring, |Sjs|-integral

domain and |Sj;|-field to understand the algebraic structure of the I'-ring M.

2. Preliminaries

Let M and T' be two additive Abelian groups. M is said to be a I'-ring (in the sense of Barnes) if
there exists ternary multiplication M xI' x M — M satisfying below conditions for all a,b,c e M,

a,Bel:

(1)  (a+b)ac=aac+bac,
a(a+ B)c = aac + afe,
ac (b+c) = aad + aac,

(2)  (aab) Be = aa (bBe).

Let M be a I'-ring. If there exist § e I" and e € M such that ade = eda = a for any a € M,
then a pair (d,e) is called strong unity of the I'-ring M [9]. A subset N of the I'-ring M is said
to be a subring if N is a subgroup of M and nan’ € N for all n,n’ ¢ N and aeI'. A subgroup
U of M is called left ideal (resp. right ideal) if MTU c U (resp. UT'M c U). If U is both left
and right ideal, then U is called an ideal of M. An ideal P of the I'-ring M is said to be prime
if ATBc P implies A< P or B¢ P for any ideals A and B of M [2]. An ideal @ of M is said
to be semi-prime if AT'A ¢ P implies A ¢ P for any ideal A of M [6]. A T'-ring M is said to be
prime (resp. semi-prime) if the zero ideal is prime (resp. semi-prime) [9].

A nonzero element a in M is called zero divisor if there are nonzero elements b,c € M and
B,~v € I' such that a8b =0 = cya. An element = of a I'-ring M is called strongly nilpotent if
there exists a positive integer n such that (zI')"z = (aT2T"...2T")x = (0) [8]. The smallest such
n is called the index of x. A I'-ring M with no nonzero strongly nilpotent elements is called a
strongly reduced T'-ring. A T'-ring M is said to be a division I'-ring if it has a strong unity (J,e)
and for each nonzero element a of M there exists b of M such that adb = bda = e. The prime
radical of a I'-ring M is the intersection of all prime ideals of M [9]. If there exists a positive

integer n such that nx = 0 for all © € M, then the smallest such positive integer is called the
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characteristic of M and denoted by char M. If there is no such positive integer, then M is said
to be characteristic zero. Let M; be a I'y-ring and My be a I's-ring. An ordered pair (6, )
is called homomorphism if ¢ : My — M is a group homomorphism, 6 : I'y — I's is a group
homomorphism and ¢(aabd) = p(a)f (a) @(b) for all a,b € M and a € T' [9]. A subset A of a
I'-ring M is called semi-group ideal if aam, maa e A for all ae A, a eI’ and me M .

In this study, we introduced the notion of source of semi-primeness Sy;(A) as the set of all
elements m of M that satisfy mI’AT'm = (0) for any subset A of a I'-ring M and prove some of
its set theoretical properties. For instance, we show that Sjp;(A) is a semi-group ideal of M and
a condition is obtained for Sp;(A) to be an ideal of M. Also, the definitions of |Sys|-strongly
reduced I'-ring, |Sys|-domain and |Sjs|-division I'-ring are given and obtained some results about
their relations. We determine all possible characteristic values of a |Sy/|-domain and prove every

finite |Sas|-domain I'-ring M is a |Sp|-division I'-ring.

3. Main Results
Definition 3.1 Let A be a subset of a I'-ring M. We define the source of semi-primeness of A

as the set Sar (A) ={me M | mI'AI'm = (0)}. We write Sy instead of Sar (M), when A= M.

From the definition of source of semi-primeness it is clear that S4 = Sy (A) N A and
Sy (B) € Sy (A) for any A € B. One can easily show that the source of semiprimeness of
a I'-ring M is equal to zero if and only if M is a semi-prime I'-ring. Another observation
about the source of semiprimeness of a I'-ring M is that if Sy; = M, then the Jordan product

(M3 1) qyrg = mamifn +namifm for any elements m,m’,n € M with «,3 €T is equal to zero.

Conversely, if the Jordan product for any elements m,m’,n € M with a, € I" is equal to zero,

then Sj; may not be equal to M. Indeed, if M = {[2& 5]

I 0.
a,be Zlg} and I' = {[33:] |7 € Z1s},

then the equation (m,n) 0 holds for all m,m’,n e M and «,3 €I'. But, it can be shown

am/B =
that Sys is not equal to M. However, if one assume that the I'-ring M being 2-torsion free, then
converse of the proposition is true. It is also clear that every element in S}, is nilpotent of index

at most 3.
We now give the other set-theoretical properties of the source of semi-primeness of a subset

for a I'-ring M .

