

A DIFFERENT VIEWPOINT ABOUT THE WEAK CONVERGENCE VIA IDEALS AND Δ^m SEQUENCES

HAFİZE GÜMÜŞ AND MİKAİL ET

ABSTRACT. In this study, we use generalized difference sequences $\Delta^m x = (\Delta^m x_k) = (\Delta^{m-1} x_k - \Delta^{m-1} x_{k+1})$ to obtain more general results about weak convergence and we investigate the concept of $\Delta^m \mathcal{I}$ -weak convergence where $m \in \mathbb{N}$. We also define weak $\Delta^m \mathcal{I}$ -limit points and weak $\Delta^m \mathcal{I}$ -cluster points.

1. INTRODUCTION

In this part, we give a short literature data about our basic concepts difference sequences, \mathcal{I} -convergence and weak convergence. Difference sequences have defined in 1981 by Kızmaz [19] and he has defined $l_{\infty}(\Delta)$, $c(\Delta)$ and $c_0(\Delta)$ spaces where l_{∞} , c and c_0 are bounded, convergent and null sequence spaces, respectively. He obtained some relations between these spaces for example $c_0(\Delta) \subseteq c(\Delta) \subseteq l_{\infty}(\Delta)$.

Following these definitions, Et [9], Et and Çolak [10], Et and Başarır [11], Et and Nuray [12], Gümüş and Nuray [17], Aydın and Başar [1], Başarır [2], Bektaş et. al. [3], Et and Eşi [13], Savaş [25], Dems [7], Dündar and Çakan [8], Nabiev et. al. [22] and many others searched various properties of this concept. Et and Çolak [10] generalized Kızmaz's results for Δ^m sequences such that,

$$c_0(\Delta^m) = \{x = (x_k) : \Delta^m x \in c_0\}$$

$$c(\Delta^m) = \{x = (x_k) : \Delta^m x \in c\}$$

$$l_{\infty}(\Delta^m) = \{x = (x_k) : \Delta^m x \in l_{\infty}\}$$

where $m \in \mathbb{N}$ and $\Delta^m x = (\Delta^m x_k) = (\Delta^{m-1} x_k - \Delta^{m-1} x_{k+1})$ that is $\Delta^m x_k = \sum_{v=0}^m (-1)^v {m \choose v} x_{k+v}$. They proved that these spaces are Banach spaces with the norm

$$\|.\|_{\Delta} = \sum_{i=1}^{m} |x_i| + \|\Delta^m x\|_{\infty}.$$

²⁰⁰⁰ Mathematics Subject Classification. 40G15, 40A35.

Key words and phrases. Weak convergence, \mathcal{I} -convergence, Δ^m sequences, \mathcal{I} -limit points, \mathcal{I} -cluster points.

Now, lets talk about the concept of \mathcal{I} -convergence shortly and give some basic definitons.

The idea of \mathcal{I} -convergence for single sequences was introduced by Kostyrko, Salat and Wilezyński [21]. We can say that the concept is a generalization of statistical convergence which is based on the structure of the ideal \mathcal{I} of subsets of the set of natural numbers. \mathcal{I} -convergence of real sequences coincides with the ordinary convergence if \mathcal{I} is the ideal of all finite subsets of \mathbb{N} and with the statistical convergence if \mathcal{I} is the ideal of subsets of \mathbb{N} of natural density zero. Nowadays, it has become one of the most active areas of research in classical analysis. Savaş and Das defined generalized statistical convergence via ideals [26].

We first need to recall the definitions of some other notions.

Definition 1.1. [21] A non-empty set $\mathcal{I} \subseteq 2^{\mathbb{N}}$ is called an ideal on \mathbb{N} if;

(i) $B \in \mathcal{I}$ whenever $B \subseteq A$ for some $A \in \mathcal{I}$ (closed unders subsets).

(*ii*) $A \cup B \in \mathcal{I}$ whenever $A, B \in \mathcal{I}$ (closed under unions).

An ideal is called proper if $\mathbb{N} \notin \mathcal{I}$ and is called admissible if it is proper and contains all finite subsets.

Many concepts mentioned in this exposition are more frequently defined using limit along a filter. Filter is a dual notion of ideal.

Definition 1.2. [21] A non-empty set $\mathcal{F} \subseteq 2^{\mathbb{N}}$ is called a filter on \mathbb{N} if;

- (i) $B \in \mathcal{F}$ whenever $B \supseteq A$ for some $A \in \mathcal{F}$ (closed unders supersets).
- (*ii*) $A \cap B \in \mathcal{F}$ whenever $A, B \in \mathcal{F}$ (closed under intersections).

