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Abstract
Let X be a proper algebraic scheme over an algebraically closed field. We assume that a
torus T acts on X such that the action has isolated fixed points. The T -graph of X can
be defined using the fixed points and the one-dimensional orbits of the T -action. If the
upper Borel subgroup of the general linear group with maximal torus T acts on X, then
we can define a second graph associated to X, called the A-graph of X. We prove that
the A-graph of X is connected if and only if X is connected. We use this result to give
proof of Hartshorne’s theorem on the connectedness of the Hilbert scheme in the case of
d points in Pn.
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1. Introduction
Let X be a proper algebraic scheme over an algebraically closed field k and let T =

(Gm)n = (k∗)n be an n-dimensional algebraic torus. In the case that X admits a T -action
with isolated fixed points one can extract substantial information about X by looking
at these fixed points, through equivariant localization or other means (see for instance
[5], [7], [11]). In [2] the concept of a T -graph is defined for the Hilbert scheme and its
multigraded versions. This definition can be generalized to any setting where the T -action
has isolated fixed points. In [9] further properties of T -graphs are obtained and some
explicit computations are given.

If X admits an action of a larger group, for instance a Borel subgroup of the general
linear group such that the induced maximal torus action has isolated fixed points, then
the information that one can extract about X often becomes substantially stronger. As
an example, the results of [1] imply that if X admits a compatible (Gm, Ga)-action such
that the Ga-fixed locus consists of a single point, then the Poincaré polynomial of X is a
product of cyclotomic polynomials.

In this paper, we first generalize the definition of a T -graph to an arbitrary proper
algebraic scheme X admitting a T -action with isolated fixed points and show that X is
connected if and only if its T -graph is connected. These issues are discussed in section
2. In section 3, assuming that X admits a Borel group action, we define the notion of
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an A-graph, which is obtained from the fixed locus of X under the action of a principal
nilpotent subgroup. The A-graph of X is often substantially smaller compared to the T -
graph. For instance, in the setting described in the last sentence of the previous paragraph,
the A-graph consists of just a single vertex. We prove that X is connected if and only if
its A-graph is connected.

In section 4, we give a proof of Hartshorne’s theorem of the connectedness of the Hilbert
scheme of Pn ([10]) in the case where the Hilbert polynomial is a constant d, by explicitly
computing a spanning subtree of the A-graph of the Hilbert scheme. This proof can be
generalized to the case of an arbitrary Hilbert polynomial, but this is not given here.
The idea of using Borel fixed monomial ideals is present both in Hartshorne’s proof [10]
and A. Reeves’ proof [13]; the current proof provides a somewhat different organization.
Computation of the full A-graphs of Hilbert schemes of points for small values of d and n
will be the subject of a future paper.

2. T -Graph of a scheme
Let k be an algebraically closed field and X a proper algebraic scheme over k. Let

T = (Gm)n = (k∗)n be an n-dimensional algebraic torus. Assume that T acts on X such
that the fixed point scheme XT consists of isolated points.
Definition 2.1. The graph whose vertices correspond to elements of XT and having an
edge between p, q ∈ XT if and only if there exists a 1-dimensional T -orbit l whose closure
contains both p and q is called the T -graph of X.

