
1250

Research Article

Implementation of Blockchain-Assisted Source Routing for Traffic

Management in Software-Defined Networks

 Murat KARAKUŞ a,*

a Department of Software Engineering, Faculty of Engineering, Ankara University, Ankara, TÜRKİYE

* Corresponding author’s e-mail address: mrtkarakus@ankara.edu.tr
DOI: 10.29130/dubited.1209656

ABSTRACT
The control and infrastructure layers are split into Software-Defined Networks (SDNs). With the control and

infrastructure planes split, new network applications may be developed with more simplicity and greater

independence. On the other hand, the disadvantages of SDN create a slew of questions. In large-scale networks,

such as Wide Area Networks (WANs) covering huge areas, more propagation delays substantially contribute to

network convergence time. In addition, traditional SDN restricts network design flexibility due to the influence

of controller location on network performance in large-scale networks. SDN-based source routing (SR) has

emerged as a viable solution to the issues above, where the packet header field is used to specify a packet's route.

This study presents an SR-based End-to-End (E2E) traffic management framework called SoRBlock. In

SoRBlock, inter-domain routing uses blockchain technology, while intra-domain routing relies on the SR

technique in SDNs. The simulation results show that the proposed SR-based SoRBlock framework outperforms

the traditional hierarchical routing approach, HRA, in SDN networks by lowering path setup time (PST) and the

number of controller messages. While the same (i.e., identical origin and target) service requests were used for

all runs in the simulations, the proposed SoRBlock architecture presents almost three times less total PST

between 45ms and 65ms than the HRA method between 130ms and 200ms due to the HRA approach's increased

node-controller and controller-controller latencies. On the other hand, SoRBlock shows two times less PST

([75ms – 90ms]) than HRA ([150ms – 175ms]) when different service requests (i.e., different origin and target)

were used. Concerning Controller Messages Processed (CMP), the HRA deals nearly 50% more controller

messages between 7 and 15 than the SoRBlock between 3 and 10 when the number of domains varies, while the

CMP in the SoRBlock scheme ([10 - 17]) approaches that in the HRA framework ([15 - 20]) regarding the ratio

while the count of nodes rises in domains.

Keywords: Source Routing, Blockchain, Software Defined Networks, Traffic Management

Yazılım Tanımlı Ağlarda Trafik Yönetimi İçin Blokzincir Destekli

Kaynak Yönlendirmesinin Uygulanması

ÖZ
Kontrol ve veri katmanları, Yazılım Tanımlı Ağlarda (YTA) bölünmüştür. Kontrol ve veri düzlemlerinin

ayrılmasıyla, yeni ağ uygulamaları daha basit ve bağımsız bir şekilde geliştirilebilir. Öte yandan, Yazılım

Tanımlı Ağların dezavantajları birçok sorun oluşturmaktadır. Geniş Alan Ağları (WAN'lar) gibi büyük ölçekli

ağlarda, daha fazla yayılma gecikmesi, ağ yakınsama süresine önemli ölçüde katkıda bulunmaktadır. Ek olarak,

geleneksel YTA, büyük ölçekli ağlarda denetleyici konumunun ağ performansı üzerindeki etkisi nedeniyle ağ

tasarım esnekliğini kısıtlar. YTA-bazlı kaynak yönlendirmesi, paket başlık alanının bir paketin ağ üzerindeki

yolunu belirtmek için kullanıldığı ve yukarıdaki sorunlara uygulanabilir bir çözüm olarak ortaya çıkmıştır. Bu

çalışma, SoRBlock adlı kaynak yönlendirme tabanlı uçtan uca trafik yönetimi çerçevesini sunmaktadır.

Received: 24/11/2022, Revised: 12/04/2023, Accepted: 13/04/2023

Düzce University

Journal of Science & Technology

Düzce University Journal of Science & Technology, 11 (2023) 1250-1268

mailto:mrtkarakus@ankara.edu.tr
https://orcid.org/0000-0002-8893-7345

1251

SoRBlock'ta, ağlar arası yönlendirme, blokzincir teknolojisini kullanırken, ağ içi yönlendirme, YTA-bazlı kaynak

yönlendirme tekniğine dayanmaktadır. Simülasyon sonuçları, önerilen kaynak yönlendirme tabanlı SoRBlock

çerçevesinin, yol kurulum süresini (Path Setup Time - PST) ve işlenen denetleyici mesajlarının (Controller

Messages Processed - CMP) sayısını azaltarak YTA ağlarında geleneksel hiyerarşik yönlendirme yaklaşımı olan