Proposition 1.1. $\{\mathbb{N} \setminus A : A \in \mathcal{I}\}$ is a filter if and only if \mathcal{I} is an ideal.

Remark 1.1. Generally we will use ideals in our proofs but if the notion is more familiar for filters, we will use the notion of filter.

Definition 1.3. [21] Let $\mathcal{I} \subseteq 2^{\mathbb{N}}$ be a proper ideal on \mathbb{N} . The real sequence $x = (x_k)$ is said to be \mathcal{I} -convergent to $x \in \mathbb{R}$ provided that for each $\varepsilon > 0$,

$$A(\varepsilon) = \{k \in \mathbb{N} : |x_k - x| \ge \varepsilon\} \in \mathcal{I}$$

There are lots of examples about \mathcal{I} -convergence in Kostyrko, Salát and Wilezyński's paper. We just want to give some well known examples.

Example 1.1. If $\mathcal{I} = \mathcal{I}_f = \{A \subseteq \mathbb{N} : A \text{ is finite}\}$ then l_f -convergence gives the usual convergence.

Example 1.2. If $\mathcal{I} = \mathcal{I}_{\delta} = \{A \subseteq \mathbb{N} : \delta(A) = 0\}$ then l_{δ} -convergence gives the statistical convergence.

Et and Nuray [12] have introduced the Δ^m -statistical convergence in their study and the set of all Δ^m -statistical convergent sequences was denoted by $S(\Delta^m)$. Following this study, Gümüş and Nuray [17] have extended Δ^m -statistical convergence to Δ^m -ideal convergence.

Definition 1.4. [17] Let $\mathcal{I} \subseteq 2^{\mathbb{N}}$ be a proper ideal on \mathbb{N} . The real sequence $x = (x_k)$ is said to be Δ^m -ideal convergent to $x \in \mathbb{R}$ provided that for each $\varepsilon > 0$,

$$\{k \in \mathbb{N} : |\Delta^m x_k - x| \ge \varepsilon\} \in \mathcal{I}.$$

The set of all Δ^m -ideal convergent sequences is denoted by $c_{\mathcal{I}}(\Delta^m)$.

Example 1.3. If $\mathcal{I} = \mathcal{I}_f$ then $c_{\mathcal{I}_f}(\Delta^m) = c(\Delta^m)$.

Example 1.4. $\mathcal{I} = \mathcal{I}_{\delta}$ then $c_{\mathcal{I}_{\delta}}(\Delta^m) = S(\Delta^m)$.

Now, we need to recall some definitions about weak convergence.

Definition 1.5. [4] Let B be a Banach space, (x_k) be a B-valued sequence and $x \in B$. The sequence (x_k) is weakly convergent to x provided that for any f in the continuous dual B^* of B,

$$\lim f(x_k - x) = 0.$$

In this case we write $W - \lim x_k = x$.

Let B be a Banach space, (x_k) be a B-valued sequence and $x \in B$. The sequence (x_k) is weakly C_1 -convergent to x provided that for any f in the continuous dual B^* of B,

$$\lim_{n} \frac{1}{n} \sum_{k=1}^{n} f(x_k - x) = 0.$$

In 2000, Connor et al. [5], have introduced a new concept of weak statistical convergence and have characterized Banach spaces with seperable duals via statistical convergence. Bhardwaj and Bala studied about weak statistical convergence [4]. Pehlivan and Karaev [24] have also used the idea of weak statistical convergence in strengthening a result of Gokhberg and Klein on compact operators.

Following Connor et al. we define weak statistical convergence as follows:

Definition 1.6. [5] Let *B* be a Banach space, (x_k) be a *B*-valued sequence and $x \in B$. The sequence (x_k) is weakly statistically convergent to *x* provided that for any *f* in the continuous dual B^* of *B* the sequence $(f(x_k - x))$ is statistically convergent to *x* i.e.

$$\lim_{n} \frac{1}{n} \left| \left\{ k \le n : |f(x_k - x)| \ge \varepsilon \right\} \right| = 0.$$

In this case we write $W - st - \lim x_k = x$.

In 2011, Nuray [23] has defined the weak \mathcal{I} -convergence as follows and has defined the set of all weak \mathcal{I} -convergent sequences by $W\mathcal{I}$.

Definition 1.7. [23] Let *B* be a Banach space, (x_k) be a *B*-valued sequence and $x \in B$. The sequence (x_k) is weak \mathcal{I} -convergent to x provided that for any f in the continuous dual B^* of *B* the sequence $(f(x_k - x))$ is weak \mathcal{I} -convergent to x that is,

$$\{k \in \mathbb{N} : |f(x_k - x)| \ge \varepsilon\} \in \mathcal{I}.$$

Taking the above examples, if $\mathcal{I} = \mathcal{I}_f$ then we have the usual weak convergence and if $I = I_f$ then weak I_f -convergence gives the usual weak convergence. After the definition of weak \mathcal{I} -convergence Gümüş has defined the weak \mathcal{I} -statistical convergence [18].

