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ABSTRACT Adaptive oscillators can learn and encode information in dynamic, plastic states. The pendulum
has recently been proposed as the base oscillator of an adaptive system. In a mechanical setup, the
horizontally forced pendulum adaptive frequency oscillator seeks a resonance condition by modifying the
length of the pendulum’s rod. This system stores the external forcing frequency when the external amplitude is
small, while it can store the resonance frequency, which is affected by the nonlinearity of the pendulum, when
the external amplitude is large. Furthermore, for some frequency ranges, the pendulum adaptive frequency
oscillator can exhibit chaotic motion when the amplitudes are large. This adaptive oscillator could be used as
a smart vibratory energy harvester device, but this chaotic region could degrade its performance by using
supplementary energy to modify the rod length. The pendulum adaptive frequency oscillator’s equations
of motions are discussed, and a field-programmable analog array is used as an experimental realization of
this system as an electronic circuit. Bifurcation diagrams are shown for both the numerical simulations and
experiments, while period-3 motion is shown for the numerical simulations. As little work has been done on
the stability of adaptive oscillators, the authors believe that this work is the first demonstration of chaos in an
adaptive oscillator.
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INTRODUCTION

Adaptive oscillators were inspired by the synchronization of net-
works of neurons (Kempter et al. 1999). Dynamic Hebbian learning
has been employed to encode the frequency in a plastic state of
adaptive oscillators (Righetti et al. 2006). These plastic states are
dynamic states, and the DC offset values of these plastic states
correspond to information learned from an external signal. For
instance, an adaptive frequency oscillator is composed of a base
oscillator and a plastic frequency state, which can learn and store
an external forcing frequency. Adaptive oscillators have been pro-
posed as analog frequency analyzers (Buchli et al. 2008; Corron
2022) and controllers for robotic gait (Righetti et al. 2009). There
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are relatively few experimental results for adaptive oscillators, but
a 4-state adaptive Hopf oscillator was implemented as an analog
circuit (Li et al. 2021a) and a 3-state adaptive oscillator was im-
plemented as a digital circuit (Maleki et al. 2015). The effects of
noise on adaptive oscillators was studied with the full Fokker-
Planck equation with comparisons to a physical experiment (Li
et al. 2021b) and with a simplified Fokker-Planck equation (Buchli
et al. 2008).

The learning tasks for adaptive oscillators are embedded in the
plastic dynamic states of the system. However, oscillators are capa-
ble of other types of computation as well, even without adaptive
states. For instance, the classical, non-adaptive Hopf oscillator
can be realized as a powerful, reconfigurable reservoir computer
(Shougat et al. 2021b, 2022). In this reservoir computing architec-
ture, the physics of the oscillator are utilized as a computational
resource through machine learning. Interestingly, reservoir com-
puters can exhibit chaotic behavior as well, such as topological
mixing that was observed in the Duffing array reservoir computer
(Shougat et al. 2021a).
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Adaptive frequency oscillators are similar to Kuramoto phase
oscillators (Acebrón et al. 2005; Xu and Jin 2012; Makarov et al. 2016;
Dénes et al. 2021, 2019) and phase-locked loops (PLLs) (Métivier
et al. 2020; Dürig et al. 1997; Kuznetsov et al. 2017) since they are
capable of learning an external forcing frequency. However, in
the literature, adaptive oscillators are usually constructed from a
nonlinear oscillator by including the addition of dynamic, plastic
states. Although chaos has been exhibited by Kuramoto arrays
(Bick et al. 2018) and PLLs (Olson et al. 2011; Banerjee et al. 2014;
Paul and Banerjee 2019; Chakraborty et al. 2016; Zhao et al. 2009;
Harb and Harb 2004; Piqueira 2017) chaos has not been explored
in adaptive oscillators to the authors’ knowledge.

