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Abstract: The notion of source of semi-primeness is firstly given by Aydın, Demir and Camcı in 2018 as

the set of all elements a of R that satisfy aRa � �0� for any associative ring R . They investigated some

basic properties of this set and defined three types of rings which have not appeared in literature before.

The theory of gamma ring has been introduced by Nobusawa in 1964 as a generalization of rings. In this

work, we generalized the notion of source of semi-primeness for gamma rings and investigated its basic

algebraic properties. We also defined SSM S -strongly reduced Γ -ring, SSM S -domain, SSM S -division ring and

examined the relationship between these structures. We determined all possible characteristic values of a

SSM S -domain and proved every finite SSM S -domain Γ -ring M is a SSM S -division Γ -ring.
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1. Introduction
The theory of gamma rings has been introduced by Nobusawa as a generalization of rings by

defining triple products on two abelian groups [11]. His model was a pair �Γ,M� , where M is a

subgroup of Hom�A,B� and Γ is a subgroup of Hom�B,A� for additive abelian groups A and B

and products M �Γ �M and Γ �M �Γ , which are defined as ordinary composition of mappings.

W. Barnes dropped the closedness of multiplications in Γ and then defined slightly generalized

gamma rings [2]. After Barnes’ definition a number of authors have done a lot of works and have

obtained various generalizations analogous to the corresponding results in ring theory [3–6, 8, 9].

Prime and semiprime ideals of a Γ -ring M are beneficial to obtain the algebraic structure

of M . The notion of a prime ideal was firstly defined by W. Barnes as an ideal P that satisfies

AB b P implies A b P or B b P for any ideals A and B of M [2]. Barnes also defined prime

ideal and prime radical in this work. He obtained some equivalent conditions that of an ideal to

be a prime ideal and introduced prime radical of a Γ -ring M by defining m -system in a manner
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analogous to that of McCoy [10]. Kyuno is also obtained some results on prime ideal, semiprime

ideal and prime radical of a Γ -ring M [6].

The source of semi-primeness of a ring R which is denoted by SR was firstly defined by

Aydın et al. in 2018 as the set of all elements a of R satisfying aRa � �0� [1]. They proved some of

basic properties of the set SR . Aydın et al. also defined other new notions which are SSRS -strongly

reduced ring, SSRS -domain and SSRS -field and obtained their relations with each other.

Our main interest is to define the source of semi-primeness SM�A� for any subset A of a

Γ -ring M and to introduce some new notions such as SSM S -strongly reduced ring, SSM S -integral

domain and SSM S -field to understand the algebraic structure of the Γ -ring M .

2. Preliminaries

Let M and Γ be two additive Abelian groups. M is said to be a Γ -ring (in the sense of Barnes) if

there exists ternary multiplication M � Γ �M �M satisfying below conditions for all a, b, c >M ,

α,β > Γ :

(1) �a � b�αc � aαc � bαc,
a�α � β�c � aαc � aβc,
aα �b � c� � aαb � aαc,

(2) �aαb�βc � aα �bβc�.

Let M be a Γ -ring. If there exist δ > Γ and e > M such that aδe � eδa � a for any a > M ,

then a pair �δ, e� is called strong unity of the Γ -ring M [9]. A subset N of the Γ -ring M is said

to be a subring if N is a subgroup of M and nαn� > N for all n,n� > N and α > Γ . A subgroup

U of M is called left ideal (resp. right ideal) if MΓU b U (resp. UΓM b U ). If U is both left

and right ideal, then U is called an ideal of M . An ideal P of the Γ -ring M is said to be prime

if AΓB b P implies A b P or B b P for any ideals A and B of M [2]. An ideal Q of M is said

to be semi-prime if AΓA b P implies A b P for any ideal A of M [6]. A Γ -ring M is said to be

prime (resp. semi-prime) if the zero ideal is prime (resp. semi-prime) [9].

