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Abstract

In this paper, we generalize the Brown’'s topology on the fundamental groupoids. For
a locally path connected space X and a totally disconnected normal subgroupoid M of

X
w.X, we define a topology on the quotient groupoid —— which is a generalization of what

introduced by Brown for locally path connected and semilocally simply connected spaces.

X
We prove that ﬂﬁ equipped with this topology is a topological groupoid. Also, we will find

a class of subgroupoids of topological groupoids whose their related quotient groupoids will

X
be topological groupoids. By using this, we show that our topology on Wﬁ is equivalent
Lx
to the quotient of the Lasso topology on the topological fundamental groupoids, WW

Mathematics Subject Classification (2020). 22A22, 55Q05, 57MO05

Keywords. fundamental groupoid, topological groupoid, quotient groupoid

1. Introduction

Brown and Danesh-Naruie [2] have defined the “lifted topology" on the quotient groupoid

X
L, where X is a loclly path connected and semilocally simply connected space and M

is a totally disconnected normal subgroupoid of 7X. By this topology that we call it

Brown's topology, T2 becomes a locally trivial topological groupoid with discrete object
groups. M

Out of the category of locally nice spaces, the authors have determined the Lasso topol-
ogy on the fundamental groupoid that makes it a topological groupoid [11]. Lasso topology
on the fundamental groupoid is a generalization of the Lasso topology on the fundamental
group and the universal path space [4,9].

Although quotients of topological groups by normal subgroups are topological groups,
but this has not yet been proven for topological groupoid and of course there is no coun-
terexample [5,7]. It is notable that in [5,7] the normal subgroupoid is not necessarily
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totally disconnected. The problem that appears in the proof is that for a normal sub-

group N of a topological group G, the quotient map ¢ : G — N is an open map, but this
L

fails for topological groupoids. So we can not directly conclude that is a topological
groupoid.

Here, for a locally path connected space X and a totally disconnected normal sub-

X
groupoid M of 7 X we generalize the Brown's topology on the quotient groupoid Wﬁ

More precisely, by using spanier groups of open covers of X, we introduce a topological

basis for a topology on the Wﬁ such that makes it a topological groupoid. Then by recon-

X
structing the basis of the Brown's topology on the Wﬁ, we will show that for semilocally

simply connected spaces, these topologies are equivalent.
In the sequel, by proving that quotients of topological groupoids by totally disconnected

normal subgroupoids are topological groupoids, we show that the quotient of Lasso topol-

X
ogy on Trﬁ makes it a topological groupoid. Finally, we will prove that these topologies

X ivalent
on —— are equivalent.
i q

2. Preliminaries

A groupoid G over Gy, denoted by (G, Gp), consists of a set of arrows G and a set of
objects Gg, together with two maps S, T : G — G, called respectively the source and
target maps, a map 1 : Gg — G;x — 1, called the unit map, a map i : G — G;a —
a~!, called the inverse map and a map m : Gy — G;(a;b) — m(a;b) = ab, called
the composition map, where G5 denotes the set of composable arrows: Go = {(a;b) €
G x G| S(b) =T(a)}.

These structure maps satisfy the following conditions:

i) S(ab) = S(a) and T'(ab) = T'(b) for all (a;b) € G,

(ii) a(bc) = (ab)c for all a,b,c € G such that S(b) = T'(a) and S(c) = T'(b),
(iii) S(1;) =T(1,) = z for all x € Gy,
(iv) alp() = a and 1ggya = a for all a € G
(v) each a € G has a two-sided inverse a~! such that S(a~!) = T'(a), T(a~!) = S(a) and
aa —15( )3 a 1a—1T(a).

The set of arrows from z to y is denoted by G(z,y) and, in particular, G(z) := G(z, x)
is called the object group (or vertex group) at z. Also, we denote S~!(x) by G, and
T-1(x) by G*.

Definition 2.1. ([7]) A topological groupoid is a groupoid G together with topologies on
G and Gy such that the structure maps are continuous.

Definition 2.2. ([1]) Let G and G’ be two groupoids with object sets G and Gf), respec-
tively. A groupoid homomorphism is a pair (F, f) of maps F : G — G’ and f : Gy — G|,
which send each object x of G to an object f(z) of G’ and each arrow a € G(z,y) to an ar-
row F(a) € G'(f(x), f(y)), respectively, such that F'(ab) = F(a)F(b) for every (a,b) € Ga,
SoF=foSand ToF = foT.

