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Abstract
In this paper, we generalize the Brown,s topology on the fundamental groupoids. For
a locally path connected space X and a totally disconnected normal subgroupoid M of
πX, we define a topology on the quotient groupoid πX

M
which is a generalization of what

introduced by Brown for locally path connected and semilocally simply connected spaces.
We prove that πX

M
equipped with this topology is a topological groupoid. Also, we will find

a class of subgroupoids of topological groupoids whose their related quotient groupoids will
be topological groupoids. By using this, we show that our topology on πX

M
is equivalent

to the quotient of the Lasso topology on the topological fundamental groupoids, π
LX

M
.
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1. Introduction
Brown and Danesh-Naruie [2] have defined the “lifted topology" on the quotient groupoid

πX

M
, where X is a loclly path connected and semilocally simply connected space and M

is a totally disconnected normal subgroupoid of πX. By this topology that we call it
Brown,s topology, πX

M
becomes a locally trivial topological groupoid with discrete object

groups.
Out of the category of locally nice spaces, the authors have determined the Lasso topol-

ogy on the fundamental groupoid that makes it a topological groupoid [11]. Lasso topology
on the fundamental groupoid is a generalization of the Lasso topology on the fundamental
group and the universal path space [4, 9].

Although quotients of topological groups by normal subgroups are topological groups,
but this has not yet been proven for topological groupoid and of course there is no coun-
terexample [5, 7]. It is notable that in [5, 7] the normal subgroupoid is not necessarily
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totally disconnected. The problem that appears in the proof is that for a normal sub-
group N of a topological group G, the quotient map q : G −→ G

N
is an open map, but this

fails for topological groupoids. So we can not directly conclude that π
LX

M
is a topological

groupoid.
Here, for a locally path connected space X and a totally disconnected normal sub-

groupoid M of πX we generalize the Brown,s topology on the quotient groupoid πX

M
.

More precisely, by using spanier groups of open covers of X, we introduce a topological
basis for a topology on the πX

M
such that makes it a topological groupoid. Then by recon-

structing the basis of the Brown,s topology on the πX

M
, we will show that for semilocally

simply connected spaces, these topologies are equivalent.
In the sequel, by proving that quotients of topological groupoids by totally disconnected

normal subgroupoids are topological groupoids, we show that the quotient of Lasso topol-
ogy on πX

M
makes it a topological groupoid. Finally, we will prove that these topologies

on πX

M
are equivalent.

2. Preliminaries
A groupoid G over G0, denoted by (G,G0), consists of a set of arrows G and a set of

objects G0, together with two maps S, T : G −→ G0, called respectively the source and
target maps, a map 1 : G0 −→ G;x 7→ 1x, called the unit map, a map i : G −→ G; a 7−→
a−1, called the inverse map and a map m : G2 −→ G; (a; b) 7→ m(a; b) = ab, called
the composition map, where G2 denotes the set of composable arrows: G2 = {(a; b) ∈
G×G| S(b) = T (a)}.

These structure maps satisfy the following conditions:
(i) S(ab) = S(a) and T (ab) = T (b) for all (a; b) ∈ G2,
(ii) a(bc) = (ab)c for all a, b, c ∈ G such that S(b) = T (a) and S(c) = T (b),
(iii) S(1x) = T (1x) = x for all x ∈ G0,
(iv) a1T (a) = a and 1S(a)a = a for all a ∈ G,
(v) each a ∈ G has a two-sided inverse a−1 such that S(a−1) = T (a), T (a−1) = S(a) and

aa−1 = 1S(a); a−1a = 1T (a).
The set of arrows from x to y is denoted by G(x, y) and, in particular, G(x) := G(x, x)

is called the object group (or vertex group) at x. Also, we denote S−1(x) by Gx and
T−1(x) by Gx.

Definition 2.1. ([7]) A topological groupoid is a groupoid G together with topologies on
G and G0 such that the structure maps are continuous.

Definition 2.2. ([1]) Let G and G′ be two groupoids with object sets G0 and G′
0, respec-

tively. A groupoid homomorphism is a pair (F, f) of maps F : G −→ G′ and f : G0 −→ G′
0

which send each object x of G to an object f(x) of G′ and each arrow a ∈ G(x, y) to an ar-
row F (a) ∈ G′(f(x), f(y)), respectively, such that F (ab) = F (a)F (b) for every (a, b) ∈ G2,
S ◦ F = f ◦ S and T ◦ F = f ◦ T .

Also, a topological groupoid homomorphism is a groupoid homomorphism which is
continuous on both objects and arrows. For each a ∈ G(x, y) the right translation
Ra : Gx −→ Gy, defined by Ra(b) = ba and the left translation La : Gy −→ Gx,
defined by La(b) = ab are homeomorphism.