2. Weak $\Delta^m \mathcal{I}$ -Convergence

In this section, we define weak $\Delta^m \mathcal{I}$ -convergence and we give some inclusion theorems. In our all subsequent definitions, let B be a Banach space, $(\Delta^m x_k)$ be a B-valued sequence, $x \in B$ and \mathcal{I} be an admissible ideal.

Definition 2.1. The sequence (x_k) is weak Δ^m -convergent to x provided that for any f in the continuous dual B^* of B,

$$\lim_{k} f(\Delta^m x_k - x) = 0.$$

The set of all weak Δ^m -convergent sequences is denoted by $Wc(\Delta^m)$.

Definition 2.2. The sequence (x_k) is weak Δ^m -statistically convergent to x provided that for any f in the continuous dual B^* of B and every $\varepsilon > 0$,

$$\lim_{n} \frac{1}{n} \left| \{k \le n : |f(\Delta^m x_k - x)| \ge \varepsilon \} \right| = 0.$$

The set of all weak Δ^m -statistically convergent sequences is denoted by $WS(\Delta^m)$.

Definition 2.3. The sequence (x_k) is weak $\Delta^m \mathcal{I}$ -convergent to x provided that for any f in the continuous dual B^* of B and every $\varepsilon > 0$,

$$\{k \in \mathbb{N} : |f(\Delta^m x_k - x)| \ge \varepsilon\} \in \mathcal{I}.$$

In this case we write $x_k \to x(Wc_{\mathcal{I}}(\Delta^m))$. The set of all weak $\Delta^m \mathcal{I}$ -convergent sequences is denoted by $Wc_{\mathcal{I}}(\Delta^m)$.

Example 2.1. $Wc_{\mathcal{I}_f}(\Delta^m) = Wc(\Delta^m).$

Example 2.2. $Wc_{\mathcal{I}_{\delta}}(\Delta^m) = WS(\Delta^m).$

After the above definitions, lets give a main theorem which explains the relation between weak Δ^m -convergence and weak $\Delta^m \mathcal{I}$ -convergence.

Theorem 2.1. Let (x_k) is weak Δ^m -convergent to x. Then, (x_k) is weak $\Delta^m \mathcal{I}$ -con-

vergent to x.

Proof. Let (x_k) is weak Δ^m -convergent to x. It means $f(\Delta^m x_k)$ is convergent to f(x) for all $f \in B^*$. Then, $f(\Delta^m x_k)$ is \mathcal{I} -convergent to f(x) that is, $(x_k) \in Wc_{\mathcal{I}}(\Delta^m)$.

We give the following example to show that the inverse of this theorem is not generally true.

Example 2.3. Let $(f(\Delta^m x_k)) = \begin{cases} 1, & n \text{ is square} \\ 0, & \text{otherwise} \end{cases}$.

Then, $(x_k) \in Wc_{\mathcal{I}_{\delta}}(\Delta^m)$ but $(x_k) \notin Wc(\Delta^m)$.

Before the following theorem, reader should be warned at this point that, from the $\Delta^m x_k = \sum_{v=0}^m (-1)^v {m \choose v} x_{k+v}$ formula, we can easily prove that $\Delta^m (x_k + y_k) = \Delta^m (x_k) + \Delta^m (x_k)$ and $\Delta^m (\lambda x_k) = \lambda \Delta^m (x_k)$.

Theorem 2.2. Let \mathcal{I} be an admissible ideal, $(\Delta^m x_k)$ and $(\Delta^m y_k)$ be B-valued sequences and $x, y \in B$.

(i)
$$x_k \to x(Wc_{\mathcal{I}}(\Delta^m))$$
 and $y_k \to y(Wc_{\mathcal{I}}(\Delta^m))$ then $x_k + y_k \to x + y(Wc_{\mathcal{I}}(\Delta^m))$.
(ii) $x_k \to x(Wc_{\mathcal{I}}(\Delta^m))$ and $\lambda \in \mathbb{R}$ then $\lambda x_k \to \lambda x(Wc_{\mathcal{I}}(\Delta^m))$.