The T -graph of the Hilbert scheme of Pn was defined in [2]. The T -graphs of multigraded
Hilbert schemes of Pn are also implicitly present in the discussion in [2] although the
emphasis there is rather on the induced subgraphs obtained from the ordinary grading.
This definition is given in terms of Gröbner degenerations, but it is equivalent to the one
above if we assume that the action on this Hilbert scheme is induced from the standard
action of the maximal torus of GL(n + 1) on Pn. Some details are provided in the two
examples below.
Example 2.2. Let X = Pn and T be the maximal torus of GL(n+1) containing diagonal
matrices diag(d0, . . . , dn) such that di 6= 0. Consider the standard action of GL(n + 1)
on X and the corresponding action of T on X given by diag(d0, . . . , dn) · [x0 : . . . : xn] =
[d0x0 : . . . : dnxn]. The fixed points of this action are the n + 1 points of the form
pi = [0 : . . . : 0 : 1 : 0 : . . . : 0] for i = 0, 1, . . . , n where the only nonzero entry of pi is its
ith coordinate. The open subset of the line lij = [0 : . . . : λ : . . . : µ : . . . : 0], where the
only nonzero entries λ, µ are at the ith and jth coordinates respectively, is a 1-dimensional
T -orbit. Since pi and pj lie in the closure of lij , any two vertices are connected by an edge.
Hence the T -graph of X for this action is the 1-skeleton of the standard n-simplex.
Example 2.3. Let X = Hilb(Pn), the Hilbert scheme of Pn. Elements of X correspond
to homogenous ideals in k[x0, x1, . . . , xn]. The T -action on Pn induces a T -action on X.
It is easy to see that the fixed points of this action are precisely the monomial ideals.
Indeed, contrary to the claim, assume that the ideal I is a fixed point but it is not a
monomial ideal. Then there exists a polynomial P (x0, . . . , xn) in I so that none of its
monomial summands are in I. Suppose that P is a sum of r monomials. We can assign
integer weights m0, . . . , mn to the variables x0, . . . , xn such that each monomial summand
of P has a different weight. Act on P by elements of the form diag(tm0 , . . . , tmn) for r
different values of t. The resulting polynomials P1, . . . , Pr must be in I because I is a
fixed point of the action. Then an elementary computation involving a Van der Monde
determinant shows that the set {P1, . . . , Pr} is linearly independent. This implies that
each monomial in P can be written as a linear combination of {P1, . . . , Pr}, contradicting
the initial assumption. This contradiction shows that the only fixed points of the T -action
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are monomial ideals. Thus we determined the vertices of the T -graph. Determining the
edges of the T -graph is a more difficult task, see [2] or [9] for a discussion.
Theorem 2.4. Suppose that T acts on the proper algebraic scheme X with isolated fixed
points. Then X is connected if and only if its T -graph is connected.
Remark 2.5. The analogous statement is false in the category of smooth manifolds. For
example, take k = C and assume that X is S2, the 2-sphere. Identify S2 with the Riemann
sphere so that the North pole corresponds to ∞, the South pole corresponds to 0 and 1
is on the equator. Let S1 × S1 act on X in the following way: The first factor acts by
rotations parallel to the equator. For the second factor, choose a Möbius transformation
Mα sending 0 to 0, ∞ to ∞ and 1 to α where α is not on the equator. Then assume
that the action of the second factor is the conjugation of the first action by Mα. Then
the fixed points of both actions are the north and south poles. The 1-dimensional orbits
of the two actions are two families of circles. A circle in one family intersects circles of
the other family transversely on a dense subset. This implies that the S1 × S1-action on
X has two fixed points, no 1-dimensional orbits and a single 2-dimensional orbit. We can
turn this into a T -action by retracting T = C∗ × C∗ radially to S1 × S1 and composing
the retraction with the action described above. The T -graph of X consists in just two
disconnected vertices and no edges. Hence the statement is not true in this case.
Lemma 2.6. (i) There exists a 1-parameter subgroup Gm ↪→ T such that XT = XGm.

(ii) There exists a 2-parameter subgroup Gm × Gm ↪→ T such that the T -graph of X
agrees with the Gm × Gm-graph of X.
Proof. It is enough to prove both statements in the case where X is irreducible.

(i) By the Bialynicki-Birula decomposition [3] there exists a big cell U ⊂ X that contains
a unique fixed point a and the T -action restricted to U is conjugate to a linear action
of T on a vector space V . Since the action has a unique fixed point, all weights of
this action must be nontrivial. Suppose that we choose a basis that diagonalizes the
action, namely t = (t1, . . . , tn) ∈ T acts on V by diag(λ1(t), . . . , λN (t)). Assume that
λi(t) = tei1

1 tei2
2 . . . tein

n . Since there are no trivial weights, for each i there exists j such
that eij 6= 0. Now consider an arbitrary one-parameter subgroup ϕ : Gm ↪→ T so that
ϕ(s) = (sa1 , sa2 , . . . , san). The weights restricted to this subgroup are nontrivial if and
only if for each i, the sum

∑n
j=1 eijaj is nonzero. Since this is a set of finitely many

nontrivial inequalities in integers, there exists (a1, . . . , an) such that UT = UGm . Now
replace X by X − U and proceed inductively. Since at every step finitely many equalities
are to be avoided and there are finitely many steps, there exist one-parameter subgroups
ϕ : Gm ↪→ T such that XGm = XT .