Let X be a topological space. The fundamental groupoid πX has homotopy classes
of paths in X as the set of morphisms and has the set X as its set of objects, and for
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any x, y ∈ X the set πX(x, y) is the set of homotopy classes of paths in X from x to y.
Composition of morphisms [α], [β] is [α ∗ β] and the identity in πX(x, x) is the ex = [cx].
We can consider the object group at x, πX(x), as the well-known fundamental group
π1(X,x).

If U is an open cover of X, the subgroup of π1(X,x) consisting of the homotopy classes
of loops that can be represented by a product of the following type:

n∏
j=1

ujvju
−1
j ,

where the uj ’s are arbitrary paths starting at the base point x and each vj is a loop inside
one of the neighborhoods Ui ∈ U. This group is called the Spanier group with respect to
U, denoted by π(U, x) [8, 10].

Definition 2.3. ([1]) Let (G,G0) be a groupoid. A normal subgroupoid of (G,G0) is
a wide subgroupoid (M,G0) such that for any x, y ∈ G0 and any a ∈ G(x, y) we have
aM(x)a−1 ∈ M(y). A totally disconnected subgroupoid (M,G0) of (G,G0) is a sub-
groupoid such that for any x 6= y ∈ G0, we have M(x, y) = ∅.

Definition 2.4. ([1,5,6]) If M is a normal subgroupoid of the groupoidG, G
M

is a groupoid

in which Ob( G
M

) = Ob(G) and the elements of G

M
are equivalence classes of elements of

G under the relation a ∼ b if and only if a = xby for some x, y in M . We denote this
elements by aM or aM .

Throughout this paper, all spaces are connected and locally path connected. Also, all
homotopies between paths are relative to end points.

3. Main results
3.1. Generalization of the Brown,s topology

Let X be a topological space and M be a totally disconnected, normal subgroupoid
of πX. The quotient groupoid πX

M
has X as objects set and elements in πX

M
(x, y) are

[α]M = {[α∗β]; [β] ∈ M(y)} where [α] ∈ πX(x, y). Clearly ([α]M )−1 = ([α]−1)M = [α−1]M
and composition of [α]M , [β]M is [α ∗ β]M , where α(1) = β(0).

Remark 3.1. It is notable that if [α]M = [β]M then there exists γ ∈ M such that α ' β∗γ.

For an open cover U of X and for x, y ∈ X, let [α] ∈ πX(x, y) and U, V ∈ U be open
neighborhoods of x, y, respectively. we define

B([α]M ,U, U, V ) = {[λ ∗ µ ∗ α ∗ η ∗ µ′ ∗ λ′]M | [η] ∈ M(α(1)), λ(I) ⊆ U, λ′(I) ⊆ V },
where [µ] ∈ π(U, α(0)), [µ]′ ∈ π(U, α(1)).

We recall that for two open covers U,U′ of X, U ⊆ U′ means that if U ∈ U then U ∈ U′.
The following proposition is useful when we are working with Spanier groups.

Proposition 3.2. Let X be a topological space and x ∈ X. Then
(i) For every open cover U of X, π(U, x) is a normal subgroup of π1(X,x).

(ii) If U ⊆ U′, then π(U, x) ⊆ π(U′, x).
(iii) U ∩ V = {U ∩ V | U ∈ U, V ∈ V} is an open cover of X and U ∩ V ⊆ U.
(iv) If V is an open cover of Y and f : X −→ Y is a continuous function with f(x) = y,

then U := f−1(V) = {f−1(V )| V ∈ V} is an open cover of X and f∗(π(U, x)) ⊆
π(V, y).

Proof. Easily come from definitions. □
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Proposition 3.3. Let U be an open cover of a given space X and M be a totally dis-
connected, normal subgroupoid of πX. Let U, U ′ ∈ U are open neighborhoods of α(0)
and V, V ′ ∈ U are open neighborhoods of α(1) such that U ′ ⊆ U and V ′ ⊆ V , then
B([α]M ,U, U ′, V ′) ⊆ B([α]M ,U, U, V ).
Proof. Since U ′ ⊆ U , pathes in U ′ are pathes in U . Now, according to the definition, the
proof is clear. □
Lemma 3.4. Let U be an open cover of X and M be the totally disconnected, normal
subgroupoid of πX. If [α] ∈ πX(x, y) and η ∈ M(α(0)) then there exists η′ ∈ M(α(1))
such that η ∗ [α] ' [α] ∗ η′.
Proof. This comes from normality of M . □
Lemma 3.5. Let U be an open cover of a given space X and M be a totally disconnected,
normal subgroupoid of πX, then [γ]M ∈ B([α]M ,U, U, V ) if and only if there exist [η] ∈
M(α(1)), [µ] ∈ π(U, α(0)), [µ′] ∈ π(U, α(1)) and pathes λ, λ′ in U, V such that γ '
λ ∗ µ ∗ α ∗ η ∗ µ′ ∗ λ′.
Proof. It follows from the definition, Remark 3.1 and Lemma 3.4 . □
Lemma 3.6. Let U be an open cover of X, M be a totally disconnected, normal sub-
groupoid of πX and U, V ∈ U are open neighborhoods of x = α(0), y = α(1), respectively.
If [γ]M ∈ B([α]M ,U, U, V ) then