Proof. (i) Assume that $x_k \to x(Wc_{\mathcal{I}}(\Delta^m))$ and $y_k \to y(Wc_{\mathcal{I}}(\Delta^m))$. Lets define the sets A_1 and A_2 such that,

$$A_1 = \left\{ k \in \mathbb{N} : \left| f(\Delta^m x_k - x) \right| < \frac{\varepsilon}{2} \right\}$$

and

$$A_2 = \left\{ k \in \mathbb{N} : \left| f(\Delta^m y_k - y) \right| < \frac{\varepsilon}{2} \right\}.$$

It is obvious that A_1 and A_2 are in $\mathcal{F}(\mathcal{I})$. If we remember the properties of the filter, $A_1 \cap A_2 \in \mathcal{F}(\mathcal{I})$ and $A_1 \cap A_2 \neq \emptyset$. Since $f \in B^*$, for all $k \in A_1 \cap A_2$,

$$\begin{aligned} |f(\Delta^m(x_k+y_k)-(x+y))| &= |f(\Delta^m x_k-x)+f(\Delta^m y_k-y)| \\ &\leq |f(\Delta^m x_k-x)|+|f(\Delta^m y_k-y)| \\ &< \frac{\varepsilon}{2}+\frac{\varepsilon}{2} \\ &= \varepsilon. \end{aligned}$$

It proves (i).

(*ii*) Let $x_k \to x(Wc_{\mathcal{I}}(\Delta^m))$ and $\lambda \in \mathbb{R}$. Using the same technique, for all $k \in A_1$ and every $\varepsilon > 0$

$$\begin{aligned} |f(\Delta^m(\lambda x_k) - \lambda x)| &= |f(\lambda \Delta^m(x_k - x))| \\ &= |\lambda| |f(\Delta^m x_k - x)| \\ &< |\lambda| \frac{\varepsilon}{2}. \end{aligned}$$

As $\varepsilon > 0$ is arbitrary, it follows that $\{k \in \mathbb{N} : |f(\Delta^m(\lambda x_k) - \lambda x)| < \eta\} \in \mathcal{F}(\mathcal{I})$ for any $\eta > 0$. Then, we have the proof.

Remark 2.1. Since $\Delta^m(x_k.y_k) \neq \Delta^m(x_k).\Delta^m(x_k)$, we can not say that $x_k.y_k \rightarrow x.y(Wc_{\mathcal{I}}(\Delta^m))$ when $x_k \rightarrow x(Wc_{\mathcal{I}}(\Delta^m))$ and $y_k \rightarrow y(Wc_{\mathcal{I}}(\Delta^m))$.

Definition 2.4. Let \mathcal{I} is an admissible ideal in \mathbb{N} . If,

$$\{k+1:k\in A\}\in\mathcal{I}$$

for any $A \in \mathcal{I}$, then \mathcal{I} is said to be translation invariant ideal.

Example 2.4. \mathcal{I}_{δ} is a translation invariant ideal.

Corollary 2.1. If \mathcal{I} is translation invariant and $(x_k) \in Wc_{\mathcal{I}}(\Delta^m)$ then $(x_{k+1}) \in Wc_{\mathcal{I}}(\Delta^m)$.

Proposition 2.1. Suppose that \mathcal{I} is an admissible translation invariant ideal and $m \in \mathbb{N}$. Then,

$$Wc_{\tau}(\Delta^{m-1}) \subseteq Wc_{\tau}(\Delta^m).$$

Proof. Suppose that $x \in Wc_{\mathcal{I}}(\Delta^{m-1})$ and it means $(\Delta^{m-1}x_k) \in Wc_{\mathcal{I}}$. Since \mathcal{I} is translation invariant we have $(\Delta^{m-1}x_{k+1}) \in Wc_{\mathcal{I}}$. From the definition of difference sequences we can write

$$(\Delta^m x_k) = \left(\Delta^{m-1} x_k - \Delta^{m-1} x_{k+1}\right)$$

Then we obtain $(\Delta^m x_k) \in Wc_{\mathcal{I}}$ i.e. $x \in Wc_{\mathcal{I}}(\Delta^m)$.

Theorem 2.3. Let \mathcal{I} be a proper ideal in \mathbb{N} . If there is a weak $\Delta^m \mathcal{I}$ -convergent sequence y such that,

$$\{k \in \mathbb{N} : f(\Delta^m x_k) \neq f(\Delta^m y_k)\} \in \mathcal{I}$$

then x is also weak $\Delta^m \mathcal{I}$ -convergent.