(ii) Let U and V be as in part (i) of the proof. The T -graph of X has a unique vertex
v on U corresponding to the unique fixed point. The edges of the graph emanating from
v correspond to lines spanned by eigenvectors of the T -action on V . Choose a basis as in
part (i). A two parameter subgroup ϕ : Gm ×Gm ↪→ T induces the same edges as T if and
only if no new vertices are produced and the eigenspaces of the Gm × Gm-action are the
same as the eigenspaces of the T -action. Say ϕ(s, u) = (sa1ub1 , sa2ub2 , . . . , sanubn). Then
λi(s, u) = s

∑n

j=1 ajeij u
∑n

j=1 bjeij . Therefore the T -graph restricted to U agrees with the
Gm × Gm-graph restricted to U if and only if the following inequalities are satisfied for all
pairs i, k with (ei1, . . . , ein) 6= (ek1, . . . , ekn):

(
n∑

j=1
ajeij ,

n∑
j=1

bjeij) 6= (
n∑

j=1
ajekj ,

n∑
j=1

bjekj)

and (
∑n

j=1 ajeij ,
∑n

j=1 bjeij) 6= (0, 0) for all i. Since a finite set of nontrivial equalities
need to be avoided, there exist solutions for ai, bi. The rest of the argument proceeds as
in (i), by considering X − U and doing induction. �
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We will adapt the strategy in [4] to our case in order to prove theorem 2.4. We now
recall a definition from [4] :

Definition 2.7. Let A, X1, X2 be schemes. We say that X1 is simply A-equivalent to X2
if there exists an isomorphism X1 − X2 → A × Y for some scheme Y . The equivalence
closure of simple A-equivalence is called A-equivalence.

Let K be a finite field so that char(K) 6= char(k). Let H i(X) denote the i-th étale
cohomology group of X with proper supports, with coefficients in the constant sheaf K.

Lemma 2.8. Say X1 and X2 are schemes such that X1 is Gm × Gm-equivalent to X2.
Then H0(X1) ∼= H0(X2).

Proof. Since H0(Gm) = 0 and H1(Gm) = K, by the Künneth formula we obtain H0(Gm×
Gm) = H1(Gm × Gm) = 0.

It is enough to prove the statement when X1 is simply Gm×Gm-equivalent to X2. Hence
we may assume that X1 − X2 ∼= U = Gm × Gm × U1. If U1 is singular then we can stratify
its singular locus and break this equivalence into finitely many steps in each of which U1
is nonsingular. Hence we may assume that U1 is nonsingular. By the Künneth formula,
there exists a spectral sequence such that Ep,q

2 = Hp(U1) ⊗ Hq(Gm × Gm) converging to
Hp+q(U).

First, let us consider the case of dim(U) = 2. Then U is isomorphic to a disjoint
union of copies of Gm × Gm. It suffices to consider one copy at a time, so assume that
U ∼= Gm ×Gm. If U = U then H0(U) = H0(U) = 0. The excision sequence in cohomology
says that 0 → H0(X1 − U) → H0(X1) → H0(U) is exact. But X1 − U = X2 and
H0(U) = 0. Therefore H0(X1) ∼= H0(X2). If U 6= U then first consider the excision
sequence with respect to the inclusion U ↪→ U . Then

H0(U) → H0(U) → H0(U − U) → H1(U)
is exact. But H0(U) = H1(U) = 0, therefore H0(U) ∼= H0(U − U). Now, consider the
excision sequences with respect to the inclusions U ↪→ X1 and U − U ↪→ X1 − U .

0 H0(X1 − U) H0(X1) H0(U) H1(X1 − U)

0 H0(X1 − U) H0(X1 − U) H0(U − U) H1(X1 − U)

α ∼= ∼=∼=

By the 5-lemma, the map α : H0(X1) → H0(X1 − U) = H0(X2) is an isomorphism,
which finishes the proof in this case.