The forced single pendulum (d’Humieres et al. 1982; Xu et al.
2005; Bishop et al. 2005) and the unforced double pendulum were
two of the prototypical systems that can exhibit chaos (Shinbrot
et al. 1992; Levien and Tan 1993; Stachowiak and Okada 2006).
Chaos synchronization between a controlled pendulum and Duff-
ing oscillator was studied analytically (Luo and Min 2011). The en-
ergy localization phenomenon and stability for an array of coupled
pendulums was investigated under different forcing conditions
(Jallouli et al. 2017). Similar to the present work, the complete
bifurcation characteristics of a rotating pendulum under nonlin-
ear perturbation was found (Han and Cao 2016). A numerical
investigation of an inverted pendulum on varying the base forcing
amplitude displays the transition to chaos via an infinite sequence
of period-doubling bifurcations (Kim and Hu 1998).

The extensible pendulum, where the pendulum’s rod is mod-
eled as an extensible spring, can also exhibit chaos (Nunez-Yepez
et al. 1990). The bifurcation diagram was found for a mechanical,
forced pendulum experiment (de Paula et al. 2006) and a forced
torsional pendulum (Miao et al. 2014). An array of coupled non-
linear pendulum oscillators was studied to determine the effect of
damping, the size of the ensemble, and the local coupling strength
on its chaotic response (Munyaev et al. 2021). Since the pendulum
is a relatively simple system that exhibits chaos, it has been used
to test chaotic controllers (Pereira-Pinto et al. 2004; Wang and Jing
2004).

Of relevance to the current paper, the authors proposed a
mechanical pendulum adaptive frequency oscillator, whose rod
length is a dynamic state (Li et al. 2022). Instead of the adaptive fre-
quency state learning the external forcing frequency, it was found
that this type of adaptive oscillator instead learns a resonance con-
dition, which maximizes the displacement of the amplitude of the
pendulum. This resonance-tracking quality could make it an excel-
lent candidate as a vibratory energy harvester. Importantly, it was
observed that the pendulum adaptive frequency oscillator can ex-
hibit chaotic motion, but the mechanical system could not explore
the range of values causing this behavior. In this current paper,
the pendulum adaptive frequency oscillator was implemented on
a field-programmable analog array circuit, which is capable of
operating at a range of parameters that exhibit chaos.

Circuit implementations of chaotic systems are widely used,
such as realizations of a three-state chaotic flow (Pham et al. 2019), a
jerk oscillator (Harrison et al. 2022; Rhea et al. 2020; Nana et al. 2009),
a nonlinear feedback control input-introduced memristor chaotic
oscillator (Lai et al. 2020), a novel autonomous four-dimensional
hyperjerk system with hyperbolic sine nonlinearity (Leutcho et al.
2018), a fractional-order-based chaos system (Ouannas et al. 2017),
a three-state chaotic system with applications to robotic naviga-
tion (Nwachioma and Pérez-Cruz 2021), and a snap system with
adjustable symmetry and nonlinearity (Leutcho and Kengne 2018).

Although most papers report either simulated or experimental
bifurcation diagrams, some work has compared simulated bifur-
cation diagrams with experimental bifurcation diagrams directly,
such as a circuit implementation of the Rössler system (Ricco et al.
2016), an analog system realization of a time-delay chaotic oscilla-
tor (Biswas and Banerjee 2016), a Chua’s circuit (Viana Jr et al. 2010),
and a physical circuit realization of a four-dimensional chaotic
system (Jahanshahi et al. 2021). In the current paper, both the
bifurcation diagrams from numerical simulations and from the
experiments are compared. For the experimental work, the pen-
dulum adaptive frequency oscillator equations are implemented
as an electronic circuit by utilizing a field-programmable analog
array. The authors believe that this is the first time that chaos has
been demonstrated in an adaptive oscillator and that this is the
first circuit implementation of this pendulum adaptive frequency
oscillator.

EQUATION OF MOTION OF HORIZONTALLY FORCED PEN-
DULUM ADAPTIVE FREQUENCY OSCILLATOR

■ Table 1 List of parameters and states.