Proof. Assume that $\{k \in \mathbb{N} : f(\Delta^m x_k) \neq f(\Delta^m y_k)\} \in \mathcal{I}$ and y is weak $\Delta^m \mathcal{I}$ -conver-

gent to x. For each $\varepsilon > 0$,

$$\{ k \in \mathbb{N} : |f(\Delta^m x_k - x)| \ge \varepsilon \} \quad \subseteq \quad \{ k \in \mathbb{N} : f(\Delta^m x_k) \neq f(\Delta^m y_k) \} \\ \cup \quad \{ k \in \mathbb{N} : |f(\Delta^m y_k - x)| \ge \varepsilon \}$$

As the right hand side of inclusion is in ideal, we have that

$$\{k \in \mathbb{N} : |f(\Delta^m x_k - x)| \ge \varepsilon\} \in \mathcal{I}.$$

Definition 2.5. Let \mathcal{I} be a proper ideal in \mathbb{N} . For each $\varepsilon > 0$ there is a number $n_0(\varepsilon)$ such that $\{k \in \mathbb{N} : |f(\Delta^m x_k - \Delta^m x_{n_0})| \ge \varepsilon\} \in \mathcal{I}$ then, x is called by weak $\Delta^m \mathcal{I}$ -Cauchy sequence.

Theorem 2.4. If x is weak $\Delta^m \mathcal{I}$ -convergent sequence then, x is weak $\Delta^m \mathcal{I}$ -Cauchy sequence.

Proof. Suppose that x is weak $\Delta^m \mathcal{I}$ -convergent and $\varepsilon > 0$. Then,

$$A = \left\{ k \in \mathbb{N} : |f(\Delta^m x_k - x)| < \frac{\varepsilon}{2} \right\} \in \mathcal{F}(\mathcal{I}).$$

Lets choose $n_0 \in A$. In this case, $|f(\Delta^m x_k - x)| < \frac{\varepsilon}{2}$. We can write,

$$\begin{aligned} |f(\Delta^m x_k - \Delta^m x_{n_0})| &< |f(\Delta^m x_k - x)| + |f(\Delta^m x_{n_0} - x)| \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \end{aligned}$$

Then we have the proof.

3. Weak $\Delta^m \mathcal{I}^*$ -Convergence

In this part, we define weak $\Delta^m \mathcal{I}^*$ -convergence and we will investigate the inclusion with weak $\Delta^m \mathcal{I}$ -convergence.

Definition 3.1. Let *B* be a Banach space, $(\Delta^m x_k)$ be *B*-valued sequence and $x \in B$. The sequence (x_k) is weak $\Delta^m \mathcal{I}^*$ -convergent to *x* if and only if for any *f* in the continuous dual B^* of *B*, there exists a set $M = \{n_1 < n_2 < ... < n_k < ...\} \subseteq \mathbb{N}$, $M \in \mathcal{F}(\mathcal{I})$ such that $\lim_k f(\Delta^m x_{n_k} - x) = 0$. $Wc_{\mathcal{I}^*}(\Delta^m)$ denotes the set of all weak $\Delta^m \mathcal{I}^*$ -convergent sequences.

Theorem 3.1. Let \mathcal{I} be an admissible ideal. If (x_k) is weak $\Delta^m \mathcal{I}^*$ -convergent to x then (x_k) is weak $\Delta^m \mathcal{I}$ -convergent to x.

Proof. By assumption there is a set $D \in \mathcal{I}$ such that

$$M = \mathbb{N} \setminus D = \{ n_1 < n_2 < \dots < n_k < \dots \}$$

and we have

$$\lim_{k} f(\Delta^m x_{n_k} - x) = 0$$

Let $\varepsilon > 0$. From the definition of limit, there exists $k_0 \in \mathbb{N}$ such that $|f(\Delta^m x_{n_k} - x)| < \varepsilon$ for each $k > k_0$. Since \mathcal{I} is admissible,

$$\{k \in \mathbb{N} : |f(\Delta^m x_{n_k} - x)| \ge \varepsilon\} \subset D \cup \{n_1 < n_2 < \dots < n_{k_0}\} \in \mathcal{I}.$$

To say that the inverse of the theorem satisfies, we need to remind the concept of (AP) property.

118

Definition 3.2. An admissible ideal \mathcal{I} is said to satisfy the condition (AP) if for every countable family of mutually disjoint sets $\{A_1, A_2, ...\}$ belonging to \mathcal{I} there exists a countable family of sets $\{B_1, B_2, ...\}$ such that $A_j \Delta B_j$ is a finite set for

$$j \in \mathbb{N}$$
 and $B = \bigcup_{j=1} B_j \in \mathcal{I}$

Theorem 3.2. Let \mathcal{I} be an admissible ideal. If \mathcal{I} has property (AP), then we say that if (x_k) is weak $\Delta^m \mathcal{I}$ -convergent to x then (x_k) is weak $\Delta^m \mathcal{I}^*$ -convergent to x.