HRA'dan daha iyi performans gösterdiğini göstermektedir. Önerilen SoRBlock mimarisi 45ms ve 65ms aralığında

olmak üzere, tüm simülasyon çalıştırmalarında aynı (aynı kaynak ve hedef düğüm) hizmet isteklerinin

kullanıldığı senaryoda, HRA yaklaşımının artan düğüm - denetleyici ve denetleyici - denetleyici gecikmelerinden

dolayı HRA yönteminden 130ms ve 200ms aralığında olmak üzere neredeyse üç kat daha az toplam PST

sunmaktadır. Öte yandan SoRBlock ([75ms – 90ms]), farklı hizmet istekleri (farklı kaynak ve hedef)

kullanıldığında HRA'dan ([150ms – 175ms]) iki kat daha az PST göstermektedir. İşlenen Denetleyici Mesajları

(CMP) bakımından, etki alanı (domain) sayısı arttığında HRA ([7 - 15]), SoRBlock'tan ([3 - 10]) yaklaşık %50

daha fazla denetleyici mesajı işlerken, SoRBlock çerçevesinde ki CMP ([10 - 17]), HRA çerçevesinde ([15 - 20])

CMP'ye, etki alanlarındaki düğüm sayısı artarken oran olarak yaklaşmaktadır.

Anahtar Kelimeler: Kaynak Yönlendirme, Blokzincir, Yazılım Tanımlı Ağlar, Trafik Yönetimi

I. INTRODUCTION

The centralized operations and administration in Software Defined Networking (SDN) [1] leads to

scalability challenges owing to the recent per-flow forwarding state blast in networks caused by a

growth in the count of nodes along with intelligent, flexible, and policy-driven service requests. One

challenge is that WANs can suffer from extended propagation delays due to the controller's

requirement to deploy flow rules on each data plane device along the flow's route. Long propagation

delays may result in lengthy path setup times in large-scale SDN networks with many geographically

dispersed switches. Route setup delay may not affect elephants and/or ordinary flows. However, the

Quality of Service (QoS) of delay-aware flows might be considerably degraded [2] from such lengthy

path setup times. Another scalability challenge in SDN networks is the message processing load by

data plane devices and SDN controllers. SDN switches may struggle to process OpenFlow messages

because of their limited processing capability. Because SDN devices can hold a certain amount of flow

rules in flow tables, the "match-and-action" concept may affect the granularity with which flows are

controlled. A similar problem with resource capacity affects SDN controllers while processing service

request setup status messages. They only have a slight processor and storage capacity installed on their

computers. The controller message load to process increases as the network expands, resulting in a

network computation bottleneck. Finally, SDN switches have limited storage capabilities to maintain

flow rules. SDN devices often keep flow tables and rules in TCAM-based memories [3]. However, the

TCAM memories are expensive, power-costly, and restricted storage resources. In order to handle

SDN architecture's scalability challenges, it is necessary to diminish the number of network incidents

handled in the control layer and only process needed network incidents [4].

Increasing the scalability of SDN by lowering the number of flow rules in the switches has recently

been deemed a potential strategy, i.e., easing the information change among the controller and data

layer nodes [5]. At the origin node, Source Routing (SR) lays out the whole route from source to

target. SDN networks' centralized management allows the controller to keep track of the network's

global topology. This means that various objectives may be met by using different enhanced SR

strategies. Similar to SDN-based destination routing, source switch-based route encapsulation aims to

save flow information in the packet header. This means that all that would be required of each

intermediary switch along the line is to read the correct egress ports and send the packets. To provide

fine-grained traffic management, a limited and finite amount of flow rules may be exploited by all

flows without requiring any interaction from the controller during route creation.

A potential solution to these issues mentioned above (i.e., path setup time latency and augmented

controller message processing) might be utilizing an SR approach in routing functionalities, i.e.,

putting the route information into the packet headers [6], [7]. This allows putting a limited number of

flow-independent forwarding rules into the network devices, which considerably diminishes the

1252

forwarding state and improves the control plane scalability by reducing the workload on controllers to

add flow entries into data layer nodes.

This work exploits and builds on the idea proposed in our previous study [8]. This study integrates a

Port IDs and TTL (PIDTTL) based SR scheme for intra-domain traffic management into our

blockchain (BC)-supported QoS-concentrated cross-network routing framework [8] in order to enable

QoS-based end-to-end (E2E) routing in SDNs. This study aims to design and implement an E2E

routing framework (SoRBlock) in SDNs, where inter-domain level routing exploits BC technology and

intra-domain level routing leverages the SR scheme. The performance of the SoRBlock framework is

quantified regarding Path Setup Time and the number of Controller Messages Processed (by

controllers) metrics. SoRBlock is also compared against a QoS-aware routing strategy in SDNs,

Hierarchical Routing Approach (HRA), presented in our earlier research [9] to evaluate the

performance gains. This study is certainly not the first to conceive SR. However, it is the first to

effectively couple the SR concept, SDN, and BC to implement and demonstrate the collaboration of

combined SDN, BC, and SR schemes on inter-domain routing applicability.