Proposition 3.2 Let My and Ms be two I'-rings. If A and B are nonempty subsets of My and
My, respectively, then Syrxa, (A x B) = Sa, (A) x Sy, (B) .

Proof If M; and My are two I'-rings, then M; x My is a I'xI"-ring with the ternary multiplication

(a,0) (a, B) (¢, d) = (acc,bpd) .
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Let (a,b) € Sy, (Ax B). Then, (a,b) (e, ) (z,y) (7,0) (a,b) = (0,0) for all (z,y) € Ax B
and (a,B),(v,0) € T xT'. Therefore, we get aazya =0 and bBydb = 0 for all x € A |, y € B,
a,B,7,0 €', ae My and be My. Hence, (a,b) € Sy, (A) xSy, (B). Similarly, one can show that
Snr, (A) x S, (B) € Syvyxa, (A x B). Thus, the equality is obtained. ]

Proposition 3.3 Let M be a I'-ring and A be an ideal of M. Then, the followings hold:

(i) The source of semi-primeness of A is a semi-group ideal of M. In particular, it is a

multiplicatively closed subset of M .
(i) If Sy (A)T'Sn (A) =(0), then Sy (A) is an ideal of M.

Proof (i) Let m € Syy(A), o € T and € M. Then, (zam)TAT (zam) = (0) since
mIlA'm = (0). It follows that xam € Sy (A). Similarly, we have max € Sys (A). Therefore,

S (A) is a semi-group ideal of M. The last part of the proposition is obvious.

(ii) Let Spr (A)T'Sar (A) = (0). It is enough to show that Sy (A) is additively closed. Let
x,y € Spr (A). Then,

(x+y)TAT (z +y) =al'Al'z + aT'AT'y + yI'AT'z + yI’'AT'y c 2T’ AT'y + yI' AT'x.

Since Sps (A) is a semi-group ideal, we have ATz ¢ Sp; (A) and zT'A € Sy (A). Therefore,
2T ATy + yI'AT'z = (0). Thus, = +y € Sy (A), that is, Sy (A) is an ideal of M. O

Proposition 3.4 If Q is a semi-prime ideal of a I'-ring M , then Sy € Q. Moreover, Sy is
contained in the prime radical of M .
Proof Let ae Sy . Since @ is semi-prime and aI'MTa = (0) ¢ @, we have a € Q. Therefore,

Sy € Q. This also shows that Sy is contained in the prime radical of M . O

Theorem 3.5 Let M; be a Ty -ring and My be a T's-ring. If the ordered pair (6,¢) is a gamma

ring homomorphism, then ¢ (Sn,) is contained in S,nr,y. Moreover, if ¢ is injective, then

LP(SMl) = SS@(MI) .

Proof Since (8, ) is a gamma ring homomorphism, we have ¢(M;) is a 0(I'y)-ring with ternary

multiplication
p(a)f(a)p(b) = p(aab).

Therefore, the source of semi-primeness of ¢ (M;) is

{p(a) e o (M) [ £(a)0(T1)p(M1)0(T'1)p(a) = (0)}.
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Now, it is obvious that the set ¢ (Shs,) is contained in S, (s, . Conversely, let ¢ be injective
and ¢(a) € S,(ar,)- Then, we have @(al'yM1T'1a) = ¢(0). Hence, a € Sy, since ¢ is injective.

This shows that Sy (az) € @ (Shr,)- |

Theorem 3.6 Let M be a T'-ring and a € Spy. If MTa # (0) and aI'M # (0), then a is a zero

divisor. Consequently, an element of M which is a not a zero divisor is contained in M — Sy .

Proof By hypothesis, there exist b,c € M and «,v € I' such that aab # 0 # cya. Therefore, we
get a is a zero divisor since aabda =0 = accya, aab # 0 and c¢ya # 0. Now assume that b is not
a zero divisor of M. Hence, b e M — Sy, since bI'M # (0) # MTb. Otherwise, b would be a zero

divisor. m]

4. |Sn|-strongly Reduced T'-ring, |Sj/|-domain I'-ring, |Sy/|-division I'-ring

Definition 4.1 Let M be a I'-ring and M + Sy, .

(1) M is said to be a |Spr|-strongly reduced ring if there are no strongly nilpotent elements of

M—S]\/[.

(2) M is said to be a |Sp|-domain if there are no left or right zero divisors of M — Syr. A

|Snr|-domain M is called |Sp|-integral domain if M is commutative with strong unity.

(3) M is said to be a |Sp|-division ring if M has a strong unity and every element of M — Sy

is unit. A |Sy|-division ring M is called |Spr|-field if M is commutative.