Next, consider the case of dim(U) > 2. We may assume that none of the connected
components of U1 is complete. Else, stratify U1 and subdivide the equivalence into more
steps, where the stratum with dim(U1) = 0 is taken care of as above. Hence H0(U1) = 0.
Since Ep,q

2 (U) = Hp(U1) ⊗ Hq(Gm × Gm) we get E0,0
2 (U) = E0,1

2 (U) = E1,0
2 (U) = 0. This

implies H0(U) = H1(U) = 0. The rest of the argument is identical to the one in the first
case above. �

Proof of Theorem 2.4 Let Y denote the union of 0 and 1-dimensional orbits of the
T -action on X. By lemma 2.6 part (ii), there exists a subgroup of T isomorphic to
Gm × Gm whose 0 and 1-dimensional orbits agree with those of T . It is clear that X is
Gm × Gm-equivalent to Y . Hence, by lemma 2.8, H0(X) ∼= H0(Y ). Since X is proper, X
is connected if and only if H0(X) ∼= K and the same holds for Y . On the other hand, by
definition, Y is connected if and only if the T -graph of X is connected. This establishes
the claim. 2
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3. Additive group actions and A-graphs
Let Ga denote the 1-dimensional connected additive algebraic group.

Definition 3.1. Let X be an algebraic scheme over k having Gm and Ga-actions such
that

λ : Gm × X → X, ((t, x) 7→ λ(t) · x)
θ : Ga × X → X, ((u, x) 7→ θ(u) · x)

The actions λ and θ are said to be compatible if there exists an integer p ≥ 1 such that
λ(t) · θ(u) · λ(t−1) = θ(tp · u)

for all t ∈ Gm and u ∈ Ga.

Suppose that X admits compatible Gm and Ga-actions. Then the Ga-fixed locus XGa

of X is Gm-invariant. Indeed, suppose that x ∈ XGa . Then θ(u)λ(t)x = λ(t)θ(t−pu)x =
λ(t)x. Thus λ(t)x ∈ XGa .

Let Ei,j denote the elementary matrix whose ij-entry is 1 and all others 0. Say E =∑n−1
i=1 Ei,i+1. Then a copy of Ga consisting in matrices of the form exp(aE) for a ∈ k sits

inside GL(n). Let T be the the maximal torus of GL(n) consisting of diagonal matrices.
Then it is easy to check that 1-parameter subgroups Gm of T compatible with this Ga are
subgroups containing matrices of the form:

diag(tc, tc−p, tc−2p, . . . , tc−(n−1)p).
Say X is a proper algebraic scheme over k. Let B be the upper Borel subgroup of

GL(n) and T the maximal torus in B consisting of diagonal matrices. Suppose that B
acts on X such that the induced action of T on X has isolated fixed points. Let Ga be
the subgroup of B consisting in the matrices exp(aE) as above. The following lemma is a
refinement of lemma 2.6:

Lemma 3.2. There exists a 2-parameter subgroup Gm × Gm ↪→ T such that
(i) the T -graph of X agrees with the Gm × Gm-graph of X,
(ii) actions of both Gm factors are compatible with the Ga-action.

Proof. In order for condition (ii) to be satisfied, the two Gm factors should contain
matrices of the form diag(ta1 , . . . , tan) and diag(tb1 , . . . , tbn) respectively where ai = c1 −
(i − 1)p1 and bi = c2 − (i − 1)p2 for some c1, c2, p1, p2. One can check that the inequalities
(
∑n

j=1 ajeij ,
∑n

j=1 bjeij) 6= (
∑n

j=1 ajekj ,
∑n

j=1 bjekj) and (
∑n

j=1 ajeij ,
∑n

j=1 bjeij) 6= (0, 0)
in the proof of lemma 2.6 are still nontrivial. Therefore there exist choices of c1, c2, p1, p2
such that all inequalities are satisfied. �

Definition 3.3. Suppose that X is a proper scheme admitting a Borel group action and
let Gm × Gm and Ga be as in 3.2. Then the Gm × Gm graph of XGa is called the A-graph
of X associated to this data.

Recall Horrocks’ theorem [10] saying that the fixed locus XS of the action of a solvable
group S on a proper scheme X is connected if and only if X itself is connected. This holds
in particular for Ga-actions.

Lemma 3.4. The A-graph of X is independent of the choice of the Gm × Gm in its
definition. Its vertices are the vertices of the T -graph which are Ga-fixed and its edges are
the edges of the T -graph which are Ga-invariant.