B([α]M ,U, U, V ) = B([γ]M ,U, U, V ).
Proof. If [γ]M ∈ B([α]M ,U, U, V ) then by Lemma 3.5, γ ' λ ∗ µ ∗ α ∗ η ∗ µ′ ∗ λ′, where
η ∈ M(α(1)), λ(I) ⊆ U , λ′(I) ⊆ V , µ ∈ π(U, α(0)) and µ′ ∈ π(U, α(1)). Assume
that [z]M ∈ B([γ]M ,U, U, V ). Then there exist η′ ∈ M(γ(1)), δ(I) ⊆ U , δ′(I) ⊆ V ,
ν ∈ π(U, γ(0)) and ν ′ ∈ π(U, γ(1)) such that

z ' δ ∗ ν ∗ γ ∗ η′ ∗ ν ′ ∗ δ′

' δ ∗ ν ∗ λ ∗ µ ∗ α ∗ η ∗ µ′ ∗ λ′ ∗ η′ ∗ ν ′ ∗ δ′.

By Lemma (3.4) there exist θ1 ∈ π(U, λ(1)), θ2 ∈ M(λ′(0)) and θ3 ∈ π(U, λ′(0)) such that
ν ∗ λ ' λ ∗ θ1, λ′ ∗ η′ ' θ2 ∗ λ′ and λ′ ∗ ν ′ ' θ3 ∗ λ′. Therefore,

z ' (δ ∗ λ) ∗ (θ1 ∗ µ) ∗ (α ∗ η) ∗ (µ′ ∗ θ2 ∗ θ3) ∗ (λ′ ∗ δ′).
Since θ := θ1 ∗ µ ∈ π(U, α(0)), θ′ := µ′ ∗ θ1 ∗ θ2 ∈ π(U, α(1)), σ := (δ ∗ λ)(I) ⊆ U and
σ′ := (λ′ ∗ δ′)(I) ⊆ V , z ' σ ∗ θ ∗ α ∗ η ∗ θ′ ∗ σ′ which implies that [z]M ∈ B([α]M ,U, U, V )
and hence

B([γ]M ,U, U, V ) ⊆ B([α]M ,U, U, V ).
Conversely, we have α ' µ−1 ∗λ−1 ∗γ ∗λ′−1 ∗µ′−1 ∗η−1 because γ ' λ∗µ∗α∗η∗µ′ ∗λ′. By
Lemma (3.4) there exists [η′] ∈ M(γ(1)) such that α ' µ−1 ∗λ−1 ∗γ ∗η′ ∗λ′−1 ∗µ′−1. Also,
there exist [θ] ∈ π(U, γ(0)) and [θ′] ∈ π(U, γ(1)) such that α ' λ−1 ∗ θ ∗ γ ∗ η′ ∗ θ′ ∗ λ′−1

and therefore [α] ∈ B([γ]M ,U, U, V ). Now, if apply the first part then
B([α]M ,U, U, V ) ⊆ B([γ]M ,U, U, V ).

□

Now, we are ready to define a topology on the πX
M

. But, we need to prove the following
proposition.
Proposition 3.7. For a given space X and any totally disconnected, normal subgroupoid
M of πX, the family
{B([α]M ,U, U, V )| U is an open cover of X; U, V ∈ U, [α] ∈ πX(x, y), x ∈ U, y ∈ V }

form a basis for a topology on the quotient groupoid (πX
M

).
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Proof. For every [α] ∈ πX(x, y), let U = V = X and U = {X}. Then it is easy to
see that [α] ∈ B([α]M ,U, U, V ). If [α]M ∈ B([γ]M ,U, U, V ) ∩ B([δ]M ,U′, U ′, V ′) then
B([α]M ,U, U, V ) = B([γ]M ,U, U, V ) and B([α]M ,U′, U ′, V ′) = B([δ]M ,U′, U ′, V ′), by
Lemma (3.6). Since α(0) ∈ U ∩ U ′ and α(1) ∈ V ∩ V ′, B([α]M ,U ∩ U′, U ∩ U ′, V ∩ V ′) is
basis element containing [α]M . Also,

B([α]M ,U ∩ U′, U ∩ U ′, V ∩ V ′) ⊆ B([α]M ,U, U, V ) ∩B([α]M ,U′, U ′, V ′),
as desired. □

We denote the quotient fundamental groupoid with this topology by (πX
M

)B. After
defining topology, we are interested to know does the quotient groupoid become a topo-
logical groupoid with this topology?