It is necessary to assume M # S, in the above definition. For instance, if M is the set of

all 2 x 3 matrices of the form [8 % 8] with 6,5 € 471¢ and T is the set of all 3 x 2 matrices of
z 0

the form |0 7| with T € 4Z¢, then M is a I'-ring with Sy, = M.
z 0

From the Definition 4.1, it is clear that if M is a strongly reduced I'-ring (I'-domain or I'-
division ring), then M is a |Sys|-strongly reduced ring (|Sp|-domain or |Sjs|-division ring). Also,
one can show that every |Sys|-domain is a |Sys|-strongly reduced ring. Conversely, |Sys|-strongly

a 0 b

0 e 0]|a,b,ceZ} and

reduced rings are not a |Sys|-domain in general. For example, if M = {[

= |z € Z} , then M is a |Sys|-strongly reduced I'-ring but not a |Sps|-domain. Similarly,

8 OO
o8 O

a |Sy|-division ring M may not be a |Sps|-domain. Let M = {[6 6] |aeZy} for any prime p
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and T = {[g] |z € Z} . Then, one can show that M is a |Sy|-division I'-ring, but not a |Sy|-

domain. Another observation on the Definition 4.1 is that if M; is a |Sys,|-domain and My is
a |Sh,|-domain, then the direct product M; x My is |Sns, x S |-strongly reduced ring. It is
easy to show that the prime radical of a |Sj/|-strongly reduced I'-ring M contains every strongly
nilpotent element. By the very nature of the gamma ring, every division gamma ring is not a

gamma domain. Similarly, every |Sps|-division I'-ring is not a |Sys|-domain. For example, the
r= {[;5] |veZ}-ring M = {[a @]laeZ,} is a |Sy|-division I'-ring that is not a |Sy|-domain
for any prime p.

Proposition 4.2 Let M be a I -ring with M # Spr and a € M . Then the followings are equivalent:
(i) M is a |Sr|-strongly reduced ring.
(ii) If ala c Sys, then a € Sy .

(iii) If (al')" a c Sy for any positive integer n, then a € Syr.

Proof (i)=(ii) Let M be a |Su|-strongly reduced ring and al'a € Sps. Therefore, we have

(al')*a = (0) that is @ is a strongly nilpotent element. Hence, a € Sy; since M is a |Sy|-strongly

reduced ring.
(ii) = (iii) Let a € M and n be the smallest positive integer such that (aI')" a € Sps. There
exists a positive integer k such that n <2k <n+1. By Proposition 3.3, we have (aF)%Jrl ac Sy,

that is, (aF)ka cSy. If k=1, then a €Sy by (ii). Assume that k£ > 1. But, this contradicts
with n to be the smallest positive integer since k <n -k +1<n. Hence, n cannot exceed 2.

(iii) = (i) Assume that a € M is a strongly nilpotent element. Then, there exists a positive
integer n such that (al')"a = (0). By hypothesis, we get a € Sy since (al')" a € Sps. Therefore,

there is no strongly nilpotent element in M - Sys. So, M is a |Sy|-strongly reduced ring. O
Corollary 4.3 If M is a |Sn|-strongly reduced T -ring, then Sy = {a € M|(aF)2a = (O)} .

Proof Let T = {a € M|(aI‘)2a = (0)} and a € Spr. Then, clearly a € T'. Conversely, assume

that a € T. Then, we have (al')”a = (0), that is, a is a strongly nilpotent element. It follows that

a € Sy since M is a |Sys|-strongly reduced I'-ring. Consequently, we get Spy =T O

Proposition 4.4 Let M be a T'-ring. If M is a |Sp|-domain, then Sy (A) = Sy for any nonzero
I -subring A of M. Besides, A is a |Sa|-domain.
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Proof From the definition of source of semi-primeness, it is clear that Sy ¢ Sp(A). Assume
that there exists an element m € Sys(A) such that m ¢ Sy;. Then, we get mI'A = (0) = AT'm since
mIAT'm = (0) and M is a |Sps|-domain. This implies A = (0), which is a contradiction. Hence,
Sar(A) = Syr. Now, let a € A be a zero-divisor. Therefore, a € Sy since M is a |Sys|-domain.

This implies a € Spr(A) N A=S4. It follows that A is a |S4|-domain. O

We should note that Sys (A) = S4 may not be provided even if M is a |Sps|-domain I'-ring.

z 0
For the I' = {|0 z||reZ}-ring M = {[8 0 b] la,b,c € Z} , one can show that the M is a
z 0
Suy|-domain and Sy (A) # S4 for the subset A = a 0 b a,beZ} of M.
0 00

Proposition 4.4 is not true for a |Sys|-strongly reduced I'-ring M in general. For example,

OT

|z €Z}. Then, M is |Sps|-strongly reduced

T
let M = {|% 0 ¢ la,b,ceZ} and T' = {]|0
0 b 0 0

xT
OJ

I'-ring since there is no strongly nilpotent element in the set

M_SM:{[O b O]|abceZ az0orb#+0}.