Also, a topological groupoid homomorphism is a groupoid homomorphism which is
continuous on both objects and arrows. For each a € G(z,y) the right translation
R, : G* — GY, defined by R,(b) = ba and the left translation L, : G, — Gg,
defined by L,(b) = ab are homeomorphism.

Let X be a topological space. The fundamental groupoid 7X has homotopy classes
of paths in X as the set of morphisms and has the set X as its set of objects, and for
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any z,y € X the set 7X(z,y) is the set of homotopy classes of paths in X from z to y.
Composition of morphisms [a], [3] is [ % 5] and the identity in 7 X (x,z) is the e, = [cz].
We can consider the object group at x, 7X(z), as the well-known fundamental group
(X, ).

If U is an open cover of X, the subgroup of 71 (X, z) consisting of the homotopy classes
of loops that can be represented by a product of the following type:

n
-1
[T wivjus
i=1

where the u;’s are arbitrary paths starting at the base point z and each v; is a loop inside
one of the neighborhoods U; € U. This group is called the Spanier group with respect to
U, denoted by 7(U, z) [8,10].

Definition 2.3. ([1]) Let (G,Gp) be a groupoid. A normal subgroupoid of (G,Gy) is
a wide subgroupoid (M, Gp) such that for any x,y € Gy and any a € G(z,y) we have
aM(z)a=! € M(y). A totally disconnected subgroupoid (M,Gy) of (G,Gp) is a sub-
groupoid such that for any = # y € Gy, we have M (z,y) = (.

G
Definition 2.4. ([1,5,6]) If M is a normal subgroupoid of the groupoid G, i is a groupoid

G
in which Ob(—) = Ob(G) and the elements of — are equivalence classes of elements of
G under the relation a ~ b if and only if ¢ = zby for some x,y in M. We denote this
elements by aM or aj,.

Throughout this paper, all spaces are connected and locally path connected. Also, all
homotopies between paths are relative to end points.

3. Main results
3.1. Generalization of the Brown's topology

Let X be a topological space and M be a totally disconnected, normal subgroupoid

of 7X. The quotient groupoid Wﬁ has X as objects set and elements in 7rM(:E,y) are

[o]ar = {[axp; [8] € M(y)} where [a] € X (z,y). Clearly ([a]a) ™" = ([o] ™ )ar = [a™]u
and composition of [&]as, [5]ar is [a * B]ar, where a(1) = 5(0).

Remark 3.1. It is notable that if [a] 3y = []ar then there exists v € M such that aw ~ Sx7.

For an open cover U of X and for z,y € X, let [a] € 7X(x,y) and U,V € U be open
neighborhoods of z,y, respectively. we define

B([o]y, W, U, V) = {[Ax pxasnsp+ Nar | [n] € M(a(1),AI) S UN(I) SV},

where [u] € 7(U, «(0)), [p]" € 7(U, a(1)).
We recall that for two open covers U, U of X, U C U means that if U € U then U € U’
The following proposition is useful when we are working with Spanier groups.

Proposition 3.2. Let X be a topological space and x € X. Then
(i) For every open cover U of X, (U, x) is a normal subgroup of m (X, x).
(i) If U C W, then m(U,z) C w(W,z).
(iii) UNV={UNV |U e WU,V €V} is an open cover of X and UN'V C U.
(iv) If V is an open cover of Y and f: X — Y is a continuous function with f(x) =1y,
then U == f~Y(V) = {f~X(V)| V € V} is an open cover of X and f.(w(U,x)) C
m(V,y).

Proof. Easily come from definitions. O
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Proposition 3.3. Let U be an open cover of a given space X and M be a totally dis-
connected, normal subgroupoid of #X. Let U, U € U are open neighborhoods of «(0)
and V, V! € W are open neighborhoods of a(1) such that U C U and V' C V, then
B([a]a, W, U, V") C B([a]ar, W, U, V).

