
Volume 24 • Number 4 • October 2024

Cilt 24 • Sayı 4 • Ekim 2024

Contents

A Robust Portfolio Construction Using the Bootstrap Method to 
Extract Multidimensional Uncertainty Sets: An Application on BIST100 Stocks 
Salih ÇAM - Süleyman KILIÇ .........................................................................................................................499-516

Are Electric Vehicles Discharging Tax Revenues? 
The Türkiye Case
Doğan BAKIRTAŞ - Metin NAZLIOĞLU - Hasan YAZAR ............................................................................517-530

Analysis of the Financial Performance of Airline Companies in Star Alliance 
Using Lopcow-Topsis Methods
İbrahim YAVUZ .................................................................................................................................................531-562

Workplace Conflict Effect on Innovative Behavior: 
The Roles of Engagement and Proactive Personality
Çetin YELGİN - Aslı GEYLAN ...........................................................................................................................563-576

The Classification of Success Performance of Entrepreneurial and 
Innovative Universities with Artificial Intelligence Methods
Berhan ÇOBAN .................................................................................................................................................577-592

Assessment of Hospital Managers’ 
Sustainable Leadership Levels
Ahmet Y. YEŞILDAĞ - Burak SAYAR - Zubeyir DALGIÇ ............................................................................593-606

Psychometric Properties of the Turkish Version of the 
Entrepreneurs’ Social Identity Scale
Murat AVCI - Kadir ARDIÇ ..............................................................................................................................607-620

Determinants of Exchange Rate 
Jumps in Türkiye
Erkan AĞASLAN - Savaş GAYAKER - Erol BULUT ......................................................................................621-638

The Effect of Corporate Governance Capacity 
on Herd Behavior
Esra ÖZKAHVECİ - Fatih KONAK - Sabiha KILIÇ .........................................................................................639-650

Inquiring Children’s Security within the Framework of 
Human Security: A Theoretical Assessment
Zerrin Ayşe ÖZTÜRK ........................................................................................................................................651-660

The Spatial Linkages Between International Migration And Security: 
The Empirical Findings From Türkiye Hosting Most Refugee In The World
Osman TABAK - Merve ZORLU - Necmettin ÇELİK - A. Ayşen KAYA ......................................................661-674

Bitcoin Price Bubbles and The Factors Driving 
Bitcoin Price Formation
Murat AKKAYA ..................................................................................................................................................675-686

Collaborative Supply Chain Management in the 
Sharing Economy: An Empirical Research 
Çağlar AKTEPE - Ayla ÖZHAN DEDEOĞLU .................................................................................................687-714

EGE AKADEMİK BAKIŞ / EGE ACADEMIC REVIEW

Article Type:
Research Article

Article Type:
Research Article

Article Type:
Research Article

Article Type:
Research Article

Article Type:
Research Article

Article Type:
Research Article

Article Type:
Research Article

Article Type:
Research Article

Article Type:
Research Article

Article Type:
Research Article

Article Type:
Research Article

Article Type:
Research Article

Article Type:
Research Article



Salih ÇAM1       , Süleyman Bilgin KILIÇ2     

1	 Çukurova Üniversitesi İktisadi ve İdari Bilimler Fakültesi Ekonometri Bölümü,  scam@cu.edu.tr
2	 Çukurova Üniversitesi İktisadi ve İdari Bilimler Fakültesi Ekonometri Bölümü,  sbilgin@cu.edu.tr	
	 This article is a version of the dissertation entitled Robust optimizasyon yöntemi ile portföy analizi: BİST100 hisseleriyle bir uygulama, which was 

defended at Çukurova University in February 2022. The dissertation is listed in the YÖK Dissertation Centre under the dissertation number 714122.

EGE AKADEMİK BAKIŞ / EGE ACADEMIC REVIEW

ABSTRACT

Asset allocation is a crucial aspect of portfolio management. The primary objective is to maximize the expected return of the 
portfolio while minimizing investment risk through optimal asset allocation. However, it is impossible to eliminate all investment 
risks due to factors such as prediction errors, flawed model construction, and uncertainties in parameters. Traditional portfolio 
theory models address model-based risks but fail to consider parameter uncertainties, resulting in impractical solutions. In 
this context, robust optimization methods, as opposed to traditional methods, incorporate parameter uncertainties into the 
mathematical model and construct portfolios by considering worst-case scenarios within uncertainty sets. Therefore, a robust 
approach ensures that the model solution remains optimal with a high probability, providing protection against model-based 
risks for investors. In this paper, we present a robust optimization formulation based on Bertsimas and Sim (2004) and combine 
it with the bootstrap technique to generate optimal portfolios. Our findings demonstrate that as the uncertainty of the models 
increases, the expected return of the portfolios decreases. However, for moderate levels of uncertainty, the expected return of 
the robust portfolio is comparable to that of the classical portfolio. Furthermore, the out-of-sample analysis reveals that the 
robust portfolios outperform the equally weighted portfolio.
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INTRODUCTION

Individuals save some of their income and accumulate 
funds to consume more in the future. The funds 
accumulated by consumers erode over time due to 
inflation, which reduces consumers’ purchasing power. 
Consumers, in turn, invest these funds in financial 
instruments in order to maintain or, if possible, increase 
their purchasing power. Among many other alternatives, 
investors invest in the stock market in the hope that 
their funds will increase in value. However, investing 
in securities involves a degree of risk due to the nature 
of the financial markets. These risks may come from 
investors, sectors or economic cycles. An investment 
can be exposed to two types of risk: systematic and 
unsystematic (Marshall 2015). The former is inherent in 
the market and cannot be eliminated by diversification. 
The latter is company or security (stock) specific and 
can be reduced through diversification (Lhabitant 2017; 
Pilbeam, 2018; Koumou 2020; Zaimovic, Omanovic, 
and Arnaut-Berilo 2021). In addition to systematic and 
unsystematic risks, an investor may also face prediction 

risks based on parameter uncertainties or parameter 
biases, i.e., a difference between the predicted parameter 
and its realization (Lauprete, Samarov, and Welsch 2003). 
Therefore, utilizing classical optimization methods, such 
as Markowitz’s mean-variance model, may result in 
optimizing an incorrect model with biased parameters, 
leading to non-optimal solution. In this context, classical 
methods may not be able to construct the best portfolio 
that minimizes both model-based and uncertainty-based 
risks.