Symbol Description

a Forcing amplitude

kω Coupling in ω state

c Damping

l Pendulum length

m Mass

g Acceleration due to gravity

Ω External sinusoidal forcing frequency

θ Angular position of pendulum

θ̇ Angular velocity of pendulum

x(t) Angular position in state space

y(t) Angular velocity in state space

ω(t) Adaptive frequency

In Fig. 1, the horizontally forced pendulum is depicted. In this
pendulum, it is assumed that the rod is inelastic, and the horizontal
forcing kinematically moves the pivot point. For reference, the
constants and states are listed in Table 1. By using Lagrange’s equa-
tions and assuming a Rayleigh dissipation of the form 1

2 cml2 θ̇2,
the governing equation can be written as follows:

ml2 θ̈ + cml2 θ̇ + mgl sin (θ) = l cos (θ) f (t) (1)

After dividing both sides of the equation by ml2, eq. (1) be-
comes:

θ̈ + cθ̇ + ω2
n sin (θ) =

1
ml

cos (θ) f (t) (2)
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Figure 1 Pendulum with horizontal forcing, which kinematically
moves the pivot point.

Converting eq. (2) into state space with x = θ and y = θ̇, the
following set of ordinary differential equations may be written:

ẋ(t) = y(t)

ẏ(t) = −cy(t)− ω2
n sin

(
x(t)

)
+ 1

ml cos
(

x(t)
)

f (t)
(3)

Setting f (t) = â sin
(
Ωt

)
with â = aml, eq. (3) can be written

as:

ẋ(t) = y(t)

ẏ(t) = −cy(t)− ω2
n sin

(
x(t)

)
+ a cos

(
x(t)

)
sin

(
Ωt

) (4)

Here, a is the amplitude of the sinusoidal forcing. Using these
pendulum equations as a base oscillator, a pendulum adaptive fre-
quency oscillator can be constructed by adding a plastic, dynamic
state that can learn the external forcing frequency:

ẋ(t) = y(t)

ẏ(t) = −cy(t)− ω2(t) sin
(

x(t)
)
+ a cos

(
x(t)

)
sin

(
Ωt

)
ω̇(t) =

−kω x(t)a sin
(

Ωt
)

√
x2(t)+y2(t)

(5)

The ω̇ equation is responsible for learning and storing the external
frequency in the ω state. The right-hand side of this equation is a
mixture of two time-varying signals, x(t) and a sin (Ωt). When the
system is not undergoing chaotic motion, x(t) becomes entrained
to the external sinusoid, which causes the ω state to converge to
Ω. The right-hand side of this equation is also normalized by the
amplitude of the cyclic motion of the pendulum,

√
x2(t) + y2(t).

kω is the coupling strength in this third state.
It should also be noted that the damped pendulum (eq. (4))

does not have an analytical solution (Gitterman 2010). By exten-
sion, it is very unlikely that the damped adaptive pendulum (eq.
(5)) would have an analytical solution either. For this reason, nu-
merical simulations and experiments are used to exhibit chaos in
this adaptive oscillator.

When eq. (5) is in a regime in which it correctly learns the exter-
nal forcing frequency, a local stability analysis can be constructed.
For this analysis, the external sinusoid can be replaced with an
additional oscillator to convert eq. (5) into an autonomous sys-
tem (Perkins 2019). When this additional oscillator undergoes a

supercritical Andronov-Hopf bifurcation, it resonates with a fre-
quency of Ω Perkins and Fitzgerald (2018). The set of autonomous
equations can be written as:

ẋ(t) = y(t)

ẏ(t) = −cy(t)− ω2(t) sin
(

x(t)
)
+ a cos

(
x(t)

)
u

ω̇(t) = −kω x(t)au√
x2(t)+y2(t)

u̇ = u + Ωv − u(u2 − v2)

v̇ = v − Ωu − v(u2 − v2)

(6)

Here, the last two equations represent the additional oscillator. The
Jacobian, J, for eq. (6) may be written as:

J =



0 j1 0 0 0

j2 j3 j4 j5 0

j6 j7 0 j8 0

0 0 0 j9 j10

0 0 0 j11 j12


(7)

