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Abstract 

Since the 1990s, MBOMIPA has experienced changes in land use. This study used Landsat data to assess land use and land cover 

changes from 1997 to 2021. The processing of satellite images and evaluation of variations in land use and land cover was done 

using ArcGIS and ERDAS. The supervised land use classification was created using a maximum likelihood method. The findings of 

this study assessed the area of closed forests declined by about 186.04 ha over a period of 24 years (1997–2021), with a 14.8% 

annual rate of change, and 327.08 ha of open woodlands had undergone a 15.88% annual rate of change to other land use land cover 

types. All these conversions of woodlands were highly detected to be converted to shrubland, grassland, and bare land. With Kappa 

values of 0.90, 0.90, 0.83, and 0.93 for 1997, 2002, 2007, and 2021, respectively, the total supervised classification accuracy was 

found to be 91% for 1997, 91% for 2002, 86% for 2007, and 97% for 2021. The findings of this study will be valuable in assisting to 

plan and carrying out significant management strategies to safeguard the MBOMIPA Wildlife Management Area's rich biodiversity. 
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Introduction 

Accurate detection of changes in the landscape is 

essential for understanding the evolution of natural 

resources over time. Time series datasets are crucial for 

quantifying and analyzing changes in land use or land 

cover (Mas, 1999; Afify, 2011). Remote sensing data has 

revolutionized the way land use and land cover changes 

are monitored by providing updated and high-resolution 

information on environmental changes (Yuan et al., 

2019). Land use and land cover analysis have become 

essential tools for assessing environmental changes over 

the space-time continuum (Kaya et al., 2015; Chen et al., 

2021). These changes are accelerating, mainly driven by 

human activities such as urbanization, deforestation, and 

agriculture expansion (Burak et al., 2004; Islam et al., 

2018; Fazal et al., 2022). Hence, timely and accurate 

detection of these changes is crucial for the sustainable 

management of natural resources and the environment.  

The impact of environmental changes on wildlife and 

their resources has become a critical area of concern in 

global environmental studies. Land use and land cover 

changes, driven mainly by human activities; have a 

profound impact on wildlife resources (Crouzeilles et al., 

2021). Studies across different regions of the world 

report change in land use and land cover, which have 

significant impacts on wildlife resources (Settele et al., 

2019). These changes in land use and land cover alter 

environmental processes, impacting their function and 

structure and imposing contrasting effects on species 

diversity, abundance, and general wildlife habitats 

(Bouyer et al., 2021). Human activities such as 

deforestation, mining, urbanization, and agriculture 

expansion are known to be significant drivers of land use 

and land cover changes, impacting wildlife and their 

resources (Wilkie et al., 2016; Braga et al., 2020). 

Therefore, mitigating the negative impacts of human 

activities on wildlife resources requires effective 

conservation strategies that consider both the ecological 

and socio-economic factors that influence land use and 

land cover changes.   

The management and conservation of wildlife areas and 

their natural resources heavily rely on the study of land 

use and land cover changes (Kuemmerle et al., 2011). 

Traditional methods, such as vegetation surveys and 

demographic studies, are still used in many community 

wildlife management areas, but they are not as efficient 

as modern technologies like remote sensing and 

Geographic Information Systems (GIS) in studying 

wildlife and their environment or resources. Remote 

sensing and GIS are capable of addressing complex 

environmental issues that require advanced data 

processing techniques, thereby providing the necessary 

data for better wildlife resource management, especially 

in community-owned wildlife areas. Additionally, the 

use of GIS and remote sensing has become essential for 

studying various Earth processes, and the availability of 

geographic data has increased due to the use of time-

series Landsat data, which GIS aids in their 

interpretation and understanding "(Kjelland et al., 2021; 