Dynamic programming, stochastic programming, 
and duality analysis are the methods taking parameter 
uncertainty into account (Gero, and Dudnik 1978; 
Shapiro, and Philpott 2007; Sheng, Zhu, and Wang 2020; 
Zakaria et al. 2020; Diwekar, and Diwekar 2020). The 
difficulty with these methods is that they require detailed 
information about the distribution of the parameters 
(Birge, and Louveaux 2011). In practice, however, detailed 
information about the distribution of the parameters 
is almost rarely known. Moreover, solving dynamic 
programming and stochastic programming problems 
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becomes increasingly difficult as the number of possible 
scenarios with uncertain parameters increases. Although 
they have a solid theoretical background, the application 
of these models is quite limited in the literature. Robust 
optimization is a new technique compared to the 
models mentioned above. However, it is widely used 
in studies as it makes general assumptions about the 
distributions of the uncertain parameters. Moreover, the 
mathematical formulation of any robust problem has a 
linear conjugate and its solution is simple compared to 
stochastic programming and dynamic programming, 
even for large problems (Bertsimas, Brown, and 
Caramanis 2011; Yanıkoğlu, Gorissen, and Den Hertog 
2019). Apart from post-solution methods such as duality, 
dynamic programming, and stochastic programming, 
robust optimization incorporates the uncertainty of 
parameters before optimizing the mathematical model 
(Beck and Ben-Tal, 2009; Gabrel, Murat, and Thiele, 2014). 
Parameter uncertainty often arises from estimation bias, 
changes in information flow, and shareholders’ future 
expectations. By accounting for parameter uncertainty 
and incorporating it into the mathematical model, robust 
optimization offers several advantages for portfolio 
management. These include the ability to absorb errors 
in the mathematical model and within the uncertain 
sets, as well as providing a solution that remains optimal 
with a high probability even under the worst possible 
parameter realizations.

Robust optimization is one of the most widely used 
methods in portfolio theory (Goldfarb, and Iyengar 2003; 
Huang et al. 2010; Xidonas, Steuer, and Hassapis 2020). 
The uncertain parameters are included in the robust 
portfolio formulation within predetermined convex 
uncertainty sets. Owing to robust optimization, all 
possible realizations of the parameters are included in 
the portfolio optimization, so that the solution remains 
feasible with high probability. Although several robust 
models have been utilized to solve optimization problems 
with uncertain parameters, we have developed a new 
formulation of robust optimization based on the model 
proposed by Bertsimas and Sim (2004). While Bertsimas 
and Sim’s formulation accounts for uncertainty in the 
constraints, the objective function does not consider 
uncertain parameters. In this paper, we have reorganized 
their robust formulation and proposed a new one that 
incorporates uncertain parameters in the objective 
function. Additionally, we have combined the bootstrap 
method with the model. It should be noted that there 
are various techniques available for determining the 
uncertainty sets of uncertain parameters, but in this 
study, we have chosen to use the bootstrap method to 

generate uncertainty sets for the assets analyzed. The 
bootstrap method is a resampling technique used to 
make inferences about a population based on an existing 
sample. In our case, it is used to create convex and 
symmetric uncertainty sets for the objective function 
parameters. The extreme values, i.e. the maximum and 
minimum values of the uncertainty set, were obtained 
for each stock using the distribution function created by 
the bootstrap technique.

LITERATURE REVIEW

Although the influential work of Markowitz (1952) laid 
the foundation for modern portfolio construction theory, 
the practical application of portfolio management has 
been disappointing due to difficulties in constructing 
model inputs. The inputs (expected returns and 
covariance between assets) for mean-variance 
optimization must be estimated, either statistically from 
historical data or pricing model (Tütüncü, and Fabozzi 
2014). The uncertainty in the expected returns has a 
much greater influence on the optimal solution than 
the covariance matrix (Chopra and Ziemba 1993; and 
Kallberg and Ziemba 1984; Yam et al., 2016). Therefore, 
we focus on the uncertainty in the expected returns, 
assuming that the covariance matrix is known.  The 
emphasis here is not on the risk of returns. Risk, as used 
in Markowitz’s mean-variance model, and uncertainty, 
which is the difference between the estimated value and 
the realized value of a parameter, are different concepts. 
The mean-variance model assumes that asset returns are 
normally distributed and will continue to be normally 
distributed in the future. However, returns typically have 
a fat-tailed distribution with infinite variance (Fama 
1965; Mandelbrot 1997; Campbell et al. 2008; Fabozzi 
et al. 2007; Bhansali 2008; Sheikh, and Qiao 2009; Haas, 
and Pigorsch, 2009; Stoyanov et al. 2011; Eom, Kaizoji, 
and Scalas, 2019; Eom 2020). Under the assumption of 
normality, the ordinary mean estimator is the best linear 
unbiased estimator (BLUE) and its use in the optimization 
model is unproblematic. However, in the case of non-
normality, robust statistics or models must be used to 
construct efficient portfolios (Reyna et al. 2005; Kaszuba, 
2012; Yang, Couillet, and McKay 2015; Li, Hong, and Wang 
2015; Hubert, Debruyne, and Rousseeuw 2018; Bakar, 
and Rosbi, 2019). 

The expected returns and the variance-covariance 
matrix estimated from historical data can be a good 
representation of the past. However, their ability to 
predict the future is not always perfect. At this point, 
the reliability of the solution obtained from the robust 
model increases, because the robust optimization 
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solves the mathematical model with uncertain 
parameters (Ben-Tal, and Nemirovski 2002; Fabozzi 
et al.  2007; Gülpınar, and Hu 2016).  Although robust 
optimization dates back to the study of Sosyter (1973), it 
received the most attention in the early 2000s (Ghaoui, 
Oks, and Oustry 2003; Zymler, Rustem, and Kuhn 2011; 
Qiu et al. 2015; Lee et al. 2020; Xidonas, Steuer, and 
Hassapis 2020). The logic of the Soyster model is to 
assume the worst-case realization within uncertainty 
sets for all assets in the portfolio. This makes it the most 
conservative of the robust optimization models and 
therefore the most sensitive to uncertainty. Even if the 
financial markets exhibit a high degree of uncertainty, 
it is unlikely that all assets in the portfolio will perform 
at their worst. Over an investment horizon, some 
securities will provide lower than expected returns, 
while others will provide higher than expected returns. 
The main drawback of the Soyster model is its excessive 
conservatism with respect to parameter uncertainty. 
To overcome the problem of conservatism, Ben-Tal and 
Nemirovski (1998, 1999, 2000) have proposed a new 
robust model that is less conservative to parameter 
uncertainties. Compared to Soyster’s model, the robust 
model proposed by Ben-Tal and Nemirovski is less 
likely to remain feasible due to its lower conservatism. 
The robust formulation of Ben-Tal and Nemirovski is 
theoretically convincing, but could not be used by the 
researchers because of the complications in solving 
the model. Finally, Bertsimas and Sim (2004) proposed 
a robust model allowing a trade-off between the 
value of the objective function and the robustness 
of the solution (Bertsimas, Pachamanova, and Sim 
2004). In addition to the financial studies, the robust 
optimization formulations have been used in many 
academic studies, such as production planning and 
inventory management (Alem, and Morabito 2012; 
Agra et al. 2018; Rodrigues et al. 2019; Golsefidi, and 
Jokar 2020), energy storage and planning (Zhang et 
al. 2018; Zhao et al. 2019; Shen et al. 2020; Moret et 
al. 2020), supply chain and planning (Bertsimas, and 
Thiele 2004; Pishvaee, Rabbani, and Torabi 2011; Hahn, 
and Kuhn 2012), water management and planning 
(Zeferino, Cunha, and Antunes 2012);  finance and 
portfolio theory (Tütüncü, and Koening 2004; Fabozzi 
et al. 2007; Quaranta, and Zaffaroni 2008; Gregory, 
Darby-Dowman, and Mitra 2011; Scutella, and Recchia 
2013; Deng et al. 2013; Kapsos, Christofides, and 
Rustem 2014; Wang, and Cheng 2016; Sengupta, and 
Kumar 2017; Solares et al. 2019; Dai, and Wang 2019; 
Dai, and Kang 2021; Georgantas, Doumpos, and 
Zopounidis 2021). 