A nonzero element a in M is called zero divisor if there are nonzero elements b, c >M and

β, γ > Γ such that aβb � 0 � cγa . An element x of a Γ -ring M is called strongly nilpotent if

there exists a positive integer n such that �xΓ�nx � �xΓxΓ . . . xΓ�x � �0� [8]. The smallest such

n is called the index of x . A Γ -ring M with no nonzero strongly nilpotent elements is called a

strongly reduced Γ -ring. A Γ -ring M is said to be a division Γ -ring if it has a strong unity �δ, e�
and for each nonzero element a of M there exists b of M such that aδb � bδa � e . The prime

radical of a Γ -ring M is the intersection of all prime ideals of M [9]. If there exists a positive

integer n such that nx � 0 for all x > M , then the smallest such positive integer is called the
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characteristic of M and denoted by charM . If there is no such positive integer, then M is said

to be characteristic zero. Let M1 be a Γ1 -ring and M2 be a Γ2 -ring. An ordered pair �θ,φ�
is called homomorphism if φ � M1 Ð� M2 is a group homomorphism, θ � Γ1 Ð� Γ2 is a group

homomorphism and φ�aαb� � φ�a�θ �α�φ�b� for all a, b > M and α > Γ [9]. A subset A of a

Γ -ring M is called semi-group ideal if aαm,mαa > A for all a > A , α > Γ and m >M .

In this study, we introduced the notion of source of semi-primeness SM�A� as the set of all

elements m of M that satisfy mΓAΓm � �0� for any subset A of a Γ -ring M and prove some of

its set theoretical properties. For instance, we show that SM�A� is a semi-group ideal of M and

a condition is obtained for SM�A� to be an ideal of M . Also, the definitions of SSM S -strongly

reduced Γ -ring, SSM S -domain and SSM S -division Γ -ring are given and obtained some results about

their relations. We determine all possible characteristic values of a SSM S -domain and prove every

finite SSM S -domain Γ -ring M is a SSM S -division Γ -ring.

3. Main Results
Definition 3.1 Let A be a subset of a Γ-ring M . We define the source of semi-primeness of A

as the set SM �A� � �m >M S mΓAΓm � �0�� . We write SM instead of SM �M� , when A �M .

From the definition of source of semi-primeness it is clear that SA � SM �A� 9 A and

SM �B� b SM �A� for any A b B . One can easily show that the source of semiprimeness of

a Γ -ring M is equal to zero if and only if M is a semi-prime Γ -ring. Another observation

about the source of semiprimeness of a Γ -ring M is that if SM � M , then the Jordan product

�m,n�αm�β �� mαm�βn � nαm�βm for any elements m,m�, n > M with α,β > Γ is equal to zero.

Conversely, if the Jordan product for any elements m,m�, n > M with α,β > Γ is equal to zero,

then SM may not be equal to M . Indeed, if M � ��2a b� Ta, b > Z18� and Γ � �� 0
3x

	 Sx > Z18� ,

then the equation �m,n�αm�β � 0 holds for all m,m�, n > M and α,β > Γ . But, it can be shown

that SM is not equal to M . However, if one assume that the Γ -ring M being 2-torsion free, then

converse of the proposition is true. It is also clear that every element in SM is nilpotent of index

at most 3.
We now give the other set-theoretical properties of the source of semi-primeness of a subset

for a Γ -ring M .

Proposition 3.2 Let M1 and M2 be two Γ-rings. If A and B are nonempty subsets of M1 and

M2 , respectively, then SM1�M2 �A �B� � SM1 �A� � SM2 �B� .

Proof If M1 and M2 are two Γ -rings, then M1�M2 is a Γ�Γ -ring with the ternary multiplication

�a, b� �α,β� �c, d� � �aαc, bβd� .
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Let �a, b� > SM1�M2 �A �B� . Then, �a, b� �α,β� �x, y� �γ, θ� �a, b� � �0,0� for all �x, y� > A � B

and �α,β� , �γ, θ� > Γ � Γ . Therefore, we get aαxγa � 0 and bβyθb � 0 for all x > A , y > B ,

α,β, γ, θ > Γ , a >M1 and b >M2 . Hence, �a, b� > SM1 �A��SM2 �B� . Similarly, one can show that

SM1 �A� � SM2 �B� b SM1�M2 �A �B� . Thus, the equality is obtained. j

Proposition 3.3 Let M be a Γ-ring and A be an ideal of M . Then, the followings hold:

(i) The source of semi-primeness of A is a semi-group ideal of M . In particular, it is a

multiplicatively closed subset of M .

(ii) If SM �A�ΓSM �A� � �0� , then SM �A� is an ideal of M .

Proof (i) Let m > SM �A� , α > Γ and x > M . Then, �xαm�ΓAΓ �xαm� � �0� since

mΓAΓm � �0� . It follows that xαm > SM �A� . Similarly, we have mαx > SM �A� . Therefore,

SM �A� is a semi-group ideal of M . The last part of the proposition is obvious.