Proof. Since U’ C U, pathes in U’ are pathes in U. Now, according to the definition, the
proof is clear. O

Lemma 3.4. Let U be an open cover of X and M be the totally disconnected, normal
subgroupoid of 7X. If [a] € X (x,y) and n € M(«(0)) then there exists n' € M(a(1))
such that n* [a] ~ [a] * 7.
Proof. This comes from normality of M. O
Lemma 3.5. Let U be an open cover of a given space X and M be a totally disconnected,
normal subgroupoid of 7X, then [ylym € B([ala, W, U, V) if and only if there exist [n] €
M(a(1)), [p] € 7(U,a(0)), 1] € 7(U, (1)) and pathes A\, N in U,V such that v =~
Axpxasn*u * N,
Proof. 1t follows from the definition, Remark 3.1 and Lemma 3.4 . O
Lemma 3.6. Let U be an open cover of X, M be a totally disconnected, normal sub-
groupoid of 7 X and U,V € U are open neighborhoods of v = a/(0), y = a(1), respectively.
If IYlm € B([a]a, WU, V) then

B([Q]Ma u, U, V) = B([’Y]Ma ua U, V)
Proof. If [y]am € B([a]a, U, U, V) then by Lemma 3.5, v ~ A% pux av % p’ * X, where
n € M(a(l)), X\I) C U, NI) CV, u € 7(U,a(0)) and ' € 7(U,(1)). Assume
that [z]ar € B([v]am,U,U, V). Then there exist ' € M(v(1)), 6(I) C U, ¢'(I) C V,
v e m(U,v(0)) and v/ € 7(U,~(1)) such that

2 dxvxyxn kv %8
~fxvsdspxasnxp x N xn x x4,
By Lemma (3.4) there exist 61 € 7(U, A(1)), f2 € M (N (0)) and 65 € 7(U, A'(0)) such that
vk A= Ax01, N xn' ~60x N and N * 1/ ~ 03 x \'. Therefore,
22 (0% N) % (01 % p) * (axn)x (1 x0g%03) % (N x5).

Since 0 := 01 x p € (U, a(0)), & := p/ * 601 x 02 € (U, (1)), o0 := (6 x N\)(I) C U and
o =Nx*x§)I)CV,z~0x0xaxnx0 xo" which implies that [z]y; € B([a]a, U, U, V)
and hence

B([V]M7 u7 U7 V) g B([O&]M, u7 U7 V)
Conversely, we have o ~ = s A ey s« N1 x g/~ Lan™! because v ~ A pxaxn*pu'* N . By
Lemma (3.4) there exists [/] € M (y(1)) such that a =~ p=tx ALy« N =Lx /=1 Also,
there exist [0] € 7(U,~v(0)) and [¢'] € m(U, (1)) such that o = A™L % G5y %1/ % 0 % N1
and therefore [a] € B([y]a, U, U, V). Now, if apply the first part then

B([a]a, W, U, V) C B([y]am, W, U, V).

]

X
Now, we are ready to define a topology on the Wﬁ But, we need to prove the following
proposition.

Proposition 3.7. For a given space X and any totally disconnected, normal subgroupoid
M of nX, the family

{B([a]ar, W, U, V)| W is an open cover of X; U,V €U, [o] € nX(z,y), x€ U, yeV}

form a basis for a topology on the quotient groupoid (FM)
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Proof. For every [a] € nX(x,y), let U =V = X and U = {X}. Then it is easy to
see that [a] € B([a|y, W, U, V). If [a]lp € B([v]m, W, U, V) N B([6]ar, W, U’, V') then
B(laJa, WU, V) = B([v]m, U, U, V) and B([a]y, W, U, V') = B([0]ym,W,U’, V'), by
Lemma (3.6). Since a(0) € UNU" and a(1) € VNV’ B([a]p, UNUW, UNT,VNV')is
basis element containing [a]as. Also,

B(lala, UNW,UNU, VAV’ C B(lala, W, U, V) A B(ja]y, W, U, VY,

as desired. m

X
We denote the quotient fundamental groupoid with this topology by (%)B . After

defining topology, we are interested to know does the quotient groupoid become a topo-
logical groupoid with this topology?
The next theorem answer this question.

Theorem 3.8. Let X be a topological space and M be any totally disconnected normal

X
subgroupoid of wX. Then (%)B s a topological groupoid.

Proof. Continuity of the initial map (S5). Let o € nX(x,y) and U be an open
neighborhood of S(«) = x. For every open cover U of X, W = UU{U} is an open cover of
X. If V €W contains y, [a]y € O := B([a]y, W,U, V). We have v ~ Ak s a*0xp « N
where A, u, 0, u’, N are descriptive components and A(I) C U. Then S([y]x) = A(0) € U,
and hence S(O) C U which implise continuity of S. Similarly, the final map 7" is continuous.