Carefully defining uncertainty sets is crucial in order to 
achieve feasible outcomes, although robust optimization 
effectively reduces the impact of parameter biases. An 
uncertainty set is a region that encompasses all potential 
realizations of an uncertain parameter with a specified 
likelihood. Convexity, symmetry, and closed clusters 
are required for uncertainty sets. Here, a closed cluster 
refers to an interval with a finite number of parameter 
realizations. There are several ways to construct 
uncertainty sets, including methods proposed by Ben-
Tal and Nemirovski (2000), Bertsimas and Brown (2009), 
Bandi and Bertsimas (2012), Guan and Wang (2013), 
Bertsimas, Gupta, and Kallus (2018), Zhu et al. (2020), and 
Daneshvari and Shafaei (2021). However, we chose to use 
the bootstrap method to create our uncertainty sets due 
to its statistical advantages.

METHODOLOGY

Robust Optimization

Robust optimization is a technique that takes into 
account uncertain parameters during the pre-solution 
phase of mathematical formulation. These parameters 
can have a range of values within an uncertainty set. The 
main concept is to define an uncertainty set for potential 
realizations of the uncertain parameters and then 
optimize the mathematical model against the worst-case 
scenarios within the uncertain set. In many optimization 
problems, the values of the parameters are either unknown 
or inaccurately predicted at the time of solution. This is a 
critical factor in the optimization process, as the solution 
heavily relies on these parameters. It is worth noting that 
the optimal solution of a linear programming problem 
occurs at a corner point of the feasible region. However, 
a potential bias in the parameters can significantly alter 
the optimization problem and result in an infeasible 
solution (Ben-Tal and Nemirovski 2000). By incorporating 
parameter uncertainties into the optimization model, the 
solution becomes more resistant to prediction bias. It is 
common for there to be a discrepancy between the actual 
and predicted values of a parameter in financial data, 
which is typically based on past information. Discrepancy 
between prediction and realization of a parameter can 
lead to uncertainty and risk in portfolio management. 
To address this issue, robust optimization techniques 
have been developed. The optimization model of Soyster 
(1973), Ben-Tal and Nemirovski (2000), and Bertsimas and 
Sim (2004) are widely cited in the literature. However, 
the robust model proposed by Bertsimas and Sim (2004) 
offers distinct advantages, such as the ability to control 
the level of conservatism through a control parameter 
and ensuring computational feasibility in both theory 
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and practice. In this study, we aim to enhance the 
robust model of Bertsimas and Sim by incorporating 
uncertainty into the objective function. Our proposed 
model for portfolio optimization with general constraints 
is outlined below.

	

				  

where  is the coefficient vector of the objective 
function,  is the weight vector,  is a matrix of technology 
coefficients,  is a vector of right-hand side coefficients, 

 is the variance-covariance matrix,   is the risk aversion 
constant, and  and  are the lower and upper bounds 
of the weights, respectively. It is assumed that all 
coefficients in the model are certain or predetermined. 
However, Bertsimas and Sim (2004) proposed a robust 
model including uncertain parameters. 

						    

where  is the  weight of the jth parameter,  is 
the coefficient of the  certain parameter in the  
constraint,  is the coefficient of uncertain parameter j 
in the  constraint, and  is the constant of the right-
hand side. The  constraint contains a sub-optimization 
model by itself.  If  is the optimal weight of the  
parameter, it is obvious that  will be equal to   at the 
optimal point. If  takes a non-zero value, it will be equal 
to either  or , because the optimal solution occurs 
at one of the extreme values. Hence, the constraint in 
equation (2) can be expressed as:

where  represents the number of uncertain 
parameters included in the constraint with a possible 
range of 0 and . This value corresponds to the maximum 
number of parameters in the model. The chosen integer 
in the analysis reflects a trade-off between the risk of 

uncertainty and the value of the objective function. 
When  is equal to 0, the model (2) will be equivalent 
to the Markowitz mean-variance model, which only 
includes certain parameters. On the other hand, if  is 
equal to ,  the objective function will take on a more 
conservative value. In order to reach the optimal solution 
for equation (2), the constraint in equation (2) should be 
expressed as a sub-optimization model:

	

The solution to model (2) is achieved in two steps: the 
first step is to solve the sub-optimization model (3), and 
the second step is to use the solution of model (3) to solve 
model (2). However, the uncertainty in returns have much 
more impact on feasible solution than uncertainty in the 
constraints. By integrating uncertainty into objective 
function, we develop a robust formulation based on the 
model of Bertsimas and Sim (2004). The objective of the 
proposed model is the Sharpe ratio1 .

where  is return vector of the uncertain parameters,  
is the number of uncertain parameter in model, and 
 is the risk-free rate. To optimize the objective, the 

numerator must be maximized while the denominator 
must be minimized. The numerator of the objective 
function contains two nested optimization problems: 
the inner one is a minimization problem, while the outer 
one is a maximization problem. The denominator is the 
portfolio’s variance, which is a measure of the portfolio’s 
risk. The model can incorporate conventional constraints, 
such as transaction cost constraints, minimum and 
maximum limit constraints, and others. These constraints 
do not involve uncertain parameters.

1	 The Sharpe ratio is proposed by Sharpe (1966) and formulated as 

  ; where  is the expected return of portfolio,  is the 

risk free rate, and   is the variance of portfolio.  and 

, where  is the covariance matrix of returns.  

(1)

(3)

(4)

(2)

(3)
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Bootstrap Method

Determining the appropriate uncertainty set or 
interval is crucial for the success of robust optimization. 
Poorly determined uncertainty sets can lead to unreliable 
solutions for optimization problems. Therefore, well-
determined uncertainty sets result in reliable and 
feasible worst-case solutions. In this context, we use the 
bootstrap technique to determine appropriate intervals 
for the assets used in the analysis. The bootstrap is a 
procedure for repeating samples in order to derive 
statistics on population parameters. This method uses 
the resampling procedure to create new samples from 
the existing sample, with the aim of obtaining a good 
representation of the population parameters. Assuming 
that a series consists of a random sample from an 
unknown probability distribution F, bootstrapping can be 
used to predict a representative probability distribution 
of the series, represented as . To obtain , multiple 
samples are taken from the realized sample through 
resampling. There may be a bias between the predicted 
distribution  and the population distribution F, as well 
as between  and , which are unknown population 
parameters and estimated parameters derived from the 
resampling procedure, respectively. However, in practice, 
the bias between  and  is usually negligible due to the 
superior statistical properties of the method.