Proof. The vertices of the A-graph are Gm × Gm-fixed points in XGa . By the choice of
Gm × Gm, these are precisely the T -fixed points in X which are also Ga-fixed. Similarly,
1-dimensional T -orbits agree with 1-dimensional Gm × Gm-orbits. Say l is such an orbit
whose closure contains the fixed points P and Q. Suppose that l is Ga-invariant. But
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in this case the closure of l, which is isomorphic to P1 admits a Ga-action with at least
two fixed points P and Q. By Horrocks’ theorem, the Ga-fixed locus of this action on P1

must be connected, therefore all of l must lie in the Ga-fixed locus XGa . Therefore the
edges of the A-graph are precisely the 1-dimensional T -orbits which are Ga-invariant or
equivalently Ga-fixed. �

Theorem 3.5. Suppose that the Borel subgroup B of GL(n) acts on the proper algebraic
scheme X such that the induced T -action has isolated fixed points. Then the A-graph of
X is connected if and only if X is connected.

Proof. By Horrocks’ theorem, X is connected if and only if XGa is connected. Applying
theorem 2.4 to XGa we see that XGa is connected if and only if the A-graph of X is
connected. The result follows. �

4. A-graph of Hilbd(Pn)
In this section we will show that the A-graph of Hilbd(Pn) is connected for any d > 0

and n > 0. Given theorem 3.5, this will provide us with a proof of Hartshorne’s theorem
on the connectedness of the Hilbert scheme [8] in the restricted case of a constant Hilbert
polynomial. Instead of determining the A-graph completely, we will explicitly describe the
vertices and a spanning subtree of this graph. The case of n = 2 was treated in [12]. The
arguments here can be generalized to any Hilbert polynomial p(t), but we do not carry
this out here.

Consider the standard representation of GL(n + 1) on Kn+1 by matrix multiplication.
This induces a GL(n + 1)-action on Pn(K) and consequently the upper Borel subgroup B
of GL(n + 1) acts on Pn. Selecting the subgroup Ga of B as matrices of the form exp(aE)
as in the previous section, the induced Ga-action θ on Pn is given by

θ(a)([X0 : . . . : Xn]) = [X0 + aX1 + . . . + an

n! Xn : X1 + aX2 + . . . + an−1

(n − 1)!Xn : . . . : Xn].

In particular, the Ga-action on Pn has a unique fixed point [1 : 0 : . . . : 0].
Consider the induced B-action on K[X0, . . . , Xn]. It takes homogenous ideals to ho-

mogenous ideals and the action is flat. Therefore, there is an induced B-action on the
Hilbert scheme Hilbd(Pn).

Let us first determine the vertices of the A-graph of Hilbd(Pn). Any vertex must be
T -fixed, therefore it must be a monomial ideal. The Ga-fixed monomial ideals agree with
the Borel fixed ideals ([6], thm. 15.23):

Lemma 4.1. A homogenous monomial ideal I is Ga-fixed if and only if it has the following
property: For every f ∈ I divisible by Xi one has Xi+1

Xi
f ∈ I.

Proof. Suppose that I satisfies the given condition. Since θ(a)(Xi) = Xi + aXi+1 + . . . +
an−i

(n−i)!Xn it is clear that if m is a monomial in I then every monomial summand of θ(a)m
remains in I. Therefore I is Ga-fixed. Conversely, suppose that I is Ga-fixed. Say f ∈ I
and Xi|f . Without loss of generality, we may assume that f =

∏
X

ej

j is a monomial. Then
θ(a)(f) =

∏
(Xj + aXj+1 + . . .)ej ∈ I. Since ei ≥ 1, by binomial expansion the monomial

Xi+1
Xi

f appears among the monomial summands of θ(a)(f). Since I is a monomial ideal,
Xi+1

Xi
f ∈ I. �

Let us now pass to the affine chart X0 6= 0, which contains the fixed point [1 : 0 : . . . : 0].
Say xi = Xi

X0
be affine coordinates on this chart. Since the support of a Ga-fixed monomial

ideal in the Hilbert scheme must be the point [1 : 0 : . . . : 0], without loss of generality we
may consider monomial ideals in the variables x1, . . . , xn from now on.
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Definition 4.2. Suppose that I and J are two Ga-fixed monomial ideals. Say m1, m2, . . . ,
mk and m′

1, . . . , m′
k are monomials such that mi < m′

i in lexicographic order for each i.
Assume that each mi and m′

i/x1 belongs to the minimal set of generators of I. We say
that (m1, . . . , mk) → (m′

1, . . . , m′
k) is a move from I to J if J can be obtained from I

by replacing mi by mi/x1 and m′
i/x1 by m′

ixj/x1 for j = 1, . . . , n in the minimal set of
generators of I.