Continuity of unit map 1. Let U be an open cover of X and z € X. Let
B([a]ar, U, U, V) be a basic open neighborhood of [1;]as. Thus there exists n € M(«(1))
such that 1; >~ Aj * p1 * a % 1 * g * A2 where p; € (U, «(0)), p2 € 7(U, (1)), \i(I) CU
and A2(I) C V. Note that U NV # ) because A\1(0) = A2(1) = z. Let N be the path
component of U NV containing x. For every 2/ € N, there exists a path ¢ in N from
x’ to x and there exists ' € M(a') such that 1, ~ 71 % 6y x 1,7 x5/ x 02 * v2 where
71(I) €N CU, () CNCV, b €n(ll,z'), 0 € n(U,2’) and 71(0) = 2(1) = 2'.
Since 1,/ ~ ¢ * 1, * o1, we have

Iy >y %01 %@kl x@ L xn %0 %7,
By Lemma (3.4) there exist # € M (x) such that ¢! x5/ ~ 6 x =1 and there are v €
(U, p(1)) and v/ € 7(U, ¢~ 1(0)) such that 61 x o ~ p*v and ¢ L x 0y ~ v/ % p~1. So
Ly~ (yx@)xvslyx 0% % (0! xy).
Where (v1 % ¢)(I) C U and (¢~ ! % v2)(I) C V. This implies that
(1o]ar € B([1z]a, W, U, V).
Continuity of the inverse map i. Let O := B([a™!]y,U,U,V) be a basic open
neighborhood of [a~!],; in % Clearly [a]pr € O' := B([a]p, U, V,U). To show that O’

is desired neighborhood of [a]yy, it is sufficient to prove that i(O’) C O. If [y]y; € O is an
arbitrary element, then there exists n € M (c(1)) such that v o~ Aj g * sk pg * A2 where
A1, Ag are paths in V, U and 1 € (U, (0)), p2 € 7(U, a(1)). Since v~ o~ Ay tspuy b1 x
a Yyt A7 and by Lemma 3.4 there exist 77/ € M(a(0)) such that 7 xa~! ~ a7/,
hence
=D PR YT N R (R TREE D S
Since Ay }(I) C U and A\ (I) €V, [y ar € B(leYar, U, U, V) that means i([y]ar) € O,
as desired.
oo e nX mX
Continuity of the multiplication map m. Let [a]y € ﬁ(ac,y), Bl € M(y,z)

and let B([a * B]ar, U, U, V') be a basic open neighborhood of [a % 5]5r. For any W € U
containing y, B([a]n, W, U, W) and B([5]ar, U, W, V) are basic open neighborhoods of
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[a]ar and [B]ar, respectively. If [a1]a € B([o)ar, W, U, W) and [51]am € B([Bla, U, W, V)
are arbitrary elements where aq(1) = (1(0), then there exists 71 € M(«a(1)) such that
Q] ™ ALk ]k ek My ok gk Ao where A1, Ao, 1 and po are descriptive components and also
there exists 1y € M(S(1)) such that 81 ~ 1 % 11 % 8 % 19 * vy % v where 71,72, 11, Vo are
descriptive components. But, m([a1]ar, [B1]ar) = [@1 * B1]ar. Thus,

Qp ok B1 o Ak Uy R Qux Mk ek Ag kY1 k vk 3k Mok Vg k 2
:)\1*Ml>f<(a*ﬁ)*ﬁ_l*nl*ug*)\g*yl*yl*ﬂ*nz*yg*’yg.

By Lemma 3.4, there exists § € M(z) such that

Blwmp ko Mok yr vy * Bam = 0 B % g x Ag %y % vy % .

Also, Ao(I),v1(I) € W € U implies that [Ae*xv1] € m(U,y). Hence [paxAaxyi*x11] € (U, y)
and so [B371 % pg * Ay * 1 x 1 * 8] € m(U, 2). Therefore we can write

al*ﬂl:)\1*,ul*(a*ﬂ)*e*(B*I*/LQ*)\Q*fyl*yl*ﬁ)*yg*fyg.
The result is [aq * S1]ar € B([ax Blar, U, U, V). Hence
m(B([Oé]M,u,U, W)vB([B]Mauvmv)) - B([Oé * B]Mauv U, V)
O

T
B is a generalization of the Brown topology on —

M
[2], when X is semilocally simply connected. At first, we reconstruct the Brown topology

by some changes to the symbols.
For a semilocally simply connected space X and normal totally disconnected sub-
groupoid M of wX, let U be the open cover of X consisting of all open, path-connected

subsets U of X such that i,m (U,x) = {e;}, when ¢ : U — X is the inclusion and = € U.

