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ABSTRACT In this paper, a new set of lorenz-like hyper-chaotic equation set is obtained using the anti-control
procedure. The chaoticity of the system is verified by MATLAB simulations using mathematical analysis
methods. A new OTA-C circuit is designed for the new equation set. In the difference term addition technique,
synchronizing the OTA-C circuit with a memristor rather than a resistor is proposed. Circuit design and
synchronization are performed in PSpice simulation. The fact that the transconductance of the OTA element
can be easily adjusted with a bias current provides the parameters that will make the proposed dynamic circuit
a chaotic oscillator. The advantage of the proposed synchronization method is that the memristor automatically
reaches the value that will provide the required weight of the differential term required for synchronization,
rather than the computational methods used to determine the weight.
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INTRODUCTION

Chaotic systems are nonlinear systems highly sensitive to initial
conditions. It is important to create new chaotic systems due
to their widespread use in secure communication, cryptography,
chemical reactions, etc. In 1963, the first chaotic attractor was found
by Lorenz (1963). Following that, Rössler (1976), Rabinovich and
Fabrikant (1979), and Chua et al. (1993b) generated new chaotic
equations. Many different methods have been used while produc-
ing new chaotic systems. Generating a new chaotic equation set
with the control parameter method is a widely used method Deng
et al. (2014); Zhou et al. (2008); Lü et al. (2002).

Chua’s chaotic circuit design with memristor pioneered the
work of chaotic circuit design. Later, in most studies, chaotic circuit
design was made using the operational amplifier (OPAMP) compo-
nent Fan et al. (2019); Sundarapandian and Pehlivan (2012); Pappu
et al. (2017); Pehlivan and Uyaroğlu (2010); Lai et al. (2017); Akgul
et al. (2016); Cao and Zhao (2021). Only a few studies on circuit im-
plementation of the chaotic system are based on OTA Karawanich
and Prommee (2022); Yildirim (2022). The advantage of OTA over
OPAMP component is its high output impedance, wide band gap,
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and transconductance gain which can be changed with bias cur-
rent. This provides an important advantage in chaotic circuits.
The chaotic circuit design with OTA presented in Karawanich and
Prommee (2022); Yildirim (2022) has been designed, but there is
no study on its synchronization. In this study, a simpler structure
is proposed by using only OTA, capacitor, and analog multiplier.

According to Carroll and Pecora (1995), Pecora and Carrol pro-
posed the concept of first chaos synchronization, which is the
foundation of chaotic secure communication. Following that, pas-
sive components such as resistors, inductors, and capacitors were
used Chua et al. (1993a); Yao et al. (2020); Zhang et al. (2020a); Xu
et al. (2019a); Yao et al. (2019). Synchronization studies are available
by using active components such as Deniz et al. (2018); Uyaroğlu
and Pehlivan (2010). Considering the important effect of the mem-
ristor in chaotic circuits, synchronization studies with memristor
have become widespread in recent years. The memristor has less
power consumption than other components because it is a passive
component. In addition, although the memristor is nonlinear, it
provides linear behavior in a certain frequency range. In this study,
because of the memristor’s properties, the OTA-C chaotic circuit is
synchronized with the memristor.

In the literature, there is a method of synchronizing memristors
by connecting them in anti-parallel. With this method, it is possi-
ble to change the receiver and transmitter, but since the structure
draws current from both the receiver and transmitter sub-circuits,
the original ordinary differential equation set could not be pre-
served on the transmitter side Gambuzza et al. (2015). Whereas,
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in most other methods, the original equations are preserved on
the transmitting side, while only different terms are involved on
the receiving side. There are articles that synchronize with dif-
ferent connection types besides anti-parallel connection, but the
same mathematical deformation is also present in them Zhang et al.
(2020b); Escudero et al. (2020); Wang et al. (2021); Xu et al. (2019b).