The distribution function of a random variable X with 
observed values X1, X2, ......, Xn is denoted by F. However, 
the distribution of X is usually unknown. Fortunately, 
the empirical distribution  can be obtained from 
random samples  from X, where k<n. The 
estimated parameter  derived from  can be used 
as a representation of the population parameter . By 
resampling  for  we can obtain   
new samples from X. This allows us to create  based on   
subsamples drawn from X using the resampling process. 
The confidence interval for  can then be calculated using 
the estimated parameter , by taking into account the 
probability distribution of . Let  represent the 
α-percentile of the distribution of . A confidence 
interval for  can be calculated using the following 
statement: 

or

The equation above states that the probability of 
containing the unknown parameter  is equal to 1-a. 
However, in order to use this interval, the distribution 

of    must be known. It is more common to use the 
distribution of the studentized estimator   where 

 is the standard error of the estimator . This random 
variable often follows an approximate t-distribution with 

 degrees of freedom, where p is the total 
number of unknown parameters to be estimated from 
the data. If  represents the α-percentile of the 
t-distribution with  degrees of freedom, the following 
confidence interval can be derived:

According to statistical theory, this interval will contain 
a population parameter with a probability of . In the 
context of robust optimization, this confidence interval 
represents the uncertainty associated with a risky asset 
used in portfolio optimization (Efron, and Tibshirani 
1985; Wehrens, Putter, and Buydens, 2000).

DATA and ANALYSIS

We utilized the developed model to analyze 
BIST100 shares, with the exception of financial firms. 
This exclusion was due to the unique calculations 
involved in their balance sheets and their market-
to-book ratio. Typically, investors are drawn to assets 
with low market-to-book ratios, as this is widely 
considered a key indicator of whether an asset is 
undervalued or overvalued in the market. However, 
financial institutions and banks tend to have very low 
equity, resulting in consistently low market-to-book 
ratios compared to manufacturing companies. As a 
result, the model may give disproportionate weight 
to the shares of financial institutions and banks. To 
avoid biased results, financial institutions and banks 
are typically excluded from financial studies (Fama 
and French 1992; Fama and French 1993; Azimli 
2020). Therefore, our analysis was based on data from 
56 assets. We used monthly data from January 2014 
to March 2021 for the analysis, with closing prices 
on the last trading day of each month. Returns were 
calculated as the percentage change in prices from 
period t-1 to period t. In terms of the total asset 
space, 46.42% of shares were from the manufacturing 
sector, 10.71% from electricity, gas, and water, 
10.71% from oil, gas, and chemicals, 8.92% from 
transportation, storage, and communications, 8.92% 
from technology, 7.14% from wholesale and retail 
trade, restaurants and hotels, 5.35% from mining 
and quarrying, and one share from the construction 
industry. The mathematical model used for portfolio 
construction and its constraints are outlined below.
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where  

while   is the average interest rate of government debt 

securities and  is the variance of the portfolio. 

Here, in order to optimize the expected return, we need 

to minimize the sub-problem inside the parentheses. 

This is because the expression inside the parentheses is 

optimized based on worst-case scenarios, resulting in a 

negative value for the objective function. Consequently, 

to maximize the expected return of portfolio,  

part of   which have zero or negative value must be 

minimized. Therefore, the objective can be reorganized 

as follows: 

Since  is constant in the objective function, 
maximizing the objective is essentially maximizing 

the ratio of expected return to portfolio risk within the 
constraints of the model shown in Table below.

The first constraint was implemented to ensure that 
the total weight of the portfolio equaled 1. Constraints 
2-7 were utilized to promote portfolio diversification and 
restrict the upper and lower limits of stocks within each 
sector. The final constraint was put in place to prevent the 
weighting of any individual stock from exceeding 5% and 
to prohibit short selling. These optimization constraints 
allow for potential losses in one sector to be offset by 
gains in others, thanks to measures such as sector-
specific investment ratios, maximum investment limits, 
and restrictions on investing in certain sectors.

Above are the descriptive statistics for the assets 
used in the analysis. The data shows that SASA has the 
highest monthly return of 6.1285%, while BIZIM has the 
lowest monthly return of 0.2831%. When conducting 
mean-variance analysis, it is important to consider the 
risk and expected return of each asset in order to create 
a portfolio with minimum risk or maximum expected 
return. The standard deviation, which represents risk, 
is a crucial factor in selecting assets for the portfolio. In 
this case, IPEKE has the highest risk of 17.7770, while 

# The 
Constraint 

Definition 

1) ∑ 𝑤𝑤# = 1&
#'(   It ensures that the sum of the weights is equal to 1 

2) 
∑ )*+*

,
*-.
∑ +*

,
*-.

≤ 7.00  It limits the maximum weight of market-to-book ratio of an assets. Here, 𝑎𝑎#  is 
the market-to-book ratio of asset i.  

3) 

∑+45	
∑ +*

,
*-.

≤ 0.35  It ensures that the total weight of manufacturing stocks in the portfolio does 
not exceed 35%. Here, ∑𝑤𝑤9:	is the total weight of assets from 

manufacturing sector.  

4) 

∑+;<	
∑ +*

,
*-.

≥ 0.05  It ensures that the total weight of the shares of wholesale, retail, restaurants 
and hotels is at least 5% of the portfolio. Here, ∑𝑤𝑤>?	 is the total weight of 

assets from wholesale, retail, restaurants and hotels sector.  

5) 

∑+;@	
∑ +*

,
*-.

≥ 0.20  It ensures that the total weight of shares in the technology sector is at least 
20% of the portfolio. Here, ∑𝑤𝑤>B	 is the total weight of assets from 

technology sector. 

6) 

∑+@5	
∑ +*

,
*-.

≥ 0.10  It ensures that the total weight of oil, gas and chemical sector stocks is at 
least 10% of the portfolio. Here, ∑𝑤𝑤B:	 is the total weight of assets from oil, 

gas and chemical sector. 

7) 

∑+CD	
∑ +*

,
*-.

≥ 0.08  It ensures that the weights of transportation, storage, and communications 
shares in the portfolio are a maximum of 8%. Here, ∑𝑤𝑤FG	is the total weight 

of assets from transportation, storage, and communications sector. 

8) 0 ≤ 𝑤𝑤# ≤ 0.05  It limits the lower and upper bounds of the weights. 

 

Table 1. The Constraints and Their Definition
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Table 2.  Descriptive Statistics