The elements for this Jacobian are: j1 = 1, j2 = −ω2 cos (x)−
au sin (x), j3 = −c, j4 = −2ω sin (x), j5 = a cos (x), j6 =

akω ux2

(x2+y2)
3
2
− akω u

(x2+y2)
1
2

, j7 =
akωuxy

(x2+y2)
3
2

, j8 = −akω x
(x2+y2)

3
2

, j9 = 1 − 3u2 −

v2, j10 = −2uv + Ω, j11 = −2uv − Ω, and j12 = 1 − u2 − 3v2. For
the fixed point (x, y, u, v) = (2π, 0, 0, 0), the eigenvalues for the

Jacobian are 1 ± iΩ, −c±
√

c2−4ω2

2 , and 0. The first conjugate pair,
1 ± iΩ, corresponds to the additional oscillator, which oscillates at
a frequency of Ω.

The second conjugate pair is −c±
√

c2−4ω2

2 . Noting that eq. (4) is
a pendulum with an effective mass equal to 1, we may rewrite this
conjugate pair of eigenvalues as −ζωn ± iωn

√
1 − ζ2. Here, ζ is

the damping factor and ωn is the linear natural frequency of the
pendulum. Thus, the second conjugate pair of eigenvalues corre-
sponds to the damped pendulum, which oscillates at the damped
natural frequency, ωd = ωn

√
1 − ζ2. The last eigenvalue, 0, cor-

responds to the ω state. This state is neither stable nor unstable,
which allows it to deform to the external forcing frequency.

SIMULATION RESULTS

For most values of the forcing frequency, Ω, the pendulum adap-
tive frequency oscillator behaves as expected: the frequency state
converges to the forcing frequency. This behavior is depicted in
Fig. 2. For this figure and for the subsequent bifurcation diagrams,
a quasi-static frequency sweep was performed, for both the nu-
merical simulations and the experiments. In Figs. 2 and 3, ode45
in MATLAB was used to simulate eq. (5) for 400 periods of the
forcing function, sin

(
Ωt

)
. Only the last 100 cycles were used to

create Figs. 2 and 3, to avoid any transient behavior. Poincaré sec-
tions were taken of the pendulum’s dynamics, using the external
sinusoid as the clock with frequency Ω.
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Figure 2 Poincaré sections of the states of the horizontally forced
pendulum adaptive frequency oscillator for Ω ranging from 1.6
rad/s to 2.2 rad/s. Here, a = 0.1, c = 0.35, and kω = 0.707. The
green dashed line represents the line ω = Ω. For this combina-
tion of parameters, the pendulum adaptive frequency oscillator
correctly learns the external forcing frequency. This figure can be
compared with the chaotic bifurcation diagram that is shown in
Fig. 3.

In Fig. 2, the pendulum adaptive frequency oscillator’s Poincaré
sections show that the ω state has properly learned the external
forcing frequency, Ω. Since the x and y states are periodic with the
same frequency as the external sinusoid, their Poincaré sections
appear stationary with respect to this clock.

Repeating this same procedure that was used for Fig. 2, the
bifurcation diagram is constructed, which is depicted in Fig. 3. For
this set of parameters, the pendulum adaptive frequency oscillator
does not properly learn the external forcing frequency. Instead, the
system has a chaotic response.

Other combinations of parameters can also result in a chaotic
response. Two other bifurcation diagrams are shown in Figs. 4
and 5. In these bifurcation diagrams, the kω (Fig. 4) and c (Fig. 5)
parameters were varied to highlight that the pendulum adaptive
frequency oscillator may also experience chaotic motion.

In general, these bifurcation diagrams provide some insights
into a working range for the parameters of the pendulum adaptive
frequency oscillator. The forcing amplitude, a, and the coupling
term, kω , should be relatively small. A higher value of the damp-
ing, c, hinders the chaotic motion for the parameters considered
here. Further, this adaptive oscillator works better when the forc-
ing frequency, Ω, is relatively large. When the pendulum adaptive
frequency oscillator is tasked with learning a low frequency re-
sponse with a large amplitude, it can result in a chaotic response.