The next theorem answer this question.

Theorem 3.8. Let X be a topological space and M be any totally disconnected normal
subgroupoid of πX. Then (πX

M
)B is a topological groupoid.

Proof. Continuity of the initial map (S). Let α ∈ πX(x, y) and U be an open
neighborhood of S(α) = x. For every open cover U of X, W = U∪{U} is an open cover of
X. If V ∈ W contains y, [α]M ∈ O := B([α]M ,W, U, V ). We have γ ' λ ∗µ ∗α ∗ θ ∗µ′ ∗λ′

where λ, µ, θ, µ′, λ′ are descriptive components and λ(I) ⊆ U . Then S([γ]M ) = λ(0) ∈ U ,
and hence S(O) ⊆ U which implise continuity of S. Similarly, the final map T is continuous.

Continuity of unit map 1. Let U be an open cover of X and x ∈ X. Let
B([α]M ,U, U, V ) be a basic open neighborhood of [1x]M . Thus there exists η ∈ M(α(1))
such that 1x ' λ1 ∗ µ1 ∗ α ∗ η ∗ µ2 ∗ λ2 where µ1 ∈ π(U, α(0)), µ2 ∈ π(U, α(1)), λ1(I) ⊆ U
and λ2(I) ⊆ V . Note that U ∩ V 6= ∅ because λ1(0) = λ2(1) = x. Let N be the path
component of U ∩ V containing x. For every x′ ∈ N , there exists a path φ in N from
x′ to x and there exists η′ ∈ M(x′) such that 1x′ ' γ1 ∗ θ1 ∗ 1x′ ∗ η′ ∗ θ2 ∗ γ2 where
γ1(I) ⊆ N ⊆ U , γ2(I) ⊆ N ⊆ V , θ1 ∈ π(U, x′), θ2 ∈ π(U, x′) and γ1(0) = γ2(1) = x′.
Since 1x′ ' φ ∗ 1x ∗ φ−1, we have

1x′ ' γ1 ∗ θ1 ∗ φ ∗ 1x ∗ φ−1 ∗ η′ ∗ θ2 ∗ γ2.

By Lemma (3.4) there exist θ ∈ M(x) such that φ−1 ∗ η′ ' θ ∗ φ−1 and there are ν ∈
π(U, φ(1)) and ν ′ ∈ π(U, φ−1(0)) such that θ1 ∗ φ ' φ ∗ ν and φ−1 ∗ θ2 ' ν ′ ∗ φ−1. So

1x′ ' (γ1 ∗ φ) ∗ ν ∗ 1x ∗ θ ∗ ν ′ ∗ (φ−1 ∗ γ2).
Where (γ1 ∗ φ)(I) ⊆ U and (φ−1 ∗ γ2)(I) ⊆ V . This implies that

[1x′ ]M ∈ B([1x]M ,U, U, V ).
Continuity of the inverse map i. Let O := B([α−1]M ,U, U, V ) be a basic open

neighborhood of [α−1]M in πX

M
. Clearly [α]M ∈ O′ := B([α]M ,U, V, U). To show that O′

is desired neighborhood of [α]M , it is sufficient to prove that i(O′) ⊆ O. If [γ]M ∈ O′ is an
arbitrary element, then there exists η ∈ M(α(1)) such that γ ' λ1 ∗µ1 ∗α∗η∗µ2 ∗λ2 where
λ1, λ2 are paths in V,U and µ1 ∈ π(U, α(0)), µ2 ∈ π(U, α(1)). Since γ−1 ' λ−1

2 ∗µ−1
2 ∗η−1 ∗

α−1 ∗µ−1
1 ∗λ−1

1 and by Lemma 3.4 there exist η′ ∈ M(α(0)) such that η−1 ∗α−1 ' α−1 ∗η′,
hence

γ−1 ' λ−1
2 ∗ µ−1

2 ∗ α−1 ∗ η′ ∗ µ−1
1 ∗ λ−1

1 .

Since λ−1
2 (I) ⊆ U and λ−1

1 (I) ⊆ V , [γ−1]M ∈ B([α−1]M ,U, U, V ) that means i([γ]M ) ∈ O,
as desired.