Remark 4.3. After a move, the set of generators obtained for J need not be minimal
anymore.

Remark 4.4. A move from I to J can easily be expressed in terms of socles of these
ideals: The move (m1, . . . , mk) → (m′

1, . . . , m′
k) removes mi/x1 from the socle of I and

adds m′
i/x1 to it for each i = 1, . . . , k. Such an operation does not change the number of

elements in the socle. Therefore, if there exists a move from I to J then I and J must
have the same Hilbert polynomial.

Example 4.5. Say n = 3. Suppose that

I =< x3
1, x2

1x2, x2
1x3, x1x2

2, x1x2x3, x1x2
3, x3

2, x2
2x3, x2x2

3, x3
3 >

J =< x4
1, x2

1x2, x1x2
2, x2

1x3, x1x2x3, x3
2, x2

2x3, x2
3 > .

Take m1 = x1x2
3 and m′

1 = x4
1. Then J can be obtained from I by the move m1 → m′

1.

Definition 4.6. Say m = xa1
1 xa2

2 . . . xan
n is a monomial. Define the weight of m to be

w(m) =
n∑

j=1
aj(n − j)

The weight of a monomial ideal I is defined to be the sum of the weights of all monomials
in the socle of I.

Lemma 4.7. Suppose that I and J are two Ga-fixed monomial ideals. If there exists a
move from I to J then w(J) > w(I).

Proof. By remark 4.4, it suffices to show that w(mi/x1) < w(m′
i/x1), namely w(mi) <

w(m′
i). Since mi < m′

i in lexicographic ordering and I is Ga-fixed, deg(mi) ≤ deg(m′
i/xn) <

deg(m′
i). The result follows. �

Let I be a Ga-fixed monomial ideal minimally generated by S = {m1, m2, . . . , mk}. Let
S(d) denote the subset of degree d monomials in S.

Definition 4.8. Let d be the largest integer such that S(d) 6= ∅ and S(d) contains a
monomial other than xd

1. Let j be the maximal positive integer such that xj divides some
element of S(d). Let l be the maximal integer such that xl

j divides at least two elements
of S(d). Let

Ŝ = {mi ∈ S(d) : xl
j |mi, x1|mi}

Let us write elements of Ŝ in increasing order with respect to lex. Namely, let Ŝ =
{m1, m2, . . . , mr} such that m1 < m2 < . . . < mr.

Lemma 4.9. Suppose that I, j, l and Ŝ = {m1, . . . , mr} are as above and that r ≥ 2.
Then there exists a positive integer s such that the ideal J obtained from I by the move

(m1, m2, . . . , ms) 7→ (
(

x1
xj

)l

x1m1,

(
x1
xj

)l

x1m2, . . . ,

(
x1
xj

)l

x1ms)

is also Ga-fixed.
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Proof. Since the largest element in Ŝ is xd−l
1 xl

j and r ≥ 2, we have m1 6= xd−l
1 xl

j . Then

m1 must be divisible by xi for some 1 < i < j. By definition of Ŝ, the monomial
(

x1
xj

)l
m1

must be in I, hence the move m1 7→ x1
(

x1
xj

)l
m1 is valid. If the resulting ideal is not

Ga-fixed then x1
xi

(
x1
xj

)l
m1 must be in I for some 1 < i < j. Select the maximal value of

i for which this holds. Then by Ga invariance of I, the monomial x1
xi

m1 = mk must be in
Ŝ. Apply the move

(m1, m2, . . . , mk) 7→ (
(

x1
xj

)l

x1m1,

(
x1
xj

)l

x1m2, . . . ,

(
x1
xj

)l

x1mk).

Repeat the same argument with m1 replaced by mk. After finitely many steps, the process
terminates. �

Lemma 4.10. Suppose that I, j, l and Ŝ are as above but r = 1, so that Ŝ = {m1}. Then
there exists h ≤ l and k ≥ h such that the ideal J obtained from I by the move

m1 7→
(

xk
1

xh
j

)
x1m1

is also Ga-fixed. If h < l then k = h.