For some parameter combinations, period-3 motion may be
observed, which shows that this system is indeed chaotic (Li and
Yorke 2004). In Fig. 6, period-3 motion may be seen in the time
history. The three dimensional trajectory of the system is shown
for comparison.

Figure 3 Bifurcation diagram using the Poincaré sections of
the states of the horizontally forced pendulum adaptive fre-
quency oscillator for Ω ranging from 1.6 rad/s to 2.2 rad/s. Here,
a = 1.8, c = 0.35, and kω = 0.707. The green dashed line rep-
resents the line ω = Ω. Instead of learning the external forcing
frequency, the bifurcation diagram exhibits chaotic behavior.
This figure can be compared with the non-chaotic bifurcation
diagram that is shown in Fig. 2.

Figure 4 Bifurcation diagram using the Poincaré sections of the
states of the horizontally forced pendulum adaptive frequency
oscillator for kω ranging from 1.5 to 1.8. Here, a = 1.8, c = 0.35,
and Ω = 2.2 rad/s. Some of these values of kω can result in
chaotic motion.

For other parameters, strange attractors may be observed. One
of these strange attractors is depicted in Fig. 7.
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Figure 5 Bifurcation diagram using the Poincaré sections of the
states of the horizontally forced pendulum adaptive frequency
oscillator for c ranging from 0.2 to 0.5. Here, a = 1.8, kω =
0.707, and Ω = 2.2 rad/s. Some of these values of c can result in
chaotic motion.

Figure 6 For Ω = 2.12 rad/s, the response of the ω state has
period-3 motion. Here, a = 1.8, c = 0.35, and kω = 0.707. In
the top plot, the Poincaré sections are shown for a portion of the
time history. The vertical green dashed lines depict the clock’s
sampling rate for the stroboscope, and the * is the value of the
ω state at these times. In the bottom plot, the three dimensional
trajectory of the system is shown.

Figure 7 For Ω = 1.67, a strange attractor is shown. For this
simulation, a = 1.8, c = 0.35, and kω = 0.707.

FIELD-PROGRAMMABLE ANALOG ARRAY CIRCUIT

The pendulum adaptive frequency oscillator was implemented as a
field-programmable analog array circuit. Field-programmable ana-
log arrays (FPAAs) are dynamically programmable analog signal
processing devices that use switched-capacitor technology (Ku-
tuk and Kang 1996). FPAAs contains configurable analog blocks
(CABs), which create analog operations. Each math operation is
further achieved by configurable analog modules (CAMs). By
using FPAAs, the design of nonlinear systems are significantly
reduced, as the technology is highly reconfigurable (Kilic and
Dalkiran 2009).

Several FPAA implementations of nonlinear dynamical system
have been widely studied, which include the implementation of
the Lorenz system (Tlelo-Cuautle et al. 2020), a cellular network-
based Lorenz-like system (Günay and Altun 2018), the Sprott N
chaotic oscillator (Li et al. 2018; Çiçek 2019), the Nahrain chaotic
map (Abdullah and Abdullah 2019), a fractional-order chaotic sys-
tem (Silva-Juárez et al. 2020), a chaotic oscillator (Dalkiran and
Sprott 2016), and the Hindmarsh–Rose Neuron model (Dahasert
et al. 2012). As compared with printed circuit boards, FPAAs can
accomplish faster prototyping, without using large amounts of
operational amplifiers and analog multipliers. The nonlinear func-
tions, such as the sinusoids and square root operation in eq. (5),
can be approximated as a user-defined voltage transfer function
with CAMs. Utilizing the modular design of FPAAs, this pendu-
lum frequency adaptive oscillator is implemented as a physical
experiment.