The method proposed in this study is based on the method of
adding the difference term Cuomo et al. (1993) which is already
found in the literature, to obtain this term over the memristor
rather than the resistor. Instead of finding this coefficient with an
optimization algorithm and producing this term with a suitable
resistor, the memristor element connected instead of the resistor,
both creates this coefficient and changes its value as long as there is
a synchronization error due to the error expression passing over it,
and reaches the value where error-free synchronization is provided
by itself. In this way, the coefficient is self-adjusted by the value
change of the memristor. The researcher eliminates the time cost
with this self-adaptation, and this coefficient, which can change
over time due to effects such as environmental noises and aging,
constantly brings itself to the required value.

OTA-C circuit is designed by using fewer components of the
proposed new chaotic equation. A new contribution has been
made to the literature by synchronizing the designed chaotic OTA-
C circuit with the memristor. In this study, the derivation and
analysis of the new set of chaotic equations are explained. De-
signing the OTA-C circuit of the new chaotic equation is given.
The synchronization of the designed circuit with the memristor is
given. Finally, the results of the study are evaluated.

A NEW SET OF CHAOTIC EQUATIONS AND ANALYSIS

A new chaotic equation is derived by applying the anti-control
procedure to the Lorenz equation. The Lorenz equation is shown
in the Equation 1. In the equation, ẋ, ẏ, ż are state variables, σ, p, β
are parameters.

ẋ = σ(y − x)
ẏ = x(p − z)− y
ż = xy − βz

(1)

The anti-control method is applied to the Lorenz equation.

ẋ = σ(y − x) + u = σ(y − x) + l1x + l2y + l3z
ẏ = x(p − z)− y
ż = xy − βz

(2)

Here, u = 11x + 12y + 13z is the linear feedback controller.
The Jacobian matrix of the Equation 2 evaluated at a random

point is given in 3.

J =


−σ + l1 σ + l2 l3

p −1 −x

y x −β

 (3)

l2, l3 do not contribute to the Lyapunov exponents of the system,
since they do not contribute to the eigenvalues.

Thus, parameters are chosen as l2 = 13 = 0. In this case,
the control parameter is u = 11x. The new Lorenz-like chaotic
equation is obtained in the Equation 4.

ẋ = σ(y − x) + l1x
ẏ = x(p − z)− y
ż = xy − βz

(4)

The new system is chaotic when parameter values σ = 10, p =
28, β = 8/3, l1 = 1. At initial conditions x(0) = 0.9, y(0) =
0.5, z(0) = 0.1, the attractors of the system are in Figure 1. As time
passes, the orbits around this created attractor scan the entire space,
never passing a point they passed. The chaotic state of the new
system is investigated by time series, frequency analysis, Jacobian
matrix, Lyapunov exponents, and bifurcation diagram analysis.

State variables are observed over time; state variables that ex-
hibit irrational behavior are referred to as chaotic. The time series
results of the system are given in Figure 2. Depending on its sen-
sitivity to different initial conditions and parameter values, it can
exhibit various behaviors such as equilibrium and periodicity.

The frequency spectrum of chaotic signals is continuous in a
wide range. The frequency spectrum of each state variable ob-
tained for the new chaotic system is given in Figure 3.

The jacobian matrix Equation 5 obtained from each equation in
the differential equation set is given.

J =


−σ + l1 σ + l2 l3

p −1 −x

y x −β

 (5)

The divergence value is obtained from the jacobian matrix
∇V = −σ + l1 − 1 − β = −38/3. Since it is ∇V < 0, the behavior
of the system is chaotic at the right initial conditions. Lyapunov
exponents are expressions of interactions and differences between
trajectories of phase space characteristics formed under close ini-
tial conditions. If the largest exponent is negative, the system
converges to a value over time and becomes independent of initial
conditions Özer and Akın (2005). If the largest exponent is posi-
tive, the distance between the orbits increases and the system is
sensitive to initial conditions, that is, chaotic. If there are multiple
positive Lyapunov exponents, the system is hyperchaotic Wolf
et al. (1985). The new system’s Lyapunov exponents are shown
in Figure 4. The Lyapunov exponents obtained with the param-
eters of the system selected as σ = 10, p = 28, β = 8/3, l1 = 1
are L1 = 8.38652, L2 = 0.632274, L3 = −21.6813. Since there are
two positive Lyapunov exponents, the new set of equations is
hyperchaotic.