Proof. First suppose that l ≥ 2. If the monomial xl
1

xl
j

m1 is in I then the move

m1 7→
(

xl
1

xl
j

)
x1m1

is valid and the resulting ideal is Ga-fixed. If not, then by definition of Ŝ, the monomial
xl−1

1
xl−1

j

m1 is in I so the move

m1 7→
(

xl−1
1

xl−1
j

)
x1m1

is valid and again the resulting ideal is Ga-fixed.
It remains to consider the case l = 1. Then m1 = xd−l

1 xl
j . Suppose that d′ is minimal

such that xd′
1 ∈ I. Then the move

m1 7→
(

xd′−d+l
1
xl

j

)
x1m1

is valid and again, the ideal obtained is Ga-fixed. �

Lemmas 4.7, 4.9 and 4.10 imply that starting from any Ga-fixed monomial ideal I there
exists a finite sequence of moves through the vertices of the A-graph of the Hilbert scheme
ending at the ideal < xd

1, x2, . . . , xn−1, xn >. Next we want to show that if we can pass
from vertex v to vertex w by a move as described above, then these two vertices are
connected with an edge of the A-graph.

Lemma 4.11. Suppose that I is minimally generated by m1, m2, . . . , mk and Ŝ = {m1, . . . ,
mr}, s, J , j and l are as in lemma 4.9. Assume that J is obtained from I by the move

(m1, m2, . . . , ms) 7→ (m′
1, m′

2, . . . , m′
s).

Reorder the minimal generating set for I such that the first s elements are m′
1/x1, . . . , m′

s/x1
and the remaining ones are m̂s+1, . . . , m̂k. Suppose that xai

1 |mi but xai+1
1 does not divide

mi.
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Then,
(i) The family of ideals

It =
〈

m′
1

x1
+ c1t

m1
x1

,
m′

2
x1

+ c2t
m2
x1

, . . . ,
m′

s

x1
+ cst

ms

x1
, m̂s+1, . . . , m̂k

〉
where ci = (ai + l)!

(ai − 1)! forms an edge of the A-graph.

(ii) I0 = I.
(iii) limt→∞ It = J .

Proof. Assuming that It is defined as in (i), the proof of (ii) immediately follows by
putting t = 0.

In order to prove (iii) it suffices to show that m′
i ∈ J and mi

x1
∈ J for each i ∈ {1, . . . , s}.

Since mi ∈ It for each t, the first of these follows from the equality

m′
i = x1

(
m′

i

x1
+ cit

mi

x1

)
− citmi.

The second can be shown by dividing m′
i

x1
+ cit

mi
x1

by cit and taking t to ∞.
Now let us prove (i). We need to show that It is Ga-fixed for each t. Let us write

the generators {m̂s+1, . . . , m̂k} in decreasing order. The last monomial, which is of the
form xp

n, is Ga-fixed. The Ga-action on a monomial m produces monomials less than
or equal to m in the lexicographic order. Using this fact and descending induction on
the index, we see that < m̂s+1, . . . , m̂k > is Ga-fixed. Similarly we see that <

m′
1

x1
+

c1tm1
x1

, m̂s+1, . . . , m̂k > is Ga-fixed. We want to show by induction that each segment
<

m′
1

x1
+c1tm1

x1
,

m′
2

x1
+c2tm2

x1
, . . . ,

m′
i

x1
+cit

mi
x1

, m̂s+1, . . . , m̂k > is Ga-fixed. In order to complete
the induction step, we need to see that the Ga-action on m′

i
x1

+ cit
mi
x1

yields the monomials
m′

r
xr

and mr
xr

in a term proportional to m′
r

x1
+ crtmr

x1
. First assume ai = ar, so that ci = cr.

Then the coefficient of mr
x1

resulting from the Ga-action on mi
x1

is a weighted sum over all
decreasing sequences (in lexicographic order) of monomials starting from mi

x1
and ending

at mr
x1

. Since the move mi → m′
i does not change any exponents other than x1 and xj ,

the same set of decreasing sequences occurs from m′
i

x1
to m′

r
xr

. Therefore the aformentioned
claim holds. On the other hand if ai 6= ar, the only difference in the sequences is in the
steps transferring powers of x1 to the other variables, and the choice of ci balances the
count. �

Corollary 4.12. The ideals in lemma 4.1 correspond to the vertices and the families of
ideals in lemma 4.11 correspond to edges of a spanning subtree of the A-graph of Hilbd(Pn).
In particular, this graph is connected, hence by theorem 3.5, Hilbd(Pn) is connected.
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