The following outline is the body of this paper: The next section presents studies exploiting SR in

SDN. Section III briefly discusses SDN, SR, and BC to render this study self-sufficient. Section IV

introduces the details of SR-based intra-domain and BC-enhanced inter-domain routing strategies in

SDN in this study. Section V presents the experimental numbers before the final notes in the

Conclusion section.

II. RELATED WORK

A packet's complete routing path may be determined solely by the origin using SR. Because of its

simple and lower-state routing packets, it has already received substantial attention. SDN research also

leverages the SR concept. SDN-based SR was suggested by [6] for scalable service chaining in the

data center. The packet header contains the route information. Intermediary data plane nodes' ports are

represented as straight integers to eliminate the requirement for additional bytes for route information.

On the other hand, SDN-based data centers concentrate on route installation rather than path

discovery. Furthermore, it does not provide QoS. A novel forwarding method for OpenFlow-based

systems is discussed by [10], who emphasizes the controller scalability and performance difficulties in

SDNs. The equation for the number-encoded SR route is derived in this study. This dramatically

minimizes the number of routing states sent to forwarding nodes by pushing the route rule to the

ingress node. Using OpenFlow and NOX controller extensions, StEERING [11] attempts to set up a

route that travels through certain middle-boxes. Splitting a single flow table into many small tables is

the approach to limiting "rule explosion". StEERING utilizes Graph Theory to provide a solution to

the route planning conundrum. StEERING's main shortcoming is the absence of QoS support. It uses

middle-boxes procedures to find the best route. With SlickFlow [12], the emphasis is on resolving

problems at the source through SR. The controller's fault recovery program sends the route

information to the entry nodes in special headers. Each part of the journey includes all hops and other

routes to the next hop.

In order to virtualize the data center network, SecondNet [13] uses SR through MPLS port switching.

SecondNet uses shorter pathways and, as a result, does not encounter some of the limits associated

with service chaining that apply to linking pairs of virtual machines. Improved flexibility and

performance are the goals of [14]'s source-routed fabric. A source-routed fabric in leaf-spine data

center topologies is discussed in the paper, which estimates the throughput advantages of the proposed

fabric over existing forwarding methods. For data centers, the architecture described by [7] is

comparable to the port switching procedure developed by [15] and the SR techniques shown in [14].

Wireless networks may also benefit from the use of SR. One of the most used SR schemes in MANET

and Ad-Hoc networks is Dynamic Source Routing (DSR) [16]. A packet's route data may be included

1253

in its header, allowing intermediary nodes to avoid maintaining a routing table in DSR. Finally,

Segment Routing [17] is an alternate SR-based method proposed by the IETF to provide

simplification, improved traffic engineering, and quick reroute capabilities.

New traffic engineering activities and services demand low-overhead routing and forwarding

disruptions over-complicated network topologies. Source routing (SR) reduces network states to

provide expressiveness and agility. M-PolKA [18], a topology-agnostic multipath source routing

strategy and orchestration framework for reliable communications, examines exceptional

characteristics from Residue Number System (RNS) polynomial arithmetic. Current routing protocols

do not consider the communication characteristics of different applications. SDN was considered a

solution, but it has scalability issues. Source Routing over IPv6 (SRv6), a decentralized source routing

protocol, is expected to scale better. The proposed system in [19], Acar, uses SRv6 and adapts routing

based on application bandwidth requirements and network link utilization. SDN has scalability issues

in WANs due to the separation of control and data planes, which causes increased response time and

overhead. The authors in [20] proposed the Source-Path Routing Model (SPRM) framework that

addresses scalability, performance, and link failure issues by combining proactive and reactive

approaches. They employ multiple pre-calculated paths and dynamic network state information (NSI)

to assign the best path for an incoming flow. They also utilize multiple paths as a backup to each other

in case of link failures. [21] proposes an SDN-based approach for quickly recovering Time Sensitive

Networks (TSN) from failure events using SR and a stateless data plane. The authors employ a TSN

failure recovery routing heuristic to minimize link congestion and TSN subgraphs to quickly

reschedule flows in problematic areas. The authors in [22] introduce SRCV, a mechanism for

verifying control-data plane consistency in P4-based SDN at runtime. SRCV uses active probe traffic

with source routing labels, collects matching flow rule information, and compares it with control plane

flow rules information through symbolic execution. Table 1 summarizes the related works studying SR

and SDN.