Reynolds et al., 2020)". 
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The MBOMIPA WMA is a community-owned wildlife 

area that is critical for the protection of animals from big 

mammals to small ones and wildlife in general in the 

Southern Highlands of Tanzania. This area was set aside 

by the community living nearby Ruaha National Park in 

Tanzania to promote sustainable use of natural resources 

through effective management and anti-poaching efforts 

to prevent the loss of wildlife habitats and vegetation 

degradation. It represents a fragile wildlife landscape 

near the Ruaha National Park, which if not conserved 

soon, may be lost for the future generation to benefit 

directly from wildlife. Anthropogenic pressures 

including increased fire incidence as a result of honey 

poachers, increase in human population from the 

proximity villages, illegal deforestation for charcoal 

production and cattle herds destructs lead to an extensive 

decrease in vegetation which in turn eventually converts 

the natural land cover to diverse land uses. This study 

aims to map, quantify and assess land use or land cover 

changes that occurred from 1997 to 2020. This work 

aimed to assess apparent LULC changes during the 

observed time frame mainly concerning forests and other 

vegetation in general. 

Materials and Methods 

Description of the Study Area 

The study was conducted in a community-based 

organization of 21 villages, Matumizi Bora ya Malihai 

Idodi na Pawaga (henceforth referred to as MBOMIPA), 

Swahili for “Sustainable Use of Wildlife Resources in 

Idodi and Pawaga,”. MBOMIPA comprises an area of 

about 777 hectares and it was founded in 1994. It 

comprises the communities living next to Ruaha 

National Park in Tanzania promoting wildlife-based 

livelihoods as a means to ensure biodiversity 

conservation, anti-poaching efforts, and sustainable 

natural resource management. The area is located in the 

Idodi and Pawaga Divisions of Iringa District in Iringa 

Region, Tanzania. The study area is located in the 

southern highlands of Tanzania’s mainland as seen in 

figure 1 between 6.9º and 8.0ºS and between 34.8º and 

35.7ºE (WMA, 2006). The Northern and eastern 

boundary of the WMA is formed by the Ruaha National 

Park boundary while to the west and south, it is bound 

by the grazing lands, farms, and settlement of the 

villages in Idodi and Pawaga Division. 

In general, the weather of the area differs from the 

northern part which is drier than the south and with an 

average rainfall of greater than 500mm per annum 

whereas the southern area gets an average of 750mm to 

1000mm of rain per year. The western part of the WMA 

which is adjacent to the Mtera dam obtains 450mm of 

rain (SWECO, 1985; John, 2022). More than that 

Rainfall data collected at Ruaha National Park in 

Msembe which is the park’s headquarters located to the 

north of the WMA gives an average rainfall of 500mm 

yearly (TANAPA GMP, 1997). 

Fig. 1. Map of the study area. 

The WMA is covered dominantly with vegetation type 

of open woodlands, a mixture of shrubland, grassland, 

and closed forest as well as riparian vegetation along the 

river streams running in and along the boundaries of the 

WMA. It’s a home for a variety of Insects, spiders, 

fishes, amphibians, reptiles, birds, Elephants, leopards, 
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cheetahs, African wild dogs, hippopotamus, buffalo, 

giraffe, zebra, impala, eland, giant pangolin, jackal, 

hyena, waterbuck, warthog, greater and lesser kudu 

(recognized as one of the areas in the world where they 

are found together), Impala, aardvark, mongoose and 

bat-eared fox, Nile crocodile, monitor lizard and snakes 

(UNDP, 2015). 

Image Acquisition 

Time series images for the years 1997, 2002, 2007, and 

2021 were used to investigate the historical changes in 

land use and land cover in the study area. All the images 

have a resolution of 30 and correspond to path 168 and 

rows 65 and 66 of the Landsat Worldwide Reference 

System (WRS) and were downloaded from the United 

States Geological Survey (USGS) website 

(https://earthexplorer.usgs.gov/). Table 1 summarizes the 

details of the Landsat images used in this study. 

Table 1. Source and details of the satellite imagery used 

in this study. 

Satellite Sensor Acquisition date 

Landsat-5 TM 30-07-1997 

Landsat-7 ETM 04-07-2002 

Landsat-5 TM 26-07-2007 

Landsat-8 OLI/TIRS 29-07-2021 

To assure the best comparison and to minimize seasonal 

variation in plant phenology between the study periods, 

images were captured on related satellites and during the 

dry season when the sky is usually clear, which enabled 

obtaining of lower or free cloud imagery with the best 

visibility. 