Proof. Suppose that \mathcal{I} satisfies condition (AP) and $(x_k) \in Wc_{\mathcal{I}}(\Delta^m)$. Then for every $\varepsilon > 0$, $\{k \in \mathbb{N} : |f(\Delta^m x_k - x)| \ge \varepsilon\} \in \mathcal{I}$. Put

$$A_1 = \{k \in \mathbb{N} : |f(\Delta^m x_k - x)| \ge 1\}$$

and

$$A_k = \left\{ k \in \mathbb{N} : \frac{1}{k} \le |f(\Delta^m x_k - x)| \le \frac{1}{k-1} \right\}$$

for $k \geq 2, k \in \mathbb{N}$. Obviously $A_j \cap B_j = \emptyset$ for $i \neq j$. By condition (AP), there exists a sequence of sets $(B_k)_{k \in \mathbb{N}}$ such that $A_j \Delta B_j$ are finite sets for $j \in \mathbb{N}$ and $B = \bigcup_{\substack{j=1 \ j=1}}^{\infty} B_j \in \mathcal{I}$. It is sufficient to prove that for $M = \mathbb{N} \setminus B$ we have $\lim_{\substack{k \to \infty \\ k \in M}} f(\Delta^m x_k - x) = 0$. Let $\eta > 0$ and choose $n \in \mathbb{N}$ such that $\frac{1}{n+1} < \eta$. Then,

$$\{k \in \mathbb{N} : |f(\Delta^m x_k - x)| \ge \eta\} \subset \bigcup_{j=1}^{n+1} A_j.$$

Since $A_j \Delta B_j$ (j = 1, 2, ..., n + 1) are finite sets there exists $k_0 \in \mathbb{N}$ such that

(3.1)
$$\bigcup_{j=1}^{n+1} B_j \cap \{k \in \mathbb{N} : k > k_0\} = \bigcup_{j=1}^{n+1} A_j \cap \{k \in \mathbb{N} : k > k_0\}.$$

If $k > k_0$ and $k \notin B$, then $k \notin \bigcup_{j=1}^{n+1} B_j$ and by (3.1), $k \notin \bigcup_{j=1}^{n+1} A_j$. But then, $|f(\Delta^m x_k - x)| < \frac{1}{k+1} < \eta$; so we have the proof.

4. Weak $\Delta^m \mathcal{I}$ -Limit Points And Weak $\Delta^m \mathcal{I}$ -Cluster Points

The notion of limit is one of the central notions in mathematical analysis. It was generalized by mathematicians in various ways. After identification statistical convergence by Fast [14], the question was how to define the statistical limit points and statistical cluster points. Fridy [15] answered this question and he defined these concepts. Later, these concepts were also identified for ideals. Demirci [6] and Koystro et. al. [20] studied about I-convergence and extremal I-limit points. Talo and Dndar [27] investigated these concepts for fuzzy numbers. Nuray [23] combined these concepts with weak convergence and he defined weak \mathcal{I} -limit points and weak \mathcal{I} -cluster points.

Definition 4.1. Let *B* be a Banach space, $(\Delta^m x_k)$ be a *B*-valued sequence and $\lambda \in B$. Let *f* in the continuous dual B^* of *B*. λ is said to be a weak $\Delta^m \mathcal{I}$ -limit point of (x_k) provided that there exists a set $M = \{n_1 < n_2 < ... < n_k < ...\} \subseteq \mathbb{N}$

such that $M \notin \mathcal{I}$ and $\lim_{k} f(\Delta^m x_{n_k} - x) = 0$. The set of all weak $\Delta^m \mathcal{I}$ -limit points denoted by $W\Delta^m \mathcal{I}(\Lambda_x)$.

Example 4.1. Let $\mathcal{I} = \mathcal{I}_{\delta}$ and $(f(\Delta^m x_k)) = \begin{cases} 1, & \text{if } k \text{ is square} \\ 0, & \text{otherwise} \end{cases}$.

Then $W\Delta^m \mathcal{I}(\Lambda_x) = \{0\}.$

Definition 4.2. Let *B* be a Banach space, $(\Delta^m x_k)$ be a *B*-valued sequence and $\gamma \in B$. Let *f* in the continuous dual B^* of *B*. γ is said to be a weak $\Delta^m \mathcal{I}$ -cluster point of (x_k) if and only if for each $\varepsilon > 0$ we have

$$\{k \in \mathbb{N} : |f(\Delta^m x_k - \gamma)| < \varepsilon\} \notin \mathcal{I}.$$

The set of all weak $\Delta^m \mathcal{I}$ -cluster points denoted by $W \Delta^m \mathcal{I}(\Gamma_x)$.