Table 1. Summary of Related Works

WORK SUMMARY

[6] A scalable service chaining at which the NF-path path is encoded into the packet header

[7] A forwarding method compactly encoding a packet's network route in its address fields

[10] Focus on SR to solve SDN-based WAN convergence and controller placement issues

[11] A framework for dynamically routing traffic through any sequence of middleboxes

[12] An SR-based fast failure recovery by adding alternative path data into the packet

header.

[13] Data center network virtualization architecture using port-switching-based SR

[14] SR-based clean abstraction and efficient implementation for future network fabrics

[15] An SR approach for increased scalability and robustness in multi-tenant datacenters

[16] Dynamic Source Routing (DSR) for Mobile Ad Hoc Networks for IPv4

[17] Defining SR functions that are required in the IS-IS protocol

[18] Topology-agnostic multipath source routing strategy and orchestration framework

[19] A routing by considering application bandwidth requirements and link utilization

[20] SPRM framework to address scalability, performance, and link failure issues in SDN

[21] An SDN-based approach for ultra-fast TSN recovery using SR and stateless data plane

[22] An SR-based control-data plane runtime consistency verification mechanism using P4

SoRBlock
An SR-based E2E traffic management framework in which inter-domain routing uses

BC, while intra-domain routing relies on the SR technique in SDNs

SR is seen as a surrogate to the traditional hop-based forwarding strategy in SDN, as seen by the

concepts described in this section. Despite this, there are a variety of implementation models to choose

from. Despite this, other implementation forms exist. Supplementing these notions, this study

demonstrates the applicability of SR strategies in actual SDN environments. However, this study

differs from the works mentioned above in different ways. First, QoS information is considered in the

1254

path selection process to support QoS provisioning. Second, BC is exploited to reduce further QoS-

related signaling overhead messages handling by network controllers to enhance control plane

scalability in SDN networks. Third, SR-based intra-domain and BC-enhanced inter-domain routing

approaches cooperate to propose an E2E traffic management scheme. Therefore, this study is the first

to exploit the confederacy of the SR, BC, and SDN concepts to manage E2E traffic to the best of the

author’s knowledge.

III. OVERVIEW OF SR, SDN, AND BC

This section briefly explains SR, SDN, and BC to make this paper self-inclusive.

A. SOURCE ROUTING (SR)

It is possible to set up a complete route from a single origin node to a single destination in SR. It

requires the insertion of the set of labels into the packet header, which the switch fabric will handle.

The process of SR can be facilitated by deploying a network controller in SDN, which will be

responsible for the path computation and the population of path insertion entries into the edge

switches. Reducing the amount of forwarding state may be accomplished via SR [23]. By reducing the

number of states, significant reductions in switch TCAM can be achieved, resulting in more cost-

effective switching equipment. In theory, switches could send packets with minimum flow-

independent forwarding rules when employing SR because the path is encoded in the packet header.

Each packet's route is represented as a list of labels that roughly correspond to the ports of the data

plane nodes it must traverse. The switches can free up much TCAM capacity by not keeping

forwarding entries to all network destinations at the L2 or L3 levels.

Because network topology may not match the route given by the source node, the usage of SR is

restricted in practical networks. For this problem to exist, the source node must be deprived of a global

topological perspective to establish a reliable route. As a result of the SDN controller's global topology

perspective, it can accomplish globally optimal resource allocation and efficiency, including E2E

routes. This means that in the scope of SDN, it is rather probable that a route will be found for SR.

SDN uses SR in a variety of ways, including in data center networks [6], WANs [10], fault

tolerance/recovery [13], and so on.

B. SOFTWARE-DEFINED NETWORKING (SDN)

The control plane and forwarding planes are intended to be separated by SDN. Network engineers and

technicians benefit from this isolation, allowing them to use network resources more effectively and

expedite service delivery. SDN also makes it simpler to modify the properties of entire networks via

programmability. Network administration is more superficial because it is split from the data plane.

SDN design [1] allows network administrators to simply and swiftly control and modify their

networks' resources using self-written, flexible, and proprietary-free applications. Furthermore, unlike

traditional networking, controllers in SDN possess a global view of the entire network since the

network is logically centralized. As a result, they can dynamically improve resource allocation and

flow management.

1255

Figure 1. An outline of SDN with fundamental components.