Continuity of the multiplication map m. Let [α]M ∈ πX

M
(x, y), [β]M ∈ πX

M
(y, z)

and let B([α ∗ β]M ,U, U, V ) be a basic open neighborhood of [α ∗ β]M . For any W ∈ U

containing y, B([α]M ,U, U,W ) and B([β]M ,U,W, V ) are basic open neighborhoods of
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[α]M and [β]M , respectively. If [α1]M ∈ B([α]M ,U, U,W ) and [β1]M ∈ B([β]M ,U,W, V )
are arbitrary elements where α1(1) = β1(0), then there exists η1 ∈ M(α(1)) such that
α1 ' λ1 ∗ µ1 ∗α ∗ η1 ∗ µ2 ∗ λ2 where λ1, λ2, µ1 and µ2 are descriptive components and also
there exists η2 ∈ M(β(1)) such that β1 ' γ1 ∗ ν1 ∗ β ∗ η2 ∗ ν2 ∗ γ2 where γ1, γ2, ν1, ν2 are
descriptive components. But, m([α1]M , [β1]M ) = [α1 ∗ β1]M . Thus,

α1 ∗ β1 ' λ1 ∗ µ1 ∗ α ∗ η1 ∗ µ2 ∗ λ2 ∗ γ1 ∗ ν1 ∗ β ∗ η2 ∗ ν2 ∗ γ2
' λ1 ∗ µ1 ∗ (α ∗ β) ∗ β−1 ∗ η1 ∗ µ2 ∗ λ2 ∗ γ1 ∗ ν1 ∗ β ∗ η2 ∗ ν2 ∗ γ2.

By Lemma 3.4, there exists θ ∈ M(z) such that

β−1 ∗ η1 ∗ µ2 ∗ λ2 ∗ γ1 ∗ ν1 ∗ β ∗ η2 ' θ ∗ β−1 ∗ µ2 ∗ λ2 ∗ γ1 ∗ ν1 ∗ β.

Also, λ2(I), γ1(I) ⊆ W ∈ U implies that [λ2∗γ1] ∈ π(U, y). Hence [µ2∗λ2∗γ1∗ν1] ∈ π(U, y)
and so [β−1 ∗ µ2 ∗ λ2 ∗ γ1 ∗ ν1 ∗ β] ∈ π(U, z). Therefore we can write

α1 ∗ β1 ' λ1 ∗ µ1 ∗ (α ∗ β) ∗ θ ∗ (β−1 ∗ µ2 ∗ λ2 ∗ γ1 ∗ ν1 ∗ β) ∗ ν2 ∗ γ2.

The result is [α1 ∗ β1]M ∈ B([α ∗ β]M ,U, U, V ). Hence

m(B([α]M ,U, U,W ), B([β]M ,U,W, V )) ⊆ B([α ∗ β]M ,U, U, V ).

□

In the following we show that (πX
M

)B is a generalization of the Brown topology on πX

M
[2], when X is semilocally simply connected. At first, we reconstruct the Brown topology
by some changes to the symbols.

For a semilocally simply connected space X and normal totally disconnected sub-
groupoid M of πX, let U be the open cover of X consisting of all open, path-connected
subsets U of X such that i∗π1(U, x) = {ex}, when i : U → X is the inclusion and x ∈ U .
For every U ∈ U and every x ∈ U , let Ũx = {[λ]M | λ(0) = x, λ(1) ∈ U} ⊆ πX

M
. If

[α]M ∈ πX

M
(x, y) and U, V ∈ U, define

B([α]M , U, V ) = {[β]M | [β]M = [λ−1 ∗ α ∗ λ′]M , [λ]M ∈ Ũx, [λ′]M ∈ Ṽy}.

Theorem 3.9. ([2]) For a semillocally simply connected space X and any totally discon-
nected normal subgroupoid M of πX, the family

{B([α]M , U, V )| [α] ∈ πX(x, y), x ∈ U, y ∈ V }

form a basis for a topology on quotientl groupoid πX

M
that makes πX

M
a topological

groupoid.

Since X is semillocally simply connected space, there exists open cover U consisting of
the open path connected subsets U of X such that i∗π1(U, x) = {ex}, when i : U → X
is the inclusion and x ∈ U . For every x ∈ X, π(U, x) is the trivial group. For every
[α]M ∈ πX

M
and every U, V ∈ U containing α(0) = x and α(1) = y, respectively,

B([α]M ,U, U, V ) = {[λ ∗ α ∗ η ∗ λ′]M | λ(I) ⊆ U, λ′(I) ⊆ V, η ∈ M(α(1))}.

By Lemma(3.4), there exists η′ ∈ M(λ′(1)) such that η ∗λ′ ' λ′ ∗ η′. Therefore [λ ∗α ∗ η ∗
λ′]M = [λ ∗ α ∗ λ′ ∗ η′]M . Since η′ ∈ M(λ′(1)), [λ ∗ α ∗ λ′ ∗ η′]M = [λ ∗ α ∗ λ′]M .