The periods of imagery were designated based on events 

that had considerable impacts on the establishment of the 

WMA. The image of Landsat 5 Thematic Mapper (TM) 

captured in 1997 was used to represent the status of the 

study area when it was founded and when Tanzania 

experienced a rash of illegal activities, causing a 

reevaluation of the nation’s wildlife management 

practices and policies. Enhanced Thematic Mapper 

(+ETM) of 2002 represents the year when MBOMIPA 

was legally recognized as a community-based 

organization under the Societies Ordinance in 2002, 

becoming the first indigenous conservation and 

development organization of its kind in Tanzania 

(UNDP, 2015). The image of Landsat 5 Thematic 

Mapper (TM) captured in 2007 symbolizes the year 

when the MBOMIPA wildlife management area was 

legally gazette and it was used as a model for repetition 

in other areas as a way to safeguard wildlife and 

encourage sustainable livelihoods to the community 

adjacent to protected areas. The image Landsat 8 

(OLI/TIRS) of 2021 marks the current condition of the 

study area. 

Image Processing and Analysis 

Earlier the processing of satellite imagery started, and an 

extensive ground survey was done throughout the study 

area using GPS MAP 64SX equipment. This assessment 

was crucial for the creation of training spots and 

signature generation as well as to acquiring precise 

locational point data for respective land use and/or land 

cover class encompassed in the classification system. 

The acquired images were processed using ERDAS 

Imagine 2015 and ArcGIS 10.8 software packages.  

Image Preprocessing 

Actual analysis using Landsat data from different 

sensors can be arduous due to the associated errors 

related to geometric and/or radiometric effects (Giri et 

al. 2015) therefore doing geometric and radiometric 

corrections for the satellite images is vital to building a 

clear association between ground biophysical features 

and downloaded satellite images and therefore removing 

false signs of objects, making the corrected images 

adequately for quality analysis (Coppin et al. 2004, Pons 

et al. 2014). This study considered several consecutive 

steps of data preprocessing including geometric, 

radiometric, and atmospheric corrections using Arc GIS 

10.8 and ERDAS IMAGINE 2015 software packages. In 

this stage of data preprocessing sub-setting, gap-filling, 

enhancement as well as a selection of the suitable bands 

was blended for the actual classification process.  

To minimize radiometric errors, the radiometric tool in 

ERDAS IMAGINE 2015 was used to calibrate the 

satellite images. This process involved the conversion of 

the digital number (DN) as raw data from sensors to top-

of-atmosphere reflectance as actual ground surface 

reflectance (Amro et al. 2011).  Atmospheric effects can 

cause satellite images to have a restricted dynamic range, 

usually perceived as haziness or reduced contrast. The 

atmospheric effects on the satellite images were 

corrected using a haze reduction tool in ERDAS as this 

function improves the images using either a Tasseled 

Cap for the Landsat 5 TM only due to the sensor 

algorithm and Point Spread Convolution approach for 

ETM and OLI satellite images. As a part of atmospheric 

correction, topographic normalization is very important 

as it involves the use of a digital elevation model (DEM) 

to minimize sun-angle shading effects present in most 

satellite aerial imageries and therefore helps in 

presenting the original image and thus clear spectral 

signature as well as high accuracy during classification 

process (Amro et al. 2011).  The DEM for the study area 

was obtained from SRTM (Shuttle Radar Topography 

Mission). The satellite images that are Landsat level-1are 

terrain corrected and therefore geometric correction was 

not compulsory (Young et al. 2017). 

Image Classification 

Different features on the earth’s surface have different 

remittance properties and spectral reflectance and thus 

making the idea of recognizing them through the 

classification process possible. The process of image 

classification in remote sensing involves the 

categorization of pixels of a raw satellite image to 

produce land use and/or Land cover classes as a result 
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useful thematic maps are prepared (Lillesand and Keifer 

1994, Boakye et al. 2008). 