Proposition 4.1. If x is a weak $\Delta^m \mathcal{I}$ -cluster point of (x_k) , then there is an ideal \mathcal{I} such that (x_k) is weak $\Delta^m \mathcal{I}$ -convergent to x.

Theorem 4.1. Let \mathcal{I} be an admissible ideal. Then for each sequence $(\Delta^m x_k) \in B$ we have $W\Delta^m \mathcal{I}(\Lambda_x) \subseteq W\Delta^m \mathcal{I}(\Gamma_x)$.

Proof. Assume that $\lambda \in W\Delta^m \mathcal{I}(\Lambda_x)$. Then, there exists a set

$$M = \{n_1 < n_2 < \dots < n_k < \dots\} \notin \mathcal{I}$$

such that

$$\lim_{h \to 0} f(\Delta^m x_{n_k} - x) = 0$$

From the definition of usual convergence, for each $\varepsilon > 0$ there exists $k_0 \in \mathbb{N}$ such that for $k > k_0$ we have $|f(\Delta^m x_{n_k} - \lambda)| < \varepsilon$. Hence,

$$\{k \in \mathbb{N} : |f(\Delta^m x_k - \lambda)| < \varepsilon\} \supset M \setminus \{n_1 < n_2 < \dots < n_{k_0}\}$$

and

$$\{k \in \mathbb{N} : |f(\Delta^m x_k - \lambda)| < \varepsilon\} \notin \mathcal{I}.$$

It means that $\lambda \in W\Delta^m \mathcal{I}(\Gamma_x)$.

Proposition 4.2. If the sequence (x_k) is $\Delta^m \mathcal{I}$ -convergent to λ . Then,

$$W\Delta^m \mathcal{I}(\Lambda_x) = W\Delta^m \mathcal{I}(\Gamma_x) = \{\lambda\}$$

The inverse of this proposition is not generally true.

Example 4.2. Let $(f(\Delta^m x_k)) = (1+(-1)^k)$. Then, $W\Delta^m \mathcal{I}(\Lambda_x) = W\Delta^m \mathcal{I}(\Gamma_x) = \{0\}$ but (x_k) is not $\Delta^m \mathcal{I}$ -convergent to 0.

Proposition 4.3. Let $(\Delta^m x_k)$ and $(\Delta^m y_k)$ sequences satisfies

$$\{k \in \mathbb{N} : (\Delta^m x_k) = (\Delta^m y_k)\} \notin \mathcal{I}.$$

Then,

$$W\Delta^m \mathcal{I}(\Lambda_x) = W\Delta^m \mathcal{I}(\Lambda_y) \text{ and } W\Delta^m \mathcal{I}(\Gamma_x) = W\Delta^m \mathcal{I}(\Gamma_y)$$

Proof. Suppose that $\{k \in \mathbb{N} : (\Delta^m x_k) = (\Delta^m y_k)\} \notin \mathcal{I}$ and $\lambda \in W\Delta^m \mathcal{I}(\Lambda_x)$. There is a set M such that,

$$\lim_{k \to \infty} \Delta^m x_{n_k} = \lambda \text{ and } M = \{n_1 < n_2 < \dots < n_k < \dots\} \notin \mathcal{I}.$$

From our assumption, this set defines a sequence such that

$$\lim_{l \to \infty} \Delta^m y_{m_l} = \lambda$$

So $\lambda \in W\Delta^m \mathcal{I}(\Lambda_y)$. Using the same techniques we obtain $W\Delta^m \mathcal{I}(\Lambda_y) \subseteq W\Delta^m \mathcal{I}(\Lambda_x)$. Now, we will prove the same property for cluster points. Let $\gamma \in W\Delta^m \mathcal{I}(\Gamma_x)$ then $\{k \in \mathbb{N} : |f(\Delta^m x_k - \gamma)| < \varepsilon\} \notin \mathcal{I}$. Hence,

 $\{k \in \mathbb{N} : |f(\Delta^m y_k - \gamma)| < \varepsilon\} \supseteq \{k \in \mathbb{N} : (\Delta^m x_k) = (\Delta^m y_k)\}$ $\cap \{k \in \mathbb{N} : |f(\Delta^m x_k - \gamma)| < \varepsilon\}$

Since the right hand does not belong to \mathcal{I} , we have $\{k \in \mathbb{N} : |f(\Delta^m y_k - \gamma)| < \varepsilon\} \notin \mathcal{I}$ and it means $\gamma \in W\Delta^m \mathcal{I}(\Gamma_y)$. Using the same techniques we obtain $W\Delta^m \mathcal{I}(\Gamma_y) \subseteq W\Delta^m \mathcal{I}(\Gamma_x)$.