By using Lyapunov Exponents, the Lyapunov dimension or
Kaplan-Yorke dimension can be calculated as in Equation 6, Grass-
berger and Procaccia (1983).

Dky = j +
1

|Lj+1|
Σj

i=1Li (6)

j is the largest integer for witch 0 ≤ L1 + ... + Ln. For the
proposed circuit j = 2 and the Kaplan-Yorke dimension Dky can
be calculated as 7.

Dky = 2 +
L1 + L2
|L3|

= 2, 41597 (7)
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(a) Vx − Vy − Vz chaotic attractor.

(b) Vy − Vz chaotic attractor.

(c) Vx − Vz chaotic attractor.

(d) Vx − Vy chaotic attractor.

Figure 1 Phase portraits of the system

Figure 2 Time series of the system.

Figure 3 Frequency spectrum of the system.

Figure 4 Lyapunov exponents of the system.
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For original Lorenz system with the well-known coefficients
σ = 10, p = 28, β = 8/3, and L1 = 0.054129, L2 = 0.727225, L3 =
−14.448021, j is also equal to 2 and the Kaplan-Yorke dimension,

Dky = 2 +
L1 + L2
|L3|

= 2, 05408 (8)

Thus, the new chaotic system has a larger Kaplan-Yorke dimen-
sion than the original Lorenz system.

The bifurcation diagram is the points at which the variables x
and y intersect the equation’s solution curve on the plane formed
by the two variables for each value of the parameter p.The bifur-
cation diagram obtained for 1 < p < 350 and initial conditions
(0.9,0.5,0.1) in the new set of equations is shown in Figure 5.

Figure 5 Bifurcation diagram of the system.

OTA-C CHAOTIC CIRCUIT DESIGN

The new chaotic equation set circuit design is created using OTA,
analog multiplier (AM), and capacitor components. While generat-
ing the OTA-C circuit, each chaotic state variable is represented by
voltage state variables corresponding to a capacitor voltage. The
expressions of the derivatives of these state variables are tried to be
formed as the sum of the terms of the current magnitudes divided
by the capacitor values, according to dvC(t)

dt = 1
C iC(t) and the defin-

ing equation of the OTA Io = gm(V+ −V−). A circuit as in Figure 6
is obtained electrically by collecting the currents at the nodes to
which the grounded capacitors are connected. The equation set
with the circuit parameters is obtained in the Equation 9.

dVx

dt
=

gm1

Cx
(Vy − Vx) +

gm2

Cx
Vx

dVy

dt
=

gm3

Cy
Vx −

kgm4

Cy
VxVz −

gm5

Cy
Vy

dVz

dt
=

kgm6

Cz
VxVy −

gm7

Cz
Vz

(9)

Taken as Cx = Cy = Cz = 10nF, gm1 = 100µS, gm2 =
27µS, gm3 = 1mS, gm4 = 280µS, gm5 = gm7 = 10µS, gm6 = 1nS.

While performing PSpice simulations of the circuit in Figure 6,
the ideal OTA model realized with discrete elements and the
AD633 integrated circuit macro model as analog multiplier were
used. The multiplier constant of the AD633 IC is k = 0.1 V-1. The
simulation results of the voltage values of the state variables of the

Figure 6 OTA-C chaotic circuit of the system.

circuit according to time are given in Figure 7. Chaotic attractors
are also shown in Figure 8.

Figure 7 Time series of the simulated system.

SYNCHRONIZATION OF OTA-C CIRCUIT WITH MEMRISTOR

The synchronization of two chaotic circuits with different initial
conditions is provided by a memristor and a circuit with OTA
by adding the difference term attached to it (Sambas et al. 2013).
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(a) Vx − Vy chaotic attractor.

(b) Vx − Vz chaotic attractor.