For this study of land use, land cover classes have been 

developed based on field visits, knowledge of the study 

area, and other studies. Therefore, 7 land use land cover 

classes including riverine vegetation, grassland, open 

woodland, closed woodland, bare land, river/water 

bodies, and shrubland were developed to form a general 

classification scheme for this study. This study used a 

supervised method as it produces a more accurate 

classification together with a maximum likelihood 

classifier as it allows good interpretation of the results 

and brings good accuracy (Krishna et al. 2009, Peacock, 

2014, Ren et al. 2019). To delineate different land use 

land cover classes, this study employs both false and true 

color combinations to aid a clear visualization of 

features. Based on the knowledge of the study area, and 

ground control points collected during field observations 

several training sites were selected for each land use land 

cover class for all the satellite images followed by the 

application of a maximum likelihood classifier to 

generate spectral signatures for classification of images 

(Figure 2). 

Fig. 2. Distribution of training sites in MBOMIPA 

Wildlife Management Area  

Accuracy assessment 

Accuracy assessment is one of the crucial stages in the 

classification process. For this study, accuracy 

assessment was done in ERDAS IMAGINE 2015 using 

high-resolution Google images obtained from Google 

Earth Pro.  Random points with a specific color and 

pixel value were generated for the classified images and 

then identified by the user and allocated to different 

classes. A minimum of 50 samples were selected 

randomly for each class in ArcGIS 10.8 using the “create 

random points” tool. Accuracy assessment was done 

based on error matrices (overall accuracy and kappa 

coefficient). More than that producer’s and user’s 

accuracies were also acquired for each class, which 

quantify the omission and commission errors. According 

to “Lillesand et al. (2008), an accuracy assessment 

greater than 70% is an acceptable accuracy in 

classification studies”, and “Fleiss et al. (2008) identified 

a more than 0.75 kappa statistic value as an excellent 

agreement while the values between 0.40 and 0.75 are 

considered fair whereas a value of less than 0.4 is 

measured poor correspondence”. 

Change Detection 

Different objects and/or phenomena at different periods 

tend to display changes and the process of identifying 

these changes is termed change detection. Exploration of 

changes in land use and or land cover studies using 

change detection identifies more than just changes and 

tends to provide further information on the spatial extent, 

pattern as well as nature of respective changes (Gallego, 

2004). Given there are different methods of change 

detection, this study used the post-classification method 

or technique as one of the proven and most acceptable 

ones (Foody, 2002).  

Through the post-classification method, thematic maps 

are generated from the classification of multiple date 

images separately followed by a pixel-based comparison 

of the corresponding land use land cover classes. The 

post-classification approach involves the classification of 

multiple date images separately to generate thematic 

maps, after which a pixel-based comparison of the 

corresponding classes is used to produce tables and maps 

of changes that have occurred (El-Hattab, 2016). 

Although good change detection depends on the 

accuracy of the classification process, post-classification 

has some benefits and this includes, detailed information 

covered from the changes in land use land cover matrix, 

quantification in magnitude and rates of the respective 

changes as well as minimization in the likely effects of 

sensor, atmospheric and environmental alterations 

among imageries as they are individually classified 

(Alawamy, 2020). Due to the high accuracy attained by 

different studies (Islam, et al. 2016-2018, Matlhodi, et al. 

2019) that employed this method and its capability of 

determining the direction of change in land use land 

cover, this study involves a post-classification method in 

identifying the changes between the study periods.  

Results 

Land Use and Land Cover Types 

Figures 3, 4, 5, and 6, respectively, show the spatial 

distributions of LULC categories in the MBOMIPA 

Wildlife Management Area in 1997, 2002, 2007, and 

2021. For 1997, 2002, 2007, and 2021, the classified 

maps' overall accuracy was 91%, 91%, 86%, and 94%, 

while the associated Kappa Indices of Agreement were 

90%, 90%, 83%, and 93%, respectively. Table 2 

provides an overview of the areal and percentage 

coverages of the various LULC classes. 
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Fig. 3. Distribution of LULC types in the MBOMIPA 

Wildlife Management Area in 1997. 