5. Acknowledgements

I would like to thank to Jeff Connor for his contribution to us on this subject. And also i would like to express our gratitude to the referees of the paper for their useful comments.

References

- C. Aydın and F. Başar, Some new difference sequence spaces, Appl. Math.Comput., 157(3) (2004), 677-693.
- [2] M. Başarir, On the Δ-statistical convergence of sequences, Firat Uni., Jour. of Science and Engineering, 7(2) (1995), 1-6.
- [3] Ç.A. Bektaş, M. Et and R. Çolak, Generalized difference sequence spaces and their dual spaces, J.Math.Anal.Appl. 292 (2004), 423-432.
- [4] V. K. Bhardwaj and I. Bala, On weak statistical convergence, International Journal of Mathematics and Math. Sci., Vol. 2007, Article ID:38530, doi:10.1155/2007/38530 (2007).9 pages.
- [5] J. Connor, M. Ganichev and V. Kadets, A characterization of Banach spaces with seperable duals via weak statistical convergence, J. Math. Anal. Appl. 244 (2000).251-261.
- [6] K. Demirci, *I*-limit superior and limit inferior, *Math. Commun.* 6 (2001), 165 172.
- [7] K. Dems, On I-Cauchy sequence, Real Anal. Exchange 30 (2004/2005), 123 128.
- [8] E. Dündar, C. Çakan, Rough I-Convergence, Demonstratio Mathematica, 47(3)(2014), 638 651.
- [9] M. Et, On some difference sequence spaces, Doğa-Tr. J. of Mathematics 17 (1993), 18-24.
- [10] M. Et and R. Çolak, On some generalized difference sequence spaces, Soochow Journal Of Mathematics, 21(4) (1995), 377-386.
- [11] M. Et and M. Başarır, On some new generalized difference sequence spaces, *Periodica Mathematica Hungarica* 35 (3) (1997), 169-175.
- [12] M. Et and F. Nuray, Δ^m-Statistical convergence, Indian J.Pure Appl. Math. 32(6) (2001), 961-969.
- [13] M. Et. and A. Eşi, On Köthe- Toeplitz duals of generalized difference sequence spaces, Malaysian Math. Sci. Soc. 23 (2000), 25-32.
- [14] H. Fast, Sur la Convergence Statistique, Coll. Math. 2 (1951), 241-244.
- [15] J. A. Fridy, On statistical convergence, Analysis 5 (1985), 301-313.
- [16] J. A. Fridy. and C. Orhan, Lacunary statistical convergence, Pac. J. Math.160 (1993), 43-51.
- [17] H. Gümüş and F. Nuray, Δ^m -Ideal Convergence, Selçuk J. Appl. Math. 12(2) (2011), 101-110.
- [18] H. Gümüş, Lacunary Weak *I*-Statistical Convergence, Gen. Math. Notes 28(1) (2015), 50-58.
- [19] H. Kızmaz, On certain sequence spaces, Canad. Math. Bull. 24(2) (1981), 169-176.
- [20] P. Kostyrko, M. Macaj, T. Šalát, T. and M. Sleziak, M., *I*-convergence and extremal *I*-limit points, *Math. Slovaca* 55 (2005), 443-464.
- [21] P. Kostyrko, T.Šalát and W. Wilezyński, *I*-convergence, *Real Anal. Exchange*, 26, 2 (2000), 669-686.
- [22] A. Nabiev, S. Pehlivan, M. Gürdal, On I-Cauchy sequence, Taiwanese J. Math. 11 (2) (2007), 569 576.
- [23] F. Nuray, Lacunary weak statistical convergence, Math. Bohemica, 136(3) (2011), 259-268.
- [24] S. Pehlivan and T. Karaev, Some results related with statistical convergence and Berezin symbols, *Jour. of Math. analysis and Appl.* V 299(2) (2004), 333-340.

- [25] E. Savaş Δ^m-strongly summable sequences spaces in 2-normed spaces defined by ideal convergence and an Orlicz function, Applied Mathematics and Computation 217(1) (2010), 271–276.
- [26] E. Savaş and P. Das, A generalized statistical convergence via ideals, Appl. Math. Lett. 24 (2011), 826-830.
- [27] Ö. Talo, E. Dündar, I-Limit Superior and I-Limit Inferior for Sequences of Fuzzy Numbers, Konuralp Journal of Mathematics, 4(2) (2016), 1643 172.

Necmettin Erbakan University Faculty of Eregli Education, Eregli, Konya, Turkey $E\text{-mail}\ address:\ hgumus@konya.edu.tr$

FIRAT UNIVERSITY, FACULTY OF ARTS AND SCIENCE, ELAZIG, TURKEY *E-mail address*: met@firat.edu.tr