(ii) Let SM �A�ΓSM �A� � �0� . It is enough to show that SM �A� is additively closed. Let

x, y > SM �A� . Then,

�x � y�ΓAΓ �x � y� � xΓAΓx � xΓAΓy � yΓAΓx � yΓAΓy b xΓAΓy � yΓAΓx.

Since SM �A� is a semi-group ideal, we have AΓx b SM �A� and xΓA b SM �A� . Therefore,

xΓAΓy � yΓAΓx � �0� . Thus, x � y > SM �A� , that is, SM �A� is an ideal of M . j

Proposition 3.4 If Q is a semi-prime ideal of a Γ-ring M , then SM b Q . Moreover, SM is

contained in the prime radical of M .

Proof Let a > SM . Since Q is semi-prime and aΓMΓa � �0� b Q , we have a > Q . Therefore,

SM b Q . This also shows that SM is contained in the prime radical of M . j

Theorem 3.5 Let M1 be a Γ1 -ring and M2 be a Γ2 -ring. If the ordered pair �θ,φ� is a gamma

ring homomorphism, then φ �SM1� is contained in Sφ�M1� . Moreover, if φ is injective, then

φ �SM1� � Sφ�M1� .

Proof Since �θ,φ� is a gamma ring homomorphism, we have φ�M1� is a θ�Γ1�-ring with ternary

multiplication

φ�a�θ�α�φ�b� � φ�aαb�.
Therefore, the source of semi-primeness of φ �M1� is

�φ �a� > φ �M1� S φ�a�θ�Γ1�φ�M1�θ�Γ1�φ�a� � �0�� .
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Now, it is obvious that the set φ �SM1� is contained in Sφ�M1� . Conversely, let φ be injective

and φ�a� > Sφ�M1� . Then, we have φ�aΓ1M1Γ1a� � φ�0� . Hence, a > SM1 since φ is injective.

This shows that Sφ�M1� b φ �SM1� . j

Theorem 3.6 Let M be a Γ-ring and a > SM . If MΓa x �0� and aΓM x �0� , then a is a zero

divisor. Consequently, an element of M which is a not a zero divisor is contained in M � SM .

Proof By hypothesis, there exist b, c > M and α, γ > Γ such that aαb x 0 x cγa . Therefore, we

get a is a zero divisor since aαbδa � 0 � aεcγa , aαb x 0 and cγa x 0 . Now assume that b is not

a zero divisor of M . Hence, b > M � SM since bΓM x �0� x MΓb . Otherwise, b would be a zero

divisor. j

4. SSM S-strongly Reduced Γ-ring, SSM S-domain Γ-ring, SSM S-division Γ-ring

Definition 4.1 Let M be a Γ-ring and M x SM .

(1) M is said to be a SSM S-strongly reduced ring if there are no strongly nilpotent elements of

M � SM .

(2) M is said to be a SSM S-domain if there are no left or right zero divisors of M � SM . A

SSM S-domain M is called SSM S-integral domain if M is commutative with strong unity.

(3) M is said to be a SSM S-division ring if M has a strong unity and every element of M �SM

is unit. A SSM S-division ring M is called SSM S-field if M is commutative.

It is necessary to assume M x SM in the above definition. For instance, if M is the set of

all 2 � 3 matrices of the form �a 0 a

0 b 0
	 with a, b > 4Z16 and Γ is the set of all 3 � 2 matrices of

the form
<@@@@@>
x 0
0 x
x 0

=AAAAA?
with x > 4Z16 , then M is a Γ -ring with SM �M .

From the Definition 4.1, it is clear that if M is a strongly reduced Γ -ring (Γ -domain or Γ -

division ring), then M is a SSM S -strongly reduced ring ( SSM S -domain or SSM S -division ring). Also,

one can show that every SSM S -domain is a SSM S -strongly reduced ring. Conversely, SSM S -strongly

reduced rings are not a SSM S -domain in general. For example, if M � ��a 0 b
0 c 0