Fig. 4. Distribution of LULC types in the MBOMIPA 

Wildlife Management Area in 2002. 

Fig. 5. Distribution of LULC types in the MBOMIPA 

Wildlife Management Area in 2007. 

Fig. 6. Distribution of LULC types in the MBOMIPA 

Wildlife Management Area in 2021. 

Table 2. The size and percentage of the MBOMIPA WMA that was covered by LULC classes in 1997, 2002, 2007, and 

2021. 

Land Use Land 

Cover Category 

1997 2002 2007 2021 

Area 

(Km
2
) 

% Of 

Land 

Area 

(Km
2
) 

% Of 

Land 

Area 

(Km
2
) 

% Of 

Land 

Area 

(Km
2
) 

% Of 

Land 

Closed Woodland 186.04 23.94 165.38 21.28 163.10 20.99 157.97 20.33 

Open Woodland 327.08 42.10 339.52 43.70 296.13 38.11 267.31 34.40 

Shrubland 111.63 14.37 123.28 15.87 129.61 16.68 136.41 17.56 

Grassland 71.17 9.16 100.75 12.97 120.96 15.57 125.85 16.20 

Bare-land 9.65 1.24 11.84 1.52 17.94 2.31 25.21 3.24 

Riverine 

Vegetation 

54.44 7.01 16.68 2.15 31.86 4.10 52.54 6.76 

River/Water 16.98 2.19 19.54 2.52 17.40 2.24 11.70 1.51 

Total 777 100 777 100 777 100 777 100 

Sembosi / IJEGEO 10(2): 120-129 (2023) 
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Open forest and closed woodland were the two main 

land cover types in the management area, respectively, 

whereas shrubland, grassland, bare land, riverine 

vegetation, and river/water had comparatively low 

coverages between 1997 and 2021. (Table 2). 

The WMA had a higher proportion of open woodland, 

closed woodland, and shrubland coverages throughout 

the study periods 1997, 2002, 2007, and 2021. 

Throughout the study area, there have been changes in 

areas covered with grassland and bare land from 1997 to 

2021 as reflected in table 2. Open woodland was the 

most dominant land cover type from 1997 to 2021. It had 

the highest proportional coverage around the protected 

area followed by closed woodland. Shrubland revealed 

slight changes from 1997 to 2021 while riverine 

vegetation indicated different changes from 1997 to 

2002 and 2007 to 2021. On the other side, rivers and/or 

water sources indicated a slight change throughout the 

study period. 

LULC Cover Change from 1997 to 2021 

Between 1997 and 2002, closed woodland and riverine 

vegetation coverages had the largest net declines in the 

study area. But grassland, open, woodlands and 

shrubland coverage expanded the most followed by bare 

land and river/water (figure 7). During the 2002 -2007 

period, the coverages of shrubland, grassland, bare land, 

and riverine vegetation increased but those of closed 

woodlands, open woodlands, and river/water decreased 

(figure 8).  

For the period 2007 and 2021, open woodlands had a 

sharp decrease compared to closed woodland and 

river/water. Generally, for the whole study period from 

1997 to 2021, there is a sharp decline in open woodland 

followed by closed woodland and a slight decline in 

river/water and riverine vegetation. On the other side, 

there is a sharp increase in grassland followed by 

shrubland and bare land (figure 8). 

LULC Cover Change Courses (1997-2021) 

During the 1997-2002 period, significant riverine 

vegetation was converted to river/water and bare land 

while on the other side closed woodland was converted 

to open woodland, shrublands, and bare land. From 2002 

to 2007, open woodland underwent the highest 

conversion to other land use types while little river/water 

was converted to other categories. Most of the open 

woodland was converted to grassland, bare land, and 

shrublands while some parts were detected to have 

water/river transformed into riverine vegetation. Despite 

the various conversions, grassland increased consistently 

for the whole study period while closed woodlands and 

open woodlands decreases. 