(c) Vy − Vz chaotic attractor.

Figure 8 Phase portraits of the simulated system.

According to this method, the equation of the receiver is as in
Equation 10.

V
◦
xr
= σ(Vyr − Vxr ) + Vxr

V
◦
yr
= Vxr (p − Vzr )− Vyr

V
◦
zr
= Vxr Vyr − βVzr − ξ(Vzt − Vzr )

(10)

To ensure that the circuits are both chaotic and synchronized,

the value of ξ should be either optimized or observed by drawing a
bifurcation diagram of the error as shown below. According to the
bifurcation diagram in the Figure 9, synchronization is provided
in the proposed circuit for ξ>1.8.

Figure 9 Bifurcation diagram of the error.

In this study, it is suggested that the necessity of optimizing the
resistance value is eliminated by replacing the fixed resistor with
the memristor element. The proposed method is to start from any
state of the memristor and wait for the desired coefficient to occur
spontaneously due to the nature of the memristor. In this way,
when the coefficient needs to be updated due to a change in the
circuit due to time or environmental factors, it will automatically
reach the needed value and be synchronized again.

The weight of the difference term addition circuit is self-
adjusted by the value change of the memristor. The synchroniza-
tion circuit is given in Figure 10. Accordingly, for Equation 10, it
will be ξ = 1

Cz(M||R) . Due to the nature of the memristor, as long as
there is an error, the memristance value will change in the direction
of reducing the error, since Vzt − Vzr = 0 after synchronization is
achieved, no current will flow from this part of the circuit and the
circuits will operate synchronously.

The parameter values of the receiver and transmitter circuits
are the same. The initial conditions of the receiver circuit are
vx(0) = 0.05V, vy(0) = 0.01V, vz(0) = 0.05V, the initial conditions
of the transmitter circuit are vx(0) = 0.09V, vy(0) = 0.05V, vz(0) =
0.01V. The value of the resistor connected in parallel with the mem-
ristor is R = 30kΩ. Synchronization is realized over the z state
variable of the receiver and transmitter circuit. The simulation
results are shown in Figure 11. Circuits synchronized at 75ms. It
is shown that this is the contribution of the OTA-C design of the
chaotic circuit and the memristor circuit model used in synchro-
nization.

In the memristor simulations, the PSpice code of the mem-
ristor model proposed by Joglekar was used (Haron et al. 2014).
This model has been proposed for titanium dioxide memristor
nanostructures (Joglekar and Wolf 2009). The window function
associated with the p exponent is used to provide the necessary
nonlinearity. The p parameter is usually between 1 and 100. It
is defined by Equations 11 and 12, where the memristor model
represents the Joglekar window (Joglekar and Wolf 2009):

f j(x) = 1 − (2x − 1)2p (11)
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dx
dt

= ki f (x)

v = i[RON x + ROFF(1 − x)]

k =
µRON

D2

(12)

where x is the memristor state variable, f (x) is the window func-
tion, p = 10 is a parameter of the Window Function, k = 1000
is a constant dependent on memristor physical parameters, µ =
10−14m2/(Vs) is the ionic drift mobility, D = 10nm is the mem-
ristor length, i is the memristor current, v is the applied voltage,
RON = 100Ω and ROFF = 16kΩ are the ON and OFF resistances
of the memristor.

Figure 10 Synchronization of chaotic OTA-C circuits.

(a) Synchronization of transmitter and receiver signals

vxt and vxr according to Figure 10.

(b) Memristance value change.

Figure 11 OTA-C chaotic synchronization charts.

CONCLUSION

In this study, a new chaotic equation set is obtained from the
Lorenz equation using the anti-control procedure. Then, the circuit
of this equation set is designed. Ideal OTA, capacitor, and analog
multiplier are used in the designed circuit. This provides it less
costly in case of physical implementation. The synchronization of
the circuit was realized in a short time of 75ms using the memristor
and differential receiver circuit with OTA. At the same time, the
use of a memristor component provided low power consumption
and time-saving.
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