Proposition 3.10. For a semillocally simply connected space X and normal, totally dis-
connected subgroupoid M of πX, the topology of (πX

M
)B is the Brown,s topology on πX

M
.
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3.2. Some quotients of topological groupoids
An example of the differences between topological groups and topological groupoids is

quotienting. For topological groups, if M is a normal subgroup of the topological group
G, the identification mapping q : G −→ G

M
is an open mapping and this makes it easy

to prove the continuity of the composition map in G

M
. But for topological groupoid G

and normal subgroupoid M , this conclusion breaks down because the identification map
is not necessarily an open map. Although in the case that G is locally compact hausdorff
topological groupoid and M is a compact normal subgroupoid, Brown and Hardy [3] have
proved that q : G −→ G

M
is an identification map. Brown and Hardy [3] have introduced a

topology on the G

M
by a different construction making it a topological groupoid in which

under some conditions agree with the quotient topology.
Now, we want to show that when M is a totally disconnected normal subgroupoid of

G, the quotient groupoid G

M
is a topological groupoid.

Proposition 3.11. If G is a topological groupoid and M is a totally disconnected normal
subgroupoid of G. Then the quotient map q : G −→ G

M
is open.

Proof. We must show that q(U) is open, for every open set U ⊆ G. We claim that
q−1(q(U)) = UM . If c ∈ q−1(q(U)) then q(c) ∈ q(U) and there exists a ∈ U such that
q(c) = q(a) or equivalently cM = aM . Since c1y ∈ cM(y), there exists k ∈ M(y) such
that c1y = ak or c = ak and hence c ∈ UM .

Conversely, let c ∈ UM . There exist a ∈ U and k ∈ M(y) such that c = ak. Then
cM = akM = aM and so q(c) = q(a) which implies that c ∈ q−1(q(a)) and hence
c ∈ q−1(q(U)).

Now, UM =
⋃

g∈M

Ug and also for every g ∈ M(x), Ug = Uxg = Rg
(
Ux

)
.

Since M is a totally disconnected full subgroupoid of G, g ∈ M means that there exists
x ∈ G0 such that g ∈ M(x) and also Rg : Gx −→ Gx is a homeomorphism. Ux is open in
Gx because U is open in G. Hence Ug and so UM is open in G. According to the quotient
topology, q(U) is open in G

M
and therefore q is open map. □

Theorem 3.12. If G is a topological groupoid and M is a totally disconnected normal
subgroupoid of G, then G

M
is a topological groupoid.

Proof. Continuity of initial map S̄. For the initial map S̄ : G

M
−→ X that S̄(aM) =

a(0), continuity comes from the continuity of the initial map S : G −→ X, continuity of
the identity map iX and the fact that q is open map.

-

-
? ?

G X
S

G

M
X

S̄

q iX

Continuity of unit map 1̄. Let 1̄ : X −→ G

M
be 1̄(x) = 1xM = M . According to the

following commutative diagram and continuity of iX and 1, the map 1̄ is also continuous,
because q is quotient map.
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-

-
? ?

X G
1

X
G

M

1̄

iX q

Continuity of inverse map ī. Similarly and by using the following diagram, ī is con-
tinuous.

-

-
? ?

G G
i

G

M

G

M

ī

q q

Continuity of multiplication map m̄. By Proposition 3.11, the quotient map q is open
which implies that q × q is a quotient map. Now, consider the following diagram. Since
multiplication map m of topological groupoid G is continuous and q, q × q are quotient
maps, m̄ is continuous.

-

-
? ?

G×G G
m

G

M
× G

M

G

M

m̄

q × q q

□

3.3. Quotient of lasso topology
The authors in [11] have introduced lasso topology on the fundamental groupoid and

have shown that this topology makes the fundamental groupoids as a topological groupoid
and denoted it by πLX.

In the previous section, we have proved that quotients of topological groupoids by totally
disconnected normal subgroupoids are also topological groupoids. Hence for every totally

disconnected normal subgroupoid M of πLX, π
LX

M
is a topological groupoid. Here we will

show that the generalized Brown topology on πX

M
is equivalent to the quotient of lasso

topology on πX

M
.

Definition 3.13. ([11]) Let U be an open cover of a given space X and for x, y ∈
X, let [α] ∈ πX(x, y). If U, V ∈ U are open neighborhoods of x, y respectively, then
N([α],U, U, V ) =

{[β] ∈ πX | β ' λ ∗ µ ∗ α ∗ µ′ ∗ λ′, µ ∈ π(U, x), µ′ ∈ π(U, y), λ : I −→ U, λ′ : I −→ V }.
The lasso topology on the fundamental groupoids has a basis as follow:

B = {N([α],U, U, V );U is an open cover of X,U, V ∈ U, [α] ∈ πX(x, y)}.
The following lemma shows that q(B) will be a basis for the quotient of the lasso topology
on πX

M
.
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Lemma 3.14. For a given space Y and equivalence relation ∼ on Y , let q : Y −→ Y

∼
be

an open quotient map and B be a basis for the topology on Y . Then q(B) is a basis for
the quotient topology on Y

∼
.