Furthermore, the control and forwarding layers of SDN are interconnected through interfaces. These

interfaces let devices communicate with others in the network. East-West APIs [24] aim to exchange

information between controllers, which may be from the same or different organizations. Northbound

APIs make network application and controller(s) interaction possible for network services. On the

other hand, southbound APIs, as shown in Figure 1, enable access between the controller(s) and

forwarding layer nodes such as routers, physical switches, or virtual switches. OpenFlow [25] is the

primary southbound protocol for interaction between the control and data layers.

C. BLOCKCHAIN (BC)

BC technology is a democratic system where all participants working and participating in a network

can follow the processes without a centralized authority. In another aspect, the system is a distributed

database that records all transactions performed. Thanks to its decentralized structure, all operations

performed without a centralized agent are executed with specific protocols and trust mechanisms. The

overall BC structure is created by writing each activity, referred to as a transaction, into the blocks and

adding it to the chain.

Figure 2. A visual depiction of a block's data structure in the BC.

1256

A generic block data format in a BC is shown in Figure 2. A block's structure is primarily composed

of: (i) a block header, which contains different data describing the block, and (ii) a block body, which

contains the batch and count of transactions included inside the block. The construction of the BC

might alter based on the applications and consensus methods that utilize it. Data such as the version or

identifier, encrypted transaction values in a Merkle tree, a timestamp, and difficulty variables are

included in the block header. The hashed value of the preceding/parent block is also included. The

network's users use private and public keys to conduct transactional activities. Users' network access is

protected by private keys, which act as a kind of identification.

IV. MOTIVATION

Combining SR, SDN, and BC can give networks a safe and effective routing solution. This method is

not just tamper-proof and decentralized; it also gives users more say over how their data goes

throughout the network. The optimal and reliable path for data to travel through a network may be

determined using SR. SDNs allow the route to be dynamically altered based on current network

circumstances, allowing optimal data delivery. BC may be used to make the network more secure and

resistant to manipulation by storing and verifying routing information.

Altogether, SR, SDN, and BC can provide a complete answer for decreasing routing path setup times.

This is especially relevant in networks that provide time-sensitive activities, such as online stock

trading or live video conferencing. Combining these three technologies can be an effective strategy for

easing the burden on routing controllers. Maintaining and updating the routing table is the controller's

responsibility in conventional routing systems, which can burden the controller's resources and

negatively impact performance. Organizations can relieve pressure on the controller by shifting part of

the work to SR, SDNs, and BC.

The controller does not have to spend as much time maintaining and updating the flow tables and rules

if SR is used to indicate the exact path that data should follow via the network. In order to ensure that

data is delivered fast and effectively while minimizing the need for manual intervention and updates

from the controller, SDNs allow for the routing path to be dynamically altered based on real-time

network circumstances. BC can offer a decentralized and tamper-resistant solution to store and

validate routing information to cut down on the time and effort needed for path construction and

verification and the need for the controller to maintain centralized flow tables and rules.

Blending these three technologies can be especially helpful in sectors like banking, healthcare, and

logistics, where safe and dependable transport is essential. When applied to a healthcare network, for

instance, SR can guarantee the safe and timely transfer of patient information to the treating physician.

Using BC can increase security by making routing data more difficult to alter and easier to verify. In

addition, this method can give more programmability in routing, which opens the door to

individualized routing solutions that meet the unique requirements of each business. This can boost

efficiency, save money, and enhance safety and dependability.

Overall, SR, SDN, and BC form a powerful routing solution. Organizations may build a fast, secure,

and reliable network by combining the benefits of these three technologies, lessening the time spent on

path creation and verification and lightening the controller's workload.

V. SoRBlock: AN END-TO-END TRAFFIC MANAGEMENT

FRAMEWORK

This section presents the technical details of the proposed E2E routing framework, \emph{SoRBlock},

in two parts. First, a BC-based inter-domain level routing is presented in subsection IV-A.

1257

Subsequently, the intra-domain level routing exploiting the SDN-based SR approach to form E2E

connectivity is presented in subsection IV-B.

A. BLOCKCHAIN-BASED INTER-DOMAIN LEVEL ROUTING

This subsection presents an overview of the BC-based inter-domain level routing strategy in line with

the framework discussed in [8] and used in this study. Readers can refer to [8] for more details.

Figure 3. A representation of the proposed traffic management framework, SoRBlock, with BC-assisted inter-

domain routing and SR-based intra-domain routing schemes for 4 SDN domains.

Figure 3 exhibits the proposed traffic management framework, SoRBlock, with BC-assisted inter-

domain routing and SR-based intra-domain routing schemes. Figure 3 embodies the SoRBlock with 4

SDN domains with devices managed by corresponding controllers. Infrastructure nodes are two