	 Sa, b, c > Z� and

Γ �

¢̈̈̈
¦̈̈̈
¤
<@@@@@>
0 0
0 x
x 0

=AAAAA?
Sx > Z� , then M is a SSM S -strongly reduced Γ -ring but not a SSM S -domain. Similarly,

a SSM S -division ring M may not be a SSM S -domain. Let M � ��a a� Sa > Zp� for any prime p
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and Γ � ��x
0
	 Sx > Z� . Then, one can show that M is a SSM S -division Γ -ring, but not a SSM S -

domain. Another observation on the Definition 4.1 is that if M1 is a SSM1 S -domain and M2 is

a SSM2 S -domain, then the direct product M1 � M2 is SSM1 � SM2 S -strongly reduced ring. It is

easy to show that the prime radical of a SSM S -strongly reduced Γ -ring M contains every strongly

nilpotent element. By the very nature of the gamma ring, every division gamma ring is not a

gamma domain. Similarly, every SSM S -division Γ -ring is not a SSM S -domain. For example, the

Γ � ��x
0
	 Sx > Z� -ring M � ��a a� Sa > Zp� is a SSM S -division Γ -ring that is not a SSM S -domain

for any prime p .

Proposition 4.2 Let M be a Γ-ring with M x SM and a >M . Then the followings are equivalent:

(i) M is a SSM S-strongly reduced ring.

(ii) If aΓa b SM , then a > SM .

(iii) If �aΓ�n a b SM for any positive integer n , then a > SM .

Proof (i)�(ii) Let M be a SSM S -strongly reduced ring and aΓa b SM . Therefore, we have

�aΓ�4a � �0� that is a is a strongly nilpotent element. Hence, a > SM since M is a SSM S -strongly

reduced ring.

(ii)�(iii) Let a >M and n be the smallest positive integer such that �aΓ�n a b SM . There

exists a positive integer k such that n B 2k B n� 1 . By Proposition 3.3, we have �aΓ�2k�1 a b SM ,

that is, �aΓ�k a b SM . If k � 1 , then a > SM by (ii). Assume that k A 1 . But, this contradicts

with n to be the smallest positive integer since k B n � k � 1 @ n . Hence, n cannot exceed 2.

(iii)�(i) Assume that a > M is a strongly nilpotent element. Then, there exists a positive

integer n such that �aΓ�na � �0� . By hypothesis, we get a > SM since �aΓ�n a b SM . Therefore,

there is no strongly nilpotent element in M � SM . So, M is a SSM S -strongly reduced ring. j

Corollary 4.3 If M is a SSM S-strongly reduced Γ-ring, then SM � �a >M U�aΓ�2 a � �0�� .

Proof Let T � �a >M U�aΓ�2 a � �0�� and a > SM . Then, clearly a > T . Conversely, assume

that a > T . Then, we have �aΓ�2 a � �0� , that is, a is a strongly nilpotent element. It follows that

a > SM since M is a SSM S -strongly reduced Γ -ring. Consequently, we get SM � T . j

Proposition 4.4 Let M be a Γ-ring. If M is a SSM S-domain, then SM �A� � SM for any nonzero

Γ-subring A of M . Besides, A is a SSAS-domain.
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Proof From the definition of source of semi-primeness, it is clear that SM b SM�A� . Assume

that there exists an element m > SM�A� such that m ¶ SM . Then, we get mΓA � �0� � AΓm since

mΓAΓm � �0� and M is a SSM S -domain. This implies A � �0� , which is a contradiction. Hence,

SM �A� � SM . Now, let a > A be a zero-divisor. Therefore, a > SM since M is a SSM S -domain.

This implies a > SM�A� 9A � SA . It follows that A is a SSAS -domain. j

We should note that SM �A� � SA may not be provided even if M is a SSM S -domain Γ -ring.

For the Γ �

¢̈̈̈
¦̈̈̈
¤
<@@@@@>
x 0
0 x
x 0

=AAAAA?
Sx > Z� -ring M � ��a 0 b

0 c 0
	 Sa, b, c > Z� , one can show that the M is a

SSM S -domain and SM �A� x SA for the subset A � ��a 0 b
0 0 0

	 Sa, b > Z� of M .

Proposition 4.4 is not true for a SSM S -strongly reduced Γ -ring M in general. For example,

let M � ��a 0 c
0 b 0

	 Sa, b, c > Z� and Γ �

¢̈̈̈
¦̈̈̈
¤
<@@@@@>
x 0
0 x
0 0

=AAAAA?
Sx > Z� . Then, M is SSM S -strongly reduced

Γ -ring since there is no strongly nilpotent element in the set

M � SM � ��a 0 c
0 b 0

	 Sa, b, c > Z, a x 0 or b x 0� .