~ X
For every U € U and every x € U, let U, = {[A]m | A(0) = 2,A\(1) € U} C Wﬁ If

X
In the following we show that (Wﬁ)

X
ﬁ(x,y) and U,V € U, define

B([alar, U.V) = {[Blar | 181 = N w ax Nag, Nar € Us, [V € Vi )

Theorem 3.9. (]2]) For a semillocally simply connected space X and any totally discon-
nected normal subgroupoid M of 7X, the family

{B([O‘]MaUa V)| [O[] € WX(CC,y), xel ye V}

[alnr €

X X
form a basis for a topology on quotientl groupoid Wﬁ that makes Wﬁ a topological

groupoid.

Since X is semillocally simply connected space, there exists open cover U consisting of
the open path connected subsets U of X such that i,m(U,z) = {ez}, when ¢ : U — X
is the inclusion and x € U. For every x € X, w(U,x) is the trivial group. For every

X
[a]ar € Wﬁ and every U,V € U containing «(0) = x and «(1) = y, respectively,

B([a]a, WU, V) = {[Axaxn* XNy | AXI) CUNI) CV,ne M(a(1))}.
By Lemma(3.4), there exists ' € M (N (1)) such that n*x A ~ X xn/. Therefore [\ * a 1 x*
Nip=[Axax XN «n]y. Since n’ € M(N(1)), [Nk a*x XN xn]ar = [Axax Ny
Proposition 3.10. For a semillocally simply connected space X and normal, totally dis-

X X
connected subgroupoid M of w X, the topology of (%)B is the Brown's topology on Wﬁ
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3.2. Some quotients of topological groupoids

An example of the differences between topological groups and topological groupoids is
quotienting. For topological groups, if M is a normal subgroup of the topological group

G
G, the identification mapping ¢ : G — i is an open mapping and this makes it easy

G
to prove the continuity of the composition map in a But for topological groupoid G

and normal subgroupoid M, this conclusion breaks down because the identification map
is not necessarily an open map. Although in the case that G is locally compact hausdorff
topological groupoid and M is a compact normal subgroupoid, Brown and Hardy [3] have

proved that ¢ : G — Vi is an identification map. Brown and Hardy [3] have introduced a

topology on the % by a different construction making it a topological groupoid in which
under some conditions agree with the quotient topology.

Now, we want to show that when M is a totally disconnected normal subgroupoid of
G, the quotient groupoid % is a topological groupoid.
Proposition 3.11. If G is a topological groupoid and M is a totally disconnected normal
subgroupoid of G. Then the quotient map q: G — % is open.

Proof. We must show that ¢(U) is open, for every open set U C G. We claim that
¢ HqU)) = UM. If c € ¢ *(q(U)) then g(c) € ¢(U) and there exists a € U such that
q(c) = g(a) or equivalently ¢cM = aM. Since cl, € cM(y), there exists k € M(y) such
that cl, = ak or ¢ = ak and hence c € UM.

Conversely, let ¢ € UM. There exist a € U and k € M (y) such that ¢ = ak. Then
cM = akM = aM and so q(c) = g(a) which implies that ¢ € ¢ '(¢(a)) and hence
ceq ' (q(U)).

Now, UM = U Ug and also for every g € M(z), Ug = U%g = Ry(U").

eM

Since M is a gotally disconnected full subgroupoid of G, g € M means that there exists
x € Gy such that g € M(x) and also R, : G* — G* is a homeomorphism. U? is open in
G”* because U is open in GG. Hence Ug and so UM is open in G. According to the quotient

G
topology, ¢(U) is open in i and therefore ¢ is open map. O

Theorem 3.12. If G is a topological groupoid and M is a totally disconnected normal
subgroupoid of G, then i is a topological groupoid.

_ _ G _
Proof. Continuity of initial map S. For the initial map S : i — X that S(aM) =

a(0), continuity comes from the continuity of the initial map S : G — X, continuity of
the identity map ix and the fact that ¢ is open map.

S
G X
q lix
S
& X
M

_ _ G _
Continuity of unit map 1. Let 1: X — i be 1(x) = 1,M = M. According to the

following commutative diagram and continuity of ix and 1, the map 1 is also continuous,
because ¢ is quotient map.
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X

ix

1

G
X il
M
Continuity of inverse map i. Similarly and by using the following diagram, i is con-
tinuous.