Asset Mean Median Max. Min. Std. D. Skewness Kurtosis Jarque-Bera

AEFES 0.315 0.609 22.035 -24.166 8.465 -0.124 3.129 0.280

AKSA 2.427 1.888 31.103 -21.998 9.874 0.199 3.389 1.109

AKSEN 1.968 1.652 32.668 -22.233 10.022 0.376 3.568 3.181

ALKIM 3.007 2.029 23.182 -11.596 7.817 0.342 2.424 2.861

ARCLK 1.571 0.897 23.261 -31.644 9.216 -0.485 4.256 9.019*

ASELS 2.586 1.641 25.503 -20.456 8.465 -0.074 2.979 0.079

AYGAZ 1.622 1.096 21.423 -24.981 8.158 -0.018 3.651 1.525

BIMAS 1.709 1.171 17.196 -11.749 5.982 0.311 2.760 1.597

BIZIM 0.283 -0.267 35.888 -25.167 10.509 0.256 4.246 6.506*

BRISA 2.349 1.032 30.124 -20.143 9.987 0.307 3.069 1.366

BRSAN 2.585 1.815 54.002 -28.465 12.266 0.646 5.833 34.758*

BTCIM 2.291 2.233 82.149 -41.958 15.260 1.444 10.943 255.988*

BUCIM 1.836 0.756 33.156 -22.400 10.304 0.890 4.351 17.882*

CCOLA 0.646 0.586 22.181 -25.353 8.797 0.062 3.504 0.966

CEMTS 3.229 2.750 37.764 -25.568 12.050 0.443 3.371 3.304

CIMSA 1.246 0.967 25.073 -35.905 9.375 -0.270 5.306 20.101*

CLEBI 4.281 2.749 69.586 -32.158 14.624 1.714 9.068 174.041*

DEVA 3.411 3.150 44.727 -24.525 11.028 0.707 5.772 34.705*

DOAS 2.387 1.790 45.735 -33.896 14.020 0.705 4.678 17.225*

EGEEN 4.244 1.958 49.790 -29.515 11.431 0.570 5.043 19.607*

ENKAI 1.221 0.515 18.704 -10.942 6.006 0.429 3.269 2.893

ERBOS 3.166 2.341 35.783 -23.603 11.662 0.249 2.978 0.894

EREGL 2.773 1.645 30.548 -21.256 10.118 0.027 2.670 0.401

FROTO 2.990 3.705 25.037 -39.001 9.494 -0.774 6.086 42.720*

GUBRF 3.837 2.271 50.947 -25.983 14.259 1.041 5.117 31.6035*

HEKTS 4.963 4.006 41.521 -22.704 10.497 0.654 4.822 18.021*

INDES 3.047 3.259 33.749 -30.772 12.915 -0.185 3.602 1.791

IPEKE 2.089 -1.812 55.667 -57.982 17.777 0.319 4.226 6.847*

KAREL 3.826 2.709 32.030 -37.243 13.810 -0.071 2.818 0.190

KARSN 2.036 1.978 48.168 -40.306 14.769 0.512 5.150 20.333*

KARTN 2.627 0.147 93.849 -22.629 14.752 3.181 18.956 1057.307*

KLMSN 2.978 2.427 35.140 -40.042 15.550 -0.274 3.280 1.358

KORDS 2.897 2.236 32.371 -35.452 10.845 0.097 4.524 8.462*

KOZAA 2.336 -0.129 50.067 -39.256 17.504 0.425 3.269 2.851

KOZAL 2.373 2.971 45.562 -32.918 14.177 -0.014 3.474 0.809

KRDMD 2.692 0.569 45.783 -31.366 13.195 0.342 3.912 4.653*

LOGO 3.823 2.364 63.517 -23.877 14.398 1.194 5.849 49.507*

MGROS 1.148 1.503 25.835 -35.742 9.849 -0.426 4.280 8.475*

NETAS 2.176 0.426 41.985 -25.229 13.531 0.799 4.043 13.045*

ODAS 2.174 0.879 55.500 -36.546 16.030 0.165 4.224 5.762*

OTKAR 2.810 2.531 38.295 -35.094 11.682 -0.081 4.676 10.161*

PETKM 2.408 2.701 21.591 -37.046 9.513 -0.802 5.474 31.157*

PGSUS 1.404 -0.899 43.807 -45.676 15.560 0.147 3.716 2.147

SASA 6.129 4.796 47.717 -22.159 13.278 0.771 4.148 13.254*

TATGD 1.932 2.247 27.895 -22.108 11.290 0.080 2.352 1.595

TCELL 0.914 1.632 17.586 -19.947 7.272 -0.404 3.248 2.558
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BIMAS has the lowest risk of 5.9819. Additionally, the 
distribution of the series is also important in portfolio 
selection. The coefficients of skewness and kurtosis 
provide valuable information about the shape of the 
distribution. It is worth noting that a large proportion of 

assets do not have a symmetric distribution, as indicated 
by the coefficients of skewness and kurtosis. The Jarque-
Bera test is another indicator of normality, with the null 
hypothesis being “the series is normally distributed.” The 
results in Table 2 show that 31 out of 56 series are not 

THYAO 0.919 -0.277 24.668 -30.654 11.374 -0.040 2.886 0.069

TMSN 1.743 1.119 48.980 -33.384 12.531 0.449 5.122 19.014*

TOASO 2.034 0.586 30.605 -33.700 8.746 -0.233 6.025 33.565*

TTKOM 0.629 0.250 25.643 -27.115 8.611 -0.152 4.241 5.854*

TTRAK 2.186 2.177 36.282 -35.377 11.059 0.117 5.273 18.702*

TUPRS 1.728 2.397 19.671 -29.395 8.623 -0.353 3.954 5.045*

ULKER 0.688 0.263 22.655 -19.651 9.180 0.088 2.671 0.500

VESTL 3.593 3.846 40.945 -36.335 15.383 -0.039 3.074 0.041

YATAS 5.007 4.913 38.349 -37.445 14.374 -0.440 3.277 3.049

ZOREN 1.563 1.123 62.390 -22.691 13.076 1.206 7.310 87.421*

Table 3. The Uncertainty Sets of the Assets

Asset Asset

AKSA [-1.25,  6.11] [-0.24,  5.09] [0.34,   4.51] KRDMD [-2.38, 7.76 ] [-0.83, 6.21] [-0.08, 5.47]

AKSEN [-1.73,  5.67] [-0.70,  4.63] [-0.15,  4.08] KAREL [-1.38,  9.03] [0.07,  7.58] [0.87,  6.78]

ALKIM [0.07,   5.94] [0.88,   5.13] [1.35,   4.66] KARSN [-3.60,  7 68] [-2.01, 6.08] [-1.07, 5.14]

AEFES [-2.97,  3.60] [-2.01,  2.64] [-1.49,  2.12] KARTN [-1.01, 6. 27] [-0.05, 5.30] [0.48,  4.77]

ARCLK [-2.09,  5.24] [-0.99,  4.13] [-0.42,  3.56] KLMSN [-3.07,  9.03] [-1.30, 7.26] [-0.27, 6.23]

ASELS [-0.74,  5.92] [0.26,   4.91] [0.79,   4.39] KORDS [-1.28,  7.07] [-0.06, 5.86] [0.60,  5.19]

AYGAZ [-1.54,  4.78] [-0.58,  3.83] [-0.09,  3.33] KOZAL [-3.04,  7.79] [-1.44, 6.19] [-0.64, 5.38]

BTCIM [-3.24,  7.83] [-1.67,  6.26] [-0.84,  5.43] KOZAA [-4.29,  8.96] [-2.42, 7.09] [-1.34, 6.01]

BIMAS [-0.53,  3.95] [0.11,   3.31] [0.44,   2.97] LOGO [-0.22,  7.86] [0.91,  6.74] [1.52,  6.13]

BIZIM [-3.74,  4.30] [-2.55,  3.11] [-1.93,  2.50] MGROS [-2.68,  4.98] [-1.57, 3.87] [-1.01, 3.31]

BRSAN [-2.01,  7.18] [-0.78,  5.95] [-0.01,  5.18] NETAS [-2.81,  7.16] [-1.39, 5.74] [-0.64, 5.00]