From 1997 to 2021, extreme changes happened in open 

woodlands, followed by grasslands, closed woodland, 

and shrubland (See figure 9 and 7 for transformation of 

LULC). Much of the open woodlands was transformed 

into shrubland and grasslands while extensive closed 

woodland was transformed to open woodlands and 

shrubland. Particularly, the remaining cover classes 

showed little transformations as low as 1% (table 2). The 

greatest transformations of grassland were recorded in 

the northern-central of the protected area and woodland 

was noticed in the southern part of the WMA. 

Fig. 7. LULC change (%) of the protected area from 1997 to 2002. 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Closed Woodland

Shrubland

Bareland

River/Water

Open Woodland

Grassland

Riverine Vegetation

1
9

9
7

2
0

0
2

Land use and land cover change 

La
n

d
 u

se
 a

n
d

 p
er

io
d

 o
f 

ch
an

ge
 

Land use and land cover change in MBOMIPA WMA during 1997-2002 

Closed Woodland Open Woodland Shrubland Grassland

Bareland Riverine Vegetation River/Water

Sembosi / IJEGEO 10(2): 120-129 (2023) 



Sembosi / IJEGEO 10(2): 120-129 (2023) 

126 

Fig. 8. Increase and decrease of LULC classes of the protected area from 1997 to 2021. 

Fig. 9. LULC change (%) of the protected area from 2007 to 2021. 

Discussion 

LULC Cover Types 

Throughout the 24 years of assessment from 1997 to 

2021, Closed woodland and open woodlands had the 

highest proportions across the entire Wildlife 

Management Area. The high coverages of these land 

cover types in the WMA are attributed mainly to the 

nature of the land attributed with gneiss and granite as 

well as human activities which were practiced in the area 

before the gazettement of the area. Apart from other 

vegetation types mainly Acacia woodland/bushland,  

Acacia – Commiphora-bushland, Brachystegia-

woodland, Commiphora-Combretum-bushland, Acacia 

tortilis thorn scrub, and Acacia-induced woodland 

modified by human activities, Hyphaene plus 

Acaciatortilisriparian vegetation, and Combretum 

woodland can be observed across the entire ecosystem 

(Sosovele and Ngwale, 2002). 

LULC Cover Change 

Throughout the entire WMA environment, Shrubland, 

grassland, and bareland increased from 1997-2021 at the 

expense of both closed and open woodland cover. Bare-

land areas were low during 1997 but increased from 
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2002, 2007 to 2021. During the 1997 to 2021 period, 

grassland amplified especially in the northern part of the 

WMA, unlike shrubland which increased mostly in the 

southern part of the WMA across the entire study period 

(1997-2021) and while shrubland contracted in the 

northern part of the WMA. The expansion of grassland 

and shrubland cover in the WMA is likely the outcome 

of conversions from other cover types, mainly open 

and/or closed woodlands as a result of herbivory 

(grazing and browsing) and fire, as discussed by 

“Mammo et al. (2018), mostly of the threats to Land 

cover, is the result of the human being. These 

circumstances have been identified and mentioned by 

“Kaja et al, (2020) in the Serengeti ecosystem in 

Northern Tanzania as well. According to “Mdete (2016), 

wildfire has been an issue in the WMA, and the rise in 

bare land covering is related to fire events and 

encroachment. Apart from that the increase in bare land 

and grassland is associated with heavy rainfall resulting 

in flooding from Great Ruaha in the 2020 river which 

bounds the WMA on the western side.  

The decline in woodland cover from 1997 to 2021 in the 

WMA area was due to the conversion of woodlands to 

other cover types. Woodland vegetation is also cleared 

for timber and fuel, often resulting in shrubland and 

other cover types. This has been proved by the study by 

“Mdete (2016), the community members around the 

WMA identified some of the threats to the biodiversity 

in the WMA including deforestation, bushfire, fuel wood 

gathering, and illegal grazing as a result of former forest 

areas have become bare, and inhospitable to animals. 

The study has further described the presence of 

deforestation in the WMA as a result of fuel wood 

collection since most of the community around the 

WMA does not have trees in their general lands 

according to “Monela, (2007), “Felix and Gheewala, 

(2011), and “Preston (2012), whom all corroborate this 

argument, fuel wood is the favored energy source since it 

is easily accessible, relatively priced, and simple to use. 