For the I'-subring A = {[O 0 O] la,c e Z} of M, we have Sp(A) = {[0 b 0] |b,ceZ}.

Therefore, it is clear that Sy;(A) # Sy -

Proposition 4.5 If M is a |Sy|-strongly reduced I'-ring and A is a non-zero I'-subring of M,

then A is a |Sa|-strongly reduced T -ring.

Proof Let M be a |Sy|-strongly reduced I'-ring and A be a nonzero I'-subring of M. If
a € A is a strongly nilpotent element, then a € Sy; by hypothesis. This implies that a € S4 since

Sar € Sa(A). Hence, A is a |S4|-strongly reduced I'-ring. |

Lemma 4.6 If M is a |Sy|-domain T -ring, then M — Sy is a multiplicative set.

Proof Let M be a |Sps|-domain I'-ring. Assume that aab is a zero-divisor for a,b e M — Sy,
and « € I'. Then, there exist nonzero elements ¢ € M — Sy; and v € I' such that (aab)ye = 0.
Hence, a or b must be zero-divisors which contradicts with our hypothesis. This implies aab is
not a zero divisor, that is, aab e M — Sy; by Theorem 3.6. Therefore, M — Sy is a multiplicative

set. O

Theorem 4.7 Every finite |Sp|-domain T -ring M is a |Syy|-division ring.
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Proof Assume that M is a |Sy/|-domain T'-ring. Let T'= M - Sy = {a1,...,a,} and a be any
element of T'. Since T is a multiplicative set by Lemma 4.6 and a is not a left (or right) zero
divisor, we define injective maps on T such that f(z) = ayxz and g(z) = zya for all z € T. Then,
finite cardinality requires the maps to be surjective. Therefore, there exist 1<i<n and 1<j<n
such that aya; = a = ajya. Since aya;va = aya = aya;ya, we get a; = a; and so avya; = a = a;ya.
By the same argument, we have an element a} € T such that byal =b=alyb for be T. Accordingly,

one has

(avb) va; = ayb = aiy (ayb)

and since ayb e T, it follows that af = a;. Set e = a; and § = . Then, (d,e) is a strong unity of
the semigroup T and clearly ede =e.

For an arbitrary element x of M , we either have x € Sy; or x € T'. If x € T', then we already
have that xde = edx = x. Let x € Sp;. Assuming e —edx € Sy implies that e = 0. But, it is a

contradiction because e € T'. Thus, e —edx € T and similarly we have e —xde € T'. Then,
(e—edx)de=e—-edx and ed (e —xde) = e — xde

yields us that edx = zde. Therefore, we have xde = x = edx since e is not a zero-divisor.

Consequently, (d,e) is a strong unity of I'-ring M. Moreover, considering the maps f and
g, there exist x,y € T such that adx = e = yda. This shows that a is a unit in M. Hence, M is a

|Sar]-division ring. |

Corollary 4.8 If M is a finite |Sar|-integral domain, then it is |Sn|-field.

Theorem 4.9 Let M be a T'-ring with strong unity (d,e). If M is a |Sy|-domain, then the

characteristic of M is either 0, or p for a prime p, or p* for a prime p.

Proof Assume that charM =n > 1 and p is a prime dividing n. Then, there exists an integer
k such that n = pk. Hence, 0 = ne = (pe) é (ke). This implies that pe is a zero-divisor, that is,
pe € Syr. Therefore, we have (pe)dmd (pe) = 0 for all m e M. It follows that p?m = 0 for all

m e M. Accordingly, we get n=p or n =p? since charM =n. |

Theorem 4.10 Let M be a T'-ring with strong unity (d,e). If M is a |Sp|-strongly reduced

ring, then the characteristic of M is a cube-free integer, that is, there is no prime p such that p3

divides charM .

Proof Assume that charM =n >1 and p is a prime dividing n, say n = p'k for some ¢ > 1 and
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1<k<n with ged(p, k) =1. Since
(pke)' = p'kle = k'™ (ne) = 0 = pke € Sy

= (pke) dmd (pke) = 0,Ym e M =p°k*m =0,Ym e M

and charM = n, there exits s € Z such that p‘ks = p®k?. If t were greater than or equal to 3, then

we get p|k. But, this contradicts with ged (p,k) =1. Hence, n must be a cube-free integer. O
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