BRISA [-1.44,  6.14] [-0.35,  5.05] [0.24,   4.46] ODAS [-3.81,  8.16] [-2.17, 6.52] [-1.23, 5.58]

BUCIM [-2.00,  5.67] [-0.89,  4.57] [-0.32,  3.99] OTKAR [-1.72,  7.35] [-0.36, 5.98] [0.34,  5.28]

CCOLA [-2.84,  4.13] [-1.74,  3.03] [-1.21,  2.50] PGSUS [-4.48,  7.29] [-2.79, 5.59] [-1.80, 4.61]

CLEBI [0.23,   8.34] [1.32,   7.24] [1.93,   6.63] PETKM [-1.48,  6.29] [-0.27, 5.08] [0.36,  4.45]

CEMTS [-1.38,  7.83] [0.06,   6.40] [0.72,   5.73] SASA [1.25, 11.00] [2.63,  9.63] [3.39,  8.87]

CIMSA [-2.39, 4.88 ] [-1.30,  3.79] [-0.74,  3.23] TATGD [-2.34,  6.20] [-1.13, 4.99] [-0.46, 4.33]

DEVA [-0.70,  7.52] [0.51,   6.31] [1.13,   5.69] TOASO [-1.44,  5.51] [-0.36, 4.43] [0.16,  3.90]

DOAS [-2.67,  7.45] [-1.27,  6.04] [-0.52,  5.29] TCELL [-2.00,  3.83] [-1.12, 2.95] [-0.66, 2.48]

EGEEN [-0.05,  8.54] [1.19,   7.30] [1.84,   6.64] TMSN [-3.03,  6.51] [-1.63, 5.12] [-0.89, 4.37]

ENKAI [-1.04,  3.49] [-0.42,  2.86] [-0.06,  2.50] TUPRS [-1.68,  5.14] [-0.63, 4.09] [-0.10, 3.55]

ERBOS [-1.21,  7.55] [0.06,   6.27] [0.75,   5.58] THYAO [-3.47,  5.31] [-2.19, 4.03] [-1.53, 3.37]

EREGL [-1.19,  6.74] [-0.01,  5.56] [0.62,   4.92] TTKOM [-2.73,  3.99] [-1.70, 2.96] [-1.19, 2.45]

FROTO [-0.83,  6.81] [0.35,   5.63] [0.94,   5.04] TTRAK [-2.09,  6.47] [-0.79, 5.17] [-0.18, 4.55]

GUBRF [0.09,   7.58] [1.13,   6.55] [1.70,   5.97] ULKER [-2.91,  4.29] [-1.84, 3.22] [-1.29, 2.66]

HEKTS [1.14,   8.78] [2.20,   7.73] [2.76,   7.16] VESTL [-2.36,  9.54] [-0.61, 7.80] [0.33,  6.85]

INDES [-1.96,  8.05] [-0.54,  6.64] [0.27,   5.83] YATAS [-0.70,10.72] [1.07,  8.95] [1.98,  8.03]

IPEKE [-4.56,  8.73] [-2.66,  6.84] [-1.61,  5.79] ZOREN [-3.08,  6.21] [-1.81, 4.94] [-1.10, 4.23]
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normally distributed, which is more than half of the total 
assets used in the analysis. This proportion increases even 
further as the frequency of the data increases. Therefore, 
assuming normality would render the model solutions 
invalid.

The bootstrap method was used to determine uncertainty 
intervals, which are presented in Table 3. These intervals 
were constructed using three alpha values, representing the 
significance level of the uncertainty sets. The significance 
levels used were 1%, 5%, and 10%, which are commonly 
used in statistics for confidence intervals. As the investment 
in a portfolio was planned for three years, subsamples of 
36 observations were created using the bootstrapping 
procedure. For each asset, 15000 subsamples were drawn 
to obtain a representative distribution of returns. Once the 
asset distributions were determined through bootstrapping, 
the lower and upper bounds of the uncertainty sets 
were calculated using the first, fifth, and tenth quantiles 
for each asset. In the case of an alpha is equal to 0.01, 
corresponding to a 99% confidence level, the lower bounds 
of the uncertainty sets were generally negative and all upper 
bounds were positive. This is due to the wide confidence 
interval. As the confidence level increases, it is expected 
for the bounds of the confidence intervals to expand. For 
example, the difference between the boundary values of 
AKSA at 99%, 95%, and 90% confidence levels were 7.36, 
5.48, and 4.85, respectively. A confidence interval of 99% is 
quite high and means that 99 out of 100 realizations would 
fall within the interval. Therefore, compared to intervals at 
lower confidence levels, a larger interval can be expected at 
a higher confidence level. Asset returns can randomly take 
on any value within the uncertainty set, including the lower 
and upper bounds. As robust optimization seeks a feasible 
solution to the worst-case scenario of assets, it is likely that 
one of the extreme values will be assumed during model 
optimization.

Table 4 summarizes the Sharpe ratio, expected returns 
(%), and portfolio risks in terms of the number of uncertain 
parameters in the models. The gamma value ranges from 
zero to 56. The gamma value of zero indicating that the 
model contains no uncertain variables. The gamma value of 
56 corresponds to the most conservative robust formulation, 
the robust optimization model of Soyster. The confidence 
levels of the intervals or uncertainty sets are represented by 
99%, 95%, and 90%, which are determined by the number 
of uncertain parameters included in the model. For example, 
a gamma value of zero would correspond to the classical 
mean-variance model of Markowitz, while a gamma value 
of 56 would correspond to the robust optimization model 
of Soyster.

As the number of uncertain parameters included in the 
model increased, the expected return and Sharpe ratio 
decreased. This relationship was observed at different 
levels of uncertainty, with the Sharpe ratio decreasing 
by more than 20% at a 99% confidence level when the 
number of uncertain parameters increased from 1 to 2. 
However, the decrease in Sharpe ratio was minimal when 
the number of uncertain parameters was between 2 and 
10. As the number of uncertain parameters continued 
to increase from 15 to 56, the Sharpe ratio decreased 
significantly, and for models with 45 or more uncertain 
parameters, it even took on a negative value. This suggests 
that the risk-free interest rate was higher than the 
expected return of the portfolio. The expected returns of 
the portfolios also followed a similar trend as the Sharpe 
ratio. The model without any uncertain parameters had 
an expected return of 52%, which remained almost 
unchanged when one uncertain parameter was included. 
At different confidence levels (99%, 95%, and 90%), the 
expected returns were 52.095%, 51.59%, and 51.59%, 
respectively. 

In terms of risk, the variance of the portfolio, which 
represents investment risk, tended to decrease as the 
number of uncertain parameters included in the model 
increased. This was in line with expectations, as robust 
optimization takes into account parameter uncertainties 
before the solution, thereby reducing some of the 
investment risk. However, this reduction in risk came at 
the cost of sacrificing some of the expected return. As 
the level of uncertainty increased, the solution space 
of the optimization model became smaller. This inverse 
relationship between expected return and uncertainty 
is referred to as the “price of robustness” by Bertsimas 
and Sim (2004). It is important to note that a gamma 
value of zero (indicating no uncertain parameters) 
or the maximum value of 56 (indicating all uncertain 
parameters) is not expected in practice. In reality, the 
assets in a portfolio fall somewhere between these 
two extremes. Some sectors may perform below the 
expected return, while others may perform above it. This 
highlights the importance of diversification in a portfolio, 
as investing in assets from different sectors and with 
different characteristics can help mitigate the impact of 
underperforming assets. 