G G
q q
G i G
M M

Continuity of multiplication map m. By Proposition 3.11, the quotient map ¢ is open
which implies that ¢ x ¢ is a quotient map. Now, consider the following diagram. Since
multiplication map m of topological groupoid G is continuous and ¢, ¢ X g are quotient
maps, m is continuous.

m
GxG G
gxgq q
¢ e ™ a
M M M

3.3. Quotient of lasso topology

The authors in [11] have introduced lasso topology on the fundamental groupoid and
have shown that this topology makes the fundamental groupoids as a topological groupoid
and denoted it by 7 X.

In the previous section, we have proved that quotients of topological groupoids by totally

disconnected normal subgroupoids are also topological groupoids. Hence for every totally
L

disconnected normal subgroupoid M of 77X, il is a topological groupoid. Here we will

X
show that the generalized Brown topology on ﬂﬁ is equivalent to the quotient of lasso

topol mX
opolo on ——.
pology on ——

Definition 3.13. ([11]) Let U be an open cover of a given space X and for z,y €

X, let [o] € 7 X(x,y). If U,V € U are open neighborhoods of x,y respectively, then
N([a],U,U, V) =
{BlenX |BAspuraxy « N penWz),u en(Uy),\: T —UN:T—V}
The lasso topology on the fundamental groupoids has a basis as follow:
B ={N([a],U,U,V);Uis an open cover of X,U,V € U, [a] € X (x,y)}.
The f)(z_llowing lemma shows that ¢(B) will be a basis for the quotient of the lasso topology
T
on —.

M
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Lemma 3.14. For a given space Y and equivalence relation ~ on'Y, letq: Y — — be

an open quotient map and B be a basis for the topology on'Y. Then q(B) is a basis for
Y
the quotient topology on —.

Proof. 1t is straight. O

Corollary 3.15. For a given topological space X and any totally disconnected normal
subgroupoid M of X, the family

{a(N ([ W, U,V)) = N(fala, WU, V);U is an open cover of X,[o] € nX(z,p)},

. . X

forms a basis for the quotient topology on Y
Remark 3.16. Not that N([a],U,U,V) = {[flm | B ~ A x pxaxp' * N} and since
Bl ={B*n|ne M(BQ)}, [Va € N([a]a, W, U, V) means that v ~ Axpuxaxp x N xn
where A is a path in U and ) is a path in V such that A\(1) = «(0), A'(0) = a(1) and
pe (W a(0), ' € m(U,a(l)), n € M(y(1)).

Theorem 3.17. For a given space X and totally disconnected normal subgroupoid M of

X b X
X, (=)B = .
"X )=
X Lx
Proof. As we know obj(%) = X and 7TW(w,y) = {[um | [o] € 7P X(2,9)}. Let’s
Lx X
prove it first that T is finer than (L)B .

Let [v]ar € B(la)ar, U, U, V). We need to find an open neighborhood N ([a]nr, U, U, V)
L

X
of [v]ar in such that [y]ar € N([a]ar, W, U, V) C B([a]ar, U, U, V). Since [y]yr €
B([a]ar, U, U, V), there exists n € M(a(1)) such that

y XNk pkaxn*p x N,

where A\(I) CU, N(I) CV, p e m(U,«(0)) and p' € 7(U, a(1)).
By multiple uses of Lemma 3.4, there exists £ € M (y(1)) such that

v Axpxaxp x N k€

So [7]m € N([a]ar, U, U, V) by Remark 3.16.

Now, for every [B]lym € N([a]ar, U, U, V), there exists § € M(B(1)) such that § ~
dxvxaxv x§ x0, where v € (U, «(0)), v/ € (U, (1)) and 4,8 are paths in U,V
respectively. By Lemma 3.4, there exists ' € M(a(1)) such that ¢’ * 6 ~ n’ x§’. So we
can write B ~ dxvxaxn xn " x v k' %8, Since v := ("t x v x 1) € (U, a(1)),
B~dxvsaxn xvxd and hence [B]y € B([a]ar, U, U, V), as desired.