However, the FPAA’s input and output must be in a range
between ±3 volts. This necessitates that the response amplitude
must be rescaled. Based on the numerical time response results
shown in Fig. 3, only the y state significantly exceeds the maxi-
mum voltage range of the FPAA. It should also be noted that the
FPAA experiment runs at 1000 times faster than the numerical
simulations, due to the RC time constant of the FPAA. Thus, new
states are introduced such that x = X, y = 2Y, and ω = 1000W.
Using these relationships, eq. (5) is modified for use on the FPAA
as follows:
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Ẋ(t) = 2Y(t)

Ẏ(t) = −cY(t)− 1
2

(
W2(t) sin X(t)− a cos

(
X(t)

)
sin (Ωt)

)
Ẇ(t) = −kω X(t)a sin (Ωt)

1000
√

X2(t)+4Y2(t)
(8)

Figure 8 FPAA circuit schematic of pendulum adaptive fre-
quency oscillator. An external forcing signal was sent to the
FPAA via differential input IO3 of FPAA3.

An Anadigm Quad Apex v2.0 FPAA development board with
4 AN231E04 chips was used. The AnadigmDesigner2 simulator
developed by Anadigm was used for FPAA hardware routing and
design. All the external stimuli for the experimental results were
generated in MATLAB, and they were then input to the FPAA
through the differential IO cell using a National Instruments (NI)
cDAQ-9174. Similarly, all the outputs of the FPAA are collected by
the NI unit.

EXPERIMENTAL RESULTS

In this section, results from the FPAA pendulum adaptive fre-
quency oscillator prototype are shown. For Figs. 9 and 10, the
same procedure was used that was described for Figs. 2 and 3. A
frequency sweep was performed on the FPAA analog circuit, and
only the last 100 cycles were used for the Poincaré section plots in
Figs. 9 and 10 to avoid any transient behavior.

In Fig. 9, the FPAA’s Poincaré sections show that the ω state
(where 1000 × W = ω) closely learned the external forcing fre-
quency, Ω. However, nonlinear features of the FPAA cause some
errors that were not seen in the numerical simulations. Since the x
and y states are periodic with the same frequency as the external
sinusoid, their Poincaré sections appear stationary with respect to
this clock.

Repeating this same procedure that was used for Fig. 9, the
bifurcation diagram is also constructed for the FPAA, which is
depicted in Fig. 10. For this set of parameters, the FPAA has a
chaotic response.

In the experimental FPAA prototype, strange attractors are also
present. One of these strange attractors is depicted in Fig. 11.

Figure 9 Poincaré sections of the states of the FPAA circuit for
Ω ranging from 1600 rad/s to 2200 rad/s. Note that the FPAA
runs at 1000 times faster than the simulations due to the RC time
constant, so the W state should be multiplied by 1000 to calculate
the learned frequency. Here, a = 0.1, c = 0.35, and kω = 0.707.
The green dashed line represents the line ω

1000 = Ω. For this com-
bination of parameters, the FPAA correctly learns the external
forcing frequency.

Figure 10 Bifurcation diagram using the Poincaré sections of
the states of the FPAA for Ω ranging from 1600 rad/s to 2200
rad/s. Note that the FPAA runs at 1000 times faster than the
simulations due to the RC time constant, so the W state should
be multiplied by 1000 to calculate the learned frequency. Here,
a = 1.8, c = 0.35, and kω = 0.707. The green dashed line repre-
sents the line ω

1000 = Ω. Instead of learning the external forcing
frequency, the bifurcation diagram exhibits chaotic behavior.
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Figure 11 For Ω = 1640, a strange attractor is shown. For this
experiment, a = 1.8, c = 0.35, and kω = 0.707.

Since the FPAA’s frequency is scaled by 1000 from the simula-
tions, the frequency for the strange attractor in Fig. 11 is compara-
ble to the attractor shown in Fig. 7. Period-5 motion is depicted in
Fig. 12 for the FPAA’s response.

Figure 12 For Ω = 1880 rad/s, the response of the W state has
period-5 motion. Here, a = 1.8, c = 0.35, and kω = 0.707. In
the top plot, the Poincaré sections are shown for a portion of the
time history. The vertical green dashed lines depict the clock’s
sampling rate for the stroboscope, and the * is the value of the
W state at these times. In the bottom plot, the three dimensional
trajectory of the system is shown.