Figure 1 illustrates the relationship between the 
Sharpe ratio and portfolio risk in relation to the uncertain 
parameters included in the models. The dashed line 
represents portfolio risk, while the straight line represents 
the Sharpe ratio. The figure suggests that as the number 
of uncertain parameters increases, the Sharpe ratio 
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decreases. For instance, when the model contains no 
uncertainty, the ratio is 0.017, but it drops to almost -0.003 
when the optimization model includes 56 uncertain 
parameters. Similarly, the trend of portfolio risk follows 

that of the Sharpe ratio, until the point where 25 uncertain 
parameters are present in the models. Beyond this point, 
the trend of risk slightly increases with the number 
of uncertain parameters. Interestingly, both portfolio 

Table 4. The Expected Return Of Portfolio, The Risk Of Portfolio, and The Sharpe Ratio

Sharpe Ratio Sharpe Ratio

Gama=0 0.01812 %52.090 25.66250

Gama=1 Gama=4

99% 0.01810 %52.095 25.69165 99% 0.01490 %41.232 23.93431

95% 0.01682 %51.590 27.34654 95% 0.01490 %41.233 23.93460

90% 0.01683 %51.590 27.33443 90% 0.01503 %40.878 23.48085

Gama=2 Gama=5

99% 0.01447 %41.352 24.72033 99% 0.01500 %40.877 23.52785

95% 0.01448 %41.352 24.70964 95% 0.01491 %40.910 23.69429

90% 0.01460 %41.336 24.48440 90% 0.01494 %40.907 23.64958

Gama=3 Gama=6

99% 0.01448 %41.342 24.69349 99% 0.01497 %40.888 23.58361

95% 0.01496 %41.207 23.81680 95% 0.01489 %40.912 23.73513

90% 0.01506 %41.159 23.61990 90% 0.01494 %40.914 23.65005

Gama=7     Gama =10     

99% 0.01451 %39.445 23.33683 99% 0.01389 %37.804 23.19995

95% 0.01482 %39.752 23.04991 95% 0.01455 %39.869 23.55889

90% 0.01445 %39.595 23.53577 90% 0.01451 %39.430 23.32053

Gama =8       Gama =15     

99% 0.01459 %39.606 23.31754 99% 0.01258 %31.950 20.95607

95% 0.01623 %39.690 21.01095 95% 0.01382 %32.230 19.28916

90% 0.01623 %39.693 21.01858 90% 0.01425 %32.031 18.55739

Gama =9       Gama =20     

99% 0.01556 %39.800 21.99614 99% 0.01116 %29.720 21.62301

95% 0.01515 %40.000 22.71826 95% 0.01272 %29.790 19.03467

90% 0.01478 %39.674 23.07072 90% 0.01323 %31.510 19.60297

Gama=25 Gama=45

99% 0.01094 %24.713 17.48019 99% 0.00156 %08.758 20.37770

95% 0.01221 %29.008 19.19222 95% -0.00100 %3.330 22.50142

90% 0.01308 %29.662 18.40892 90% 0.00703 %20.133 20.70634

Gama=30 Gama=50

99% 0.00827 %22.543 20.49859 99% -0.00462 -%4.218 21.19801

95% 0.00984 %24.842 19.56484 95% 0.00343 %12.725 20.82131

90% 0.01081 %27.116 19.92363 90% 0.00099 %7.779 22.17366

Gama=35 Gama=56

99% 0.00768 %21.013 20.10443 99% -0.00720 -%9.667 21.17044

95% 0.00864 %23.427 20.64725 95% -0.00577 -%10.000 27.01822

90% 0.00981 %25.708 20.51236 90% -0.00175 %1.618 22.60142

Gama=40

99% 0.00141 %8.471 20.45621

95% 0.00492 %15.811 20.78953

90% 0.00671 %19.545 20.80928
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risk and Sharpe ratio remain relatively stable when the 
number of uncertain parameters ranges from 2 to 10, 
indicating the robustness of the optimization solution. 
This suggests that solving the portfolio optimization 
problem with 2 uncertain parameters may be feasible 
for models with up to 10 uncertain parameters. However, 
for models with more than 10 uncertain parameters, a 
decrease in Sharpe ratio and an increase in risk can be 
expected due to the increased uncertainty in the models. 

Figure 2 illustrates the relationship between the Sharpe 
ratio and expected returns of different models, based 
on the number of uncertain parameters in each model. 
As the number of uncertain parameters increases, the 
expected returns of the models decrease. This is reflected 
in the numerator of the Sharpe ratio, which includes the 
expected return of the portfolio. Interestingly, the decrease 
in expected return is more significant than the decrease in 
the Sharpe ratio when going from one uncertain parameter 
to two. This suggests that the impact of risk on the Sharpe 
ratio is greater than the impact of return when additional 
uncertain parameters are added to the model. As the 
number of uncertain parameters increases from two to ten, 
there is a gradual decline in expected returns. However, 
when there are more than ten uncertain parameters, the 
expected returns of the portfolios decrease even further 
and eventually become negative.

Figure 3 shows the portfolio efficient frontiers obtained 
by robust optimization. The efficient frontiers were 
computed from the constructed efficient portfolios with 
95% confidence intervals for each gamma representing the 
uncertain parameters in the models. The efficient frontiers 
of  , , , , , and  almost overlapped, and the efficient frontier 
of  was slightly below the first frontier. The efficient frontier 

of the portfolios gradually decreases as model uncertainty 
increases. This means that the efficient frontier of models 
with more uncertain parameters is lower than that of models 
with less uncertain parameters. The figure illustrates this by 
showing a decrease in expected return from almost 62% to 
almost 18%, depending on the level of uncertainty in the 
models. As investors’ risk appetite increases, the expected 
return of the portfolios also increases, but at a decreasing 
rate. However, there comes a point where it is impossible to 
further increase the expected return for a given level of risk. 
At this point, there is no reason for the investor to take on 
more risk. The efficient frontier represents a combination of 
all the portfolios in which investors have invested, and it is 
technically impossible to achieve a higher return than this 
frontier. Therefore, investors should choose a portfolio on 
the efficient frontier based on their risk tolerance. Expected 
returns of a portfolio reflect the performance of the portfolio 
during a specific analysis period. However, investors 
interest in portfolio performance in a real investment 
process, because the expected return of a portfolio is not 
necessarily the same as the return achieved at the end of 
an investment period. Therefore, the average appreciation 
of an investment is often more important than the expected 
return of a portfolio. As a result, theoretically constructed 
portfolios are expected to generate a higher return than the 
average market returns in the investment process.