L

19,4

Conversely, we will prove that (=—)7 is finer than T
Let [v]amr € N([a]a, U, U, V), then there exists n € M(y(1)) such that
v Ak ko x N x,
where A, \ are paths in U, V, respectively and p € 7(U, «(0)), 1’ € m(U, a(1)).
By Lemma 3.4, there exist ' € M(a(1)) such that (@'« X)) *n~n"* (u'*\) and so
vy Axpkaxn wp x N,
Hence, (7] € B([o]a, 1, U, V).
We show that B([a]a, W, U, V) C N([a]ar, W, U, V).

Let [B]a € B([o)ar, U, U, V). Then there exist & € M(«(1)) such that § ~ § v * « *
Ex v x ¢, where 4,8 are paths in U, V, respectively and v € 7(U, «(0)), v € 7(U, a(1)).
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By using Lemma 3.4, there exists ¢ € M (3(1)) such that f ~d*vxax1/ «§ «£. Hence
Bl € N([oar, W, U, V). O

The following propositions specify some properties of the induced maps on the topolog-
ical fundamental groupoids.

Theorem 3.18. Let X, Y are topological spaces and M, N are totally disconnected normal
subgroupoid of X, Y, respectively. If f : X — Y is a continuous map such that

— X Y
7f(M) C N then the map wf : (7;\4 B — (7;\[) defined by Tf([Nar) = [f o N s
continuous.

. — atx i .
Proof. By Theorem 3.17 it suffices to prove that wf : i — N s continuous.

Continuity of nf : 7/X — 7Y comes from the continuity of f [11], and ¢,q¢ are
quotient maps . By commutativity of the following diagrom, continuity of 7 f is obvious.

mf

LX"?T

rtx T ©f xly
M N

0

Recall that for paths A,v in X,Y, respectively, by (A,7) : I — X X Y we mean the
path (A, 7)(t) = (A(t),~(t)). It is straight that (\,7) * (o, 8) = (A * 0,y * (), where the
concatenations are defined.

Proposition 3.19. Let X,Y are topological spaces and M, N are totally disconnected nor-
(X x Y))
M x N

mal subgroupoids of X, Y, respectively. Then ( B s isomorphic as topological

X Y g

groupoid to (—— % 1B x (W) , equiped by the product topology.
Proof. Since the projection maps p; : X XY — X and po : X XY — Y are continuous,
X xY X X xY

by Proposition 3.18, the maps 7p1 (](\/[;N)) — (%) and 7ps : (ﬂ](WXXN))B

Y X xY X
(%)B are continuous which induce the contir(luous H;ap (I (WEMXXN))B — (%)B X
Y g X Y (X xY).B .
—)°. If : (5B —)B — fi =
CEP T (5P x (B — () s defined by w(lolas [9)x)

[(e, B)]arx v, it is easy to see that ¢ o9 = id and ) o ¢ = id. Hence 9 is a bijection.

It remains to prove the continuity of ¢. Let W := B([(A,7)]mxn, U, U, V) be a basic
open neighborhood of [(A,7)]arxn, where U is an open cover of X x Y and U,V € U. If
Uy := p1(U) and Uy := pa(U), then U; is an open cover of X and Us is an open cover
of Y. Let Uy := p1(U) and let Uy := po(U) where they are open neighborhoods of A(0)
and (0), respectively. Also, let V; := p1(V) and let Vo := po(V) where they are open
neighborhoods of A\(1) and ~(1), respectively.

Now, let O1 := B([A]ar, Us, U1, V1), Oz := B([vy|n, Us, Us, Vo). It is obvious that [A|y €
O1 and [y]y € Oy. We will show that ¢(O1,02) C W. Suppose that [A\1]y € O1. There
exists 71 € M(A(1)) such that

A kO Nk 0 %,
where u(I) € Uy, 1/(I) € Vi, 0 € 7y, A(0)) and & € 7(ly, A(1))
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Let [y1] € Oa. There exists 72 € N(y(1)) such that
M v xdrkyrnxd x1/,
where v(I) C Us, V'(I) C Vs, 6 € m(Ug,v(0)) and 6" € m(Uz,v(1)). Thus

e([Alars nln) = [, vl
= [(k, 1) 5 (6,6) % (A, ) * (1, m2) = (67, 67) * (', /)],
where (p,v) is path in U = Uy x Uz and (¢/,7') is path in V = V} x Va, (0,6) €
(U, (A(0),7(0))), (¢',6") € m(U, (A(1),7(1))) and (m1,7m2) € M x N(A(1),(1)) Hence

()]s € B V)]s, W UL V).

Therefore ¢ is continuous. O
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