CONCLUSIONS

Adaptive oscillators are a potentially useful subset of nonlinear
oscillators. However, they have not been thoroughly explored.
In this paper, the pendulum adaptive frequency oscillator was
studied. To the authors’ knowledge, this is the first circuit proto-
type of a pendulum adaptive frequency oscillator, and this is the
first time that chaos has been observed for an adaptive oscillator.
This pendulum adaptive frequency oscillator was studied through
numerical simulations and a field-programmable analog array ex-
periment. As there is interest in using a mechanical pendulum as
the base oscillator (Li et al. 2022), this FPAA prototype provides
a method of experimentally interrogating the dynamics of this
system without building multiple costly mechanical prototypes.

It was found that for some parameter combinations, the pen-
dulum adaptive frequency oscillator performed as expected in
learning the external forcing frequency. At other parameter com-
binations, the pendulum adaptive frequency oscillator behaved
chaotically. As the pendulum adaptive frequency oscillator has
been proposed as a vibratory energy harvester, it is important to
avoid this chaotic behavior, since the system would use energy to
adapt the rod length of the pendulum.

Bifurcation diagrams were constructed for both the numeri-
cal simulations and the experiment. It should be noted that the
bifurcation diagrams for the simulations and experiments were
very similar, although they are not identical. Since this is a chaotic
system, it is difficult to match the bifurcation diagrams of a model
with an experiment, as chaotic systems have sensitive dependence
on system parameters. In other words, it would be very difficult
to tune the experiment’s parameters to exactly match those used
in the model. Strange attractors for both the simulations and ex-
periment were also reported. Period-3 motion was found, which
implies that the system is indeed chaotic.
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Dahasert, N., İ. Öztürk, and R. Kiliç, 2012 Experimental realizations
of the hr neuron model with programmable hardware and syn-
chronization applications. Nonlinear Dynamics 70: 2343–2358.

Dalkiran, F. Y. and J. C. Sprott, 2016 Simple chaotic hyperjerk sys-
tem. International Journal of Bifurcation and Chaos 26: 1650189.

de Paula, A. S., M. A. Savi, and F. H. I. Pereira-Pinto, 2006 Chaos
and transient chaos in an experimental nonlinear pendulum.
Journal of sound and vibration 294: 585–595.

Dénes, K., B. Sándor, and Z. Néda, 2019 Pattern selection in a ring
of kuramoto oscillators. Communications in Nonlinear Science
and Numerical Simulation 78: 104868.

Dénes, K., B. Sándor, and Z. Néda, 2021 Synchronization patterns
in rings of time-delayed kuramoto oscillators. Communications
in Nonlinear Science and Numerical Simulation 93: 105505.

d’Humieres, D., M. Beasley, B. Huberman, and A. Libchaber, 1982
Chaotic states and routes to chaos in the forced pendulum. Phys-
ical Review A 26: 3483.

Dürig, U., H. Steinauer, and N. Blanc, 1997 Dynamic force mi-
croscopy by means of the phase-controlled oscillator method.
Journal of applied physics 82: 3641–3651.

Gitterman, M., 2010 The Chaotic Pendulum. World Scientific.
Günay, E. and K. Altun, 2018 Lorenz-like system design using cel-

lular neural networks. Turkish Journal of Electrical Engineering
& Computer Sciences 26: 1812–1819.

Han, N. and Q. Cao, 2016 Global bifurcations of a rotating pendu-
lum with irrational nonlinearity. Communications in Nonlinear
Science and Numerical Simulation 36: 431–445.

Harb, B. A. and A. M. Harb, 2004 Chaos and bifurcation in a third-
order phase locked loop. Chaos, Solitons & Fractals 19: 667–672.

Harrison, R. C., A. OLDAG, E. PERKİNS, et al., 2022 Experimental
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