Table 5 displays the average annual returns of two 
portfolios: one constructed using robust optimization 
and the other using an equally weighted approach 
with 56 assets. These figures cover a seven-year period 
from November 2014 to February 2021, deliberately 
chosen to include the Covid-19 pandemic and 
demonstrate the robustness of the robust optimization 
solution. The results align with the expected return 

Figure 1: The Sharpe Ratio and the Risk of Portfolios Concerning Uncertain Parameters 
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and Sharpe ratio, as illustrated in Figures 1 and 2. As 
the number of uncertain parameters in the model 
increases, the average annual returns of the invested 
portfolio naturally decrease. For instance, the model 
without any uncertain parameters (corresponding to 
Markowitz’s classical mean-variance model) yielded 
an average annual return of 51.64%. However, when 
an additional uncertain parameter (Gamma) was 
introduced and increased by two, the average annual 
return of the invested portfolio significantly decreased. 
In comparison, the average annual return of the 
market index during the same period was 44.60%. This 
suggests that portfolios without uncertainty provided 
approximately 7% more return than the market or 

equally weighted portfolio. However, if an investor 
aims to minimize risk, they may have to sacrifice 
some potential return. As the number of uncertain 
parameters in the model increases, the average annual 
returns of the portfolios decrease. For instance, when 
the number of uncertain parameters was 1, 2, 15, and 
56, the average annual returns of the portfolios were 
53.80%, 41.74%, 27.19%, and 24.82%, respectively. 
Notably, the average annual return of the model with 
two uncertain parameters was lower than that of the 
model without uncertainty, while the portfolios with 
one uncertain parameter provided approximately 
9% more return than the equally weighted portfolio. 
Finally, the portfolios with the maximum number 

Figure 3: The Efficient Frontier of Portfolios Based on Uncertain Parameters 

Figure 2: The Sharpe Ratio and the Expected Returns
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of uncertain parameters had a 19.78% lower return 
than the equally weighted portfolio. It is worth 
mentioning that both portfolios with zero and 56 
uncertain parameters are theoretically possible, but 
their realization is rare. In practice, portfolios with a 
number of uncertain parameters between these two 
extremes are more common. Therefore, calculating the 
number of assets with lower returns than the target 
index and incorporating this information into the 
investment process can assist investors in determining 
the appropriate number of uncertain parameters to 
include in their portfolio.

CONCLUSION

Modern portfolio theory aims to maximize returns 
and minimize risk in line with investor expectations. 
However, achieving both objectives in one model can be 
challenging. This is due to the volatility of securities and 
the difficulty in accurately predicting expected returns. 
Assuming that predicted values are precise and certain 
can invalidate the solution, as these values may contain 
errors. Instead, it is more realistic to consider a range of 

possible values for the predicted returns. This approach 
eliminates computational errors and biases within certain 
limits, while still ensuring a high probability of a successful 
optimization. The robust optimization model used in 
this paper combines the advantages of the bootstrap 
method, which allows for inferences to be made about 
the population, increasing the reliability of the model 
solution. The use of well-established uncertainty sets is 
crucial in ensuring the reliability of the model solution. 
By incorporating the bootstrap method, we are able to 
control both the uncertainty levels and the confidence 
levels of the uncertainty sets. This is the main advantage 
of the model proposed in this paper. The analysis 
includes uncertainty sets for three different confidence 
levels: 99%, 95%, and 90%. Additionally, the number of 
uncertain parameters is gradually increased from zero 
to 56, resulting in 58 different portfolio optimizations. 
This allows investors or researchers to select a model 
that meets their expectations and use the weights of the 
model for their investments. For example, a risk-sensitive 
investor may choose a portfolio with a high probability 
level for the uncertainty quantities and a high number of 

# The 
Constraint 

Definition 

1) ∑ 𝑤𝑤# = 1&
#'(   It ensures that the sum of the weights is equal to 1 

2) 
∑ )*+*

,
*-.
∑ +*

,
*-.

≤ 7.00  It limits the maximum weight of market-to-book ratio of an assets. Here, 𝑎𝑎#  is 
the market-to-book ratio of asset i.  

3) 

∑+45	
∑ +*

,
*-.

≤ 0.35  It ensures that the total weight of manufacturing stocks in the portfolio does 
not exceed 35%. Here, ∑𝑤𝑤9:	is the total weight of assets from 

manufacturing sector.  

4) 

∑+;<	
∑ +*

,
*-.

≥ 0.05  It ensures that the total weight of the shares of wholesale, retail, restaurants 
and hotels is at least 5% of the portfolio. Here, ∑𝑤𝑤>?	 is the total weight of 

assets from wholesale, retail, restaurants and hotels sector.  

5) 

∑+;@	
∑ +*

,
*-.

≥ 0.20  It ensures that the total weight of shares in the technology sector is at least 
20% of the portfolio. Here, ∑𝑤𝑤>B	 is the total weight of assets from 

technology sector. 

6) 

∑+@5	
∑ +*

,
*-.

≥ 0.10  It ensures that the total weight of oil, gas and chemical sector stocks is at 
least 10% of the portfolio. Here, ∑𝑤𝑤B:	 is the total weight of assets from oil, 

gas and chemical sector. 

7) 

∑+CD	
∑ +*

,
*-.

≥ 0.08  It ensures that the weights of transportation, storage, and communications 
shares in the portfolio are a maximum of 8%. Here, ∑𝑤𝑤FG	is the total weight 

of assets from transportation, storage, and communications sector. 

8) 0 ≤ 𝑤𝑤# ≤ 0.05  It limits the lower and upper bounds of the weights. 

 

Table 5. The Average Annual Return of Portfolios and The Equally Weighted Index

Note: AARP is the abbreviation for Average Annual Return of Portfolios.
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uncertain parameters, while a less risk-sensitive investor 
may prefer a portfolio with a lower probability level and 
fewer uncertain parameters. The portfolios constructed 
in this paper offer a flexible range of options for investors.

The results indicate that investors must make a 
trade-off between the stability of their portfolio and 
the expected return. If an investor wants to ensure that 
their portfolio remains feasible under all possible market 
conditions, they may have to sacrifice some of their 
expected return. However, the portfolio is still expected 
to outperform the market or target index. The study 
covers the period from January 2014 to March 2021, and 
during this time, the recommended portfolios had an 
average return higher than the market return. From April 
1, 2021 to September 31, 2021, the average return of the 
model portfolios was 173.54%, 176.01%, and 173.16% at 
confidence levels of 99%, 95%, and 90% respectively. In 
comparison, the BIST100 increased by 69.7871%, BIST50 
increased by 59.67%, BIST30 increased by 41.19%, and 
the equally weighted portfolio increased by 167.10%. 
These results demonstrate that the model portfolios 
consistently achieved higher returns than the index 
returns at all confidence levels. This shows that portfolios 
created using robust optimization not only provided 
high returns but also remained feasible under all possible 
market conditions. It is worth noting that extreme cases, 
where there are either zero or 56 uncertain parameters, 
are not expected in practical situations due to the 
diversification of the portfolio. Additionally, the robust 
formulation of the portfolios resulted in resistance to 
extreme fluctuations during the pandemic period and 
maintained high out-of-sample valuation rates. The 
robust models used in the analysis, which account for 
parameter uncertainty, produced optimal solutions that 
remained feasible with a high probability. In other words, 
portfolios created using robust optimization are not 
significantly affected by potential market fluctuations.
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