Proof. It is straight. □

Corollary 3.15. For a given topological space X and any totally disconnected normal
subgroupoid M of πX, the family

{q(N([α],U, U, V )) = N([α]M ,U, U, V );U is an open cover of X, [α] ∈ πX(x, y)},

forms a basis for the quotient topology on πLX

M
.

Remark 3.16. Not that N([α],U, U, V ) = {[β]M | β ' λ ∗ µ ∗ α ∗ µ′ ∗ λ′} and since
[β]M = {β ∗η | η ∈ M(β(1))}, [γ]M ∈ N([α]M ,U, U, V ) means that γ ' λ∗µ∗α∗µ′ ∗λ′ ∗η
where λ is a path in U and λ′ is a path in V such that λ(1) = α(0), λ′(0) = α(1) and
µ ∈ π(U, α(0)), µ′ ∈ π(U, α(1)), η ∈ M(γ(1)).

Theorem 3.17. For a given space X and totally disconnected normal subgroupoid M of

πX, (πX
M

)B = πLX

M
.

Proof. As we know obj(πX
M

) = X and πLX

M
(x, y) = {[α]M | [α] ∈ πLX(x, y)}. Let’s

prove it first that π
LX

M
is finer than (πX

M
)B.

Let [γ]M ∈ B([α]M ,U, U, V ). We need to find an open neighborhood N([α]M ,U, U, V )

of [γ]M in πLX

M
such that [γ]M ∈ N([α]M ,U, U, V ) ⊆ B([α]M ,U, U, V ). Since [γ]M ∈

B([α]M ,U, U, V ), there exists η ∈ M(α(1)) such that

γ ' λ ∗ µ ∗ α ∗ η ∗ µ′ ∗ λ′,

where λ(I) ⊆ U , λ′(I) ⊆ V , µ ∈ π(U, α(0)) and µ′ ∈ π(U, α(1)).
By multiple uses of Lemma 3.4, there exists ξ ∈ M(γ(1)) such that

γ ' λ ∗ µ ∗ α ∗ µ′ ∗ λ′ ∗ ξ.

So [γ]M ∈ N([α]M ,U, U, V ) by Remark 3.16.
Now, for every [β]M ∈ N([α]M ,U, U, V ), there exists θ ∈ M(β(1)) such that β '

δ ∗ ν ∗ α ∗ ν ′ ∗ δ′ ∗ θ, where ν ∈ π(U, α(0)), ν ′ ∈ π(U, α(1)) and δ, δ′ are paths in U, V ,
respectively. By Lemma 3.4, there exists η′ ∈ M(α(1)) such that δ′ ∗ θ ' η′ ∗ δ′. So we
can write β ' δ ∗ ν ∗ α ∗ η′ ∗ η′−1 ∗ ν ′ ∗ η′ ∗ δ′. Since ν̄ := (η′−1 ∗ ν ′ ∗ η′) ∈ π(U, α(1)),
β ' δ ∗ ν ∗ α ∗ η′ ∗ ν̄ ∗ δ′ and hence [β]M ∈ B([α]M ,U, U, V ), as desired.

Conversely, we will prove that (πX
M

)B is finer than πLX

M
.

Let [γ]M ∈ N([α]M ,U, U, V ), then there exists η ∈ M(γ(1)) such that

γ ' λ ∗ µ ∗ α ∗ µ′ ∗ λ′ ∗ η,

where λ, λ′ are paths in U, V , respectively and µ ∈ π(U, α(0)), µ′ ∈ π(U, α(1)).
By Lemma 3.4, there exist η′ ∈ M(α(1)) such that (µ′ ∗ λ′) ∗ η ' η′ ∗ (µ′ ∗ λ′) and so

γ ' λ ∗ µ ∗ α ∗ η′ ∗ µ′ ∗ λ′.

Hence, [γ]M ∈ B([α]M ,U, U, V ).
We show that B([α]M ,U, U, V ) ⊆ N([α]M ,U, U, V ).
Let [β]M ∈ B([α]M ,U, U, V ). Then there exist ξ ∈ M(α(1)) such that β ' δ ∗ ν ∗ α ∗

ξ ∗ ν ′ ∗ δ′, where δ, δ′ are paths in U, V , respectively and ν ∈ π(U, α(0)), ν ′ ∈ π(U, α(1)).
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By using Lemma 3.4, there exists ξ′ ∈ M(β(1)) such that β ' δ ∗ ν ∗α ∗ ν ′ ∗ δ′ ∗ ξ′. Hence
[β]M ∈ N([α]M ,U, U, V ). □

The following propositions specify some properties of the induced maps on the topolog-
ical fundamental groupoids.