Typically, users obtain it from the wild. The reduction of 

forests is usually linked, among other environmental 

effects, to land degradation, soil erosion, shifting, and a 

loss of biodiversity because of habitat destruction. 

On the other side MBOMIPA, WMA is among the 

critical areas for the large Elephant population of the 

Ruaha Rungwa ecosystem in the southern highlands of 

Tanzania. Given that, the woodland decrease is 

concurrent with the presence of elephants and their 

increase in the WMA. African elephants destroy woody 

vegetation, particularly during the dry season when food 

is scarce. These claims have been reported in 

neighboring protected areas in the southern highlands of 

Tanzania and these include Ruaha National Park 

“Barnes, (1985) and Rungwa Game Reserve which 

shares the boundary with the WMA (Barnes, 1883). 

Similarly, the Northern parts of Tanzania including the 

Tarangire Manyara ecosystem and Serengeti ecosystem 

have been reported by “Prins, and Van der Jeugd, (1993) 

and “Kija et al. (2020). In addition to elephant browsing, 

fire occurrences brought on by bushmeat and honey 

poaching have also been linked to woodland reductions 

in the WMA. (Mdete, 2016). Apart from that, there has 

been a slight decrease in rivers/water and riverine 

vegetation between 1997 and 2021 in the WMA. This 

decline is associated with rapid land cover 

transformations in the WMA. Generally, the declines in 

land cover near the protected areas threaten conservation 

initiatives run in the WMA as they promote community 

involvement in conservation through benefit-sharing 

systems while reducing activities that destroy 

biodiversity.  WMAs are central to enlisting the support 

of local people for the management of natural resources 

and enforcing land use plans in line with protected 

ranges.  

LULC Cover Trajectories 

Changes in land use and land cover trajectories bring 

more attention to dynamic changes in various cover 

types. The major conversion in the WMA during the 

1997-2021 period involved the conversion of Closed and 

open woodlands mainly to shrubland and grassland. 

These conversions varied across the entire WMA, 

partially reflecting differences in the level of human-

caused impacts across the WMA. “Mdete, (2016), 

suggested the villages near the WMA boundary are 

mostly associated with encroachment and poaching”.  In 

addition, the conversions in the WMA area are partly 

due to fire. Fire moderately drives woodland and other 

vegetation to bushland and grassland as well as bushland 

to grassland. These conversions as a result of fire have 

been mentioned in different ecosystems in Tanzania and 

beyond (Van Langevelde et al 2003, Holdo et al. 2009). 

According to “Kija et al. (2020) woodland can also 

change into grassland and other forms of cover due to 

herbivory and its interaction with climatic factors. 

Moreover, animals such as elephants also tend to 

influence a particular area's vegetation or land cover. An 

example of this has been documented by “Van de 

Koppel and Prins (1998) in South Africa where 

elephants were part of the conversion of woodland to 

grassland in Kruger National Park. Browsers have been 

said to influence the conversion of woodland in Tanzania 

(Kija et al. 2020) and in Botswana (Barnes, 2001).  

Conclusion 

This study employs remote sensing data and GIS 

technologies to examine changes in land use and land 

cover in a community-owned Wildlife Management 

Area in the Iringa region of southern Tanzania. The 

findings demonstrate that major changes in land use 

and/or land cover occurred between 1997 and 2021. 

Results indicate the detection of a significant increase in 

shrubland, grassland, and barren land. Closed and open 

woods, riverine vegetation, and rivers or bodies of water 

are decreasing on the opposing side. The study presents 

some warnings for the benefit of the species and shows 

clearly how the land cover has changed significantly. 

This work serves as another evidence of how well GIS 

and remote sensing technologies may be used together to 

manage and assess changes in land use or cover. For the 

entire management, as well as policymakers and the 

general public, the quantification of land use and land 
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cover in the MBOMIPA WMA area is particularly 

valuable for improving understanding of the surrounding 

environment. 
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