For the Γ -subring A � ��a 0 c
0 0 0

	 Sa, c > Z� of M , we have SM�A� � ��0 0 c
0 b 0

	 Sb, c > Z� .

Therefore, it is clear that SM�A� x SM .

Proposition 4.5 If M is a SSM S-strongly reduced Γ-ring and A is a non-zero Γ-subring of M ,

then A is a SSAS-strongly reduced Γ-ring.

Proof Let M be a SSM S -strongly reduced Γ -ring and A be a nonzero Γ -subring of M . If

a > A is a strongly nilpotent element, then a > SM by hypothesis. This implies that a > SA since

SM b SM�A� . Hence, A is a SSAS -strongly reduced Γ -ring. j

Lemma 4.6 If M is a SSM S-domain Γ-ring, then M � SM is a multiplicative set.

Proof Let M be a SSM S -domain Γ -ring. Assume that aαb is a zero-divisor for a, b > M � SM

and α > Γ . Then, there exist nonzero elements c > M � SM and γ > Γ such that �aαb�γc � 0 .

Hence, a or b must be zero-divisors which contradicts with our hypothesis. This implies aαb is

not a zero divisor, that is, aαb >M � SM by Theorem 3.6. Therefore, M � SM is a multiplicative

set. j

Theorem 4.7 Every finite SSM S-domain Γ-ring M is a SSM S-division ring.
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Proof Assume that M is a SSM S -domain Γ -ring. Let T �M � SM � �a1, . . . , an� and a be any

element of T . Since T is a multiplicative set by Lemma 4.6 and a is not a left (or right) zero

divisor, we define injective maps on T such that f�x� � aγx and g�x� � xγa for all x > T . Then,

finite cardinality requires the maps to be surjective. Therefore, there exist 1 B i B n and 1 B j B n

such that aγai � a � ajγa . Since aγaiγa � aγa � aγajγa , we get ai � aj and so aγai � a � aiγa .

By the same argument, we have an element a�i > T such that bγa�i � b � a�iγb for b > T . Accordingly,

one has

�aγb�γa�i � aγb � aiγ �aγb�
and since aγb > T , it follows that a�i � ai . Set e � ai and δ � γ . Then, �δ, e� is a strong unity of

the semigroup T and clearly eδe � e .

For an arbitrary element x of M , we either have x > SM or x > T . If x > T , then we already

have that xδe � eδx � x . Let x > SM . Assuming e � eδx > SM implies that e � 0 . But, it is a

contradiction because e > T . Thus, e � eδx > T and similarly we have e � xδe > T . Then,

�e � eδx� δe � e � eδx and eδ �e � xδe� � e � xδe

yields us that eδx � xδe . Therefore, we have xδe � x � eδx since e is not a zero-divisor.

Consequently, �δ, e� is a strong unity of Γ -ring M . Moreover, considering the maps f and

g , there exist x, y > T such that aδx � e � yδa . This shows that a is a unit in M . Hence, M is a

SSM S -division ring. j

Corollary 4.8 If M is a finite SSM S-integral domain, then it is SSM S-field.

Theorem 4.9 Let M be a Γ-ring with strong unity �δ, e� . If M is a SSM S-domain, then the

characteristic of M is either 0, or p for a prime p , or p2 for a prime p .

Proof Assume that charM � n A 1 and p is a prime dividing n . Then, there exists an integer

k such that n � pk . Hence, 0 � ne � �pe� δ �ke� . This implies that pe is a zero-divisor, that is,

pe > SM . Therefore, we have �pe� δmδ �pe� � 0 for all m > M . It follows that p2m � 0 for all

m >M . Accordingly, we get n � p or n � p2 since charM � n . j

Theorem 4.10 Let M be a Γ-ring with strong unity �δ, e� . If M is a SSM S-strongly reduced

ring, then the characteristic of M is a cube-free integer, that is, there is no prime p such that p3

divides charM .

Proof Assume that charM � n A 1 and p is a prime dividing n , say n � ptk for some t C 1 and
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1 B k @ n with gcd �p, k� � 1 . Since

�pke�t � ptkte � kt�1 �ne� � 0 �pke > SM

� �pke� δmδ �pke� � 0,¦m >M �p2k2m � 0,¦m >M

and charM � n , there exits s > Z such that ptks � p2k2 . If t were greater than or equal to 3 , then

we get p Sk . But, this contradicts with gcd �p, k� � 1 . Hence, n must be a cube-free integer. j
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