Theorem 3.18. Let X,Y are topological spaces and M,N are totally disconnected normal
subgroupoid of πX, πY , respectively. If f : X −→ Y is a continuous map such that
πf(M) ⊆ N then the map πf : (πX

M
)B −→ (πY

N
)B defined by πf([λ]M ) = [f ◦ λ]N is

continuous.

Proof. By Theorem 3.17 it suffices to prove that πf : π
LX

M
−→ πLY

N
is continuous.

Continuity of πf : πLX −→ πLY comes from the continuity of f [11], and q, q′ are
quotient maps . By commutativity of the following diagrom, continuity of πf is obvious.

-

-
? ?

πLX πLY

πf

πLX

M

πLY

N

πf

q q′

□

Recall that for paths λ, γ in X,Y , respectively, by (λ, γ) : I −→ X × Y we mean the
path (λ, γ)(t) = (λ(t), γ(t)). It is straight that (λ, γ) ∗ (α, β) = (λ ∗ α, γ ∗ β), where the
concatenations are defined.

Proposition 3.19. Let X,Y are topological spaces and M,N are totally disconnected nor-

mal subgroupoids of πX, πY , respectively. Then
(π(X × Y )
M ×N

)B is isomorphic as topological

groupoid to (πX
M

)B × (πY
N

)B, equiped by the product topology.

Proof. Since the projection maps p1 : X×Y −→ X and p2 : X×Y −→ Y are continuous,

by Proposition 3.18, the maps πp1
(π(X × Y )
M ×N

)B −→ (πX
M

)B and πp2 :
(π(X × Y )
M ×N

)B −→

(πY
N

)B are continuous which induce the continuous map ψ :
(π(X × Y )
M ×N

)B −→ (πX
Y

)B ×

(πY
N

)B. If φ : (πX
M

)B × (πY
N

)B −→
(π(X × Y )
M ×N

)B is defined by φ([α]M , [β]N ) =
[(α, β)]M×N , it is easy to see that φ ◦ ψ = id and ψ ◦ φ = id. Hence ψ is a bijection.

It remains to prove the continuity of φ. Let W := B([(λ, γ)]M×N ,U, U, V ) be a basic
open neighborhood of [(λ, γ)]M×N , where U is an open cover of X × Y and U, V ∈ U. If
U1 := p1(U) and U2 := p2(U), then U1 is an open cover of X and U2 is an open cover
of Y . Let U1 := p1(U) and let U2 := p2(U) where they are open neighborhoods of λ(0)
and γ(0), respectively. Also, let V1 := p1(V ) and let V2 := p2(V ) where they are open
neighborhoods of λ(1) and γ(1), respectively.

Now, let O1 := B([λ]M ,U1, U1, V1), O2 := B([γ]N ,U2, U2, V2). It is obvious that [λ]M ∈
O1 and [γ]N ∈ O2. We will show that φ(O1, O2) ⊆ W . Suppose that [λ1]M ∈ O1. There
exists η1 ∈ M(λ(1)) such that

λ1 ' µ ∗ θ ∗ λ ∗ η1 ∗ θ′ ∗ µ′,

where µ(I) ⊆ U1, µ′(I) ⊆ V1, θ ∈ π(U1, λ(0)) and θ′ ∈ π(U1, λ(1)).
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Let [γ1] ∈ O2. There exists η2 ∈ N(γ(1)) such that
γ1 ' ν ∗ δ ∗ γ ∗ η2 ∗ δ′ ∗ ν ′,

where ν(I) ⊆ U2, ν ′(I) ⊆ V2, δ ∈ π(U2, γ(0)) and δ′ ∈ π(U2, γ(1)). Thus
φ([λ1]M , [γ1]N ) = [(λ1, γ1)]M×N

= [(µ, ν) ∗ (θ, δ) ∗ (λ, γ) ∗ (η1, η2) ∗ (θ′, δ′) ∗ (µ′, ν ′)],
where (µ, ν) is path in U = U1 × U2 and (µ′, ν ′) is path in V = V1 × V2, (θ, δ) ∈

π(U, (λ(0), γ(0))), (θ′, δ′) ∈ π(U, (λ(1), γ(1))) and (η1, η2) ∈ M ×N(λ(1), γ(1)) Hence
[(λ1, γ1)]M×N ∈ B([(λ, γ)]M×N ,U, U, V ).

Therefore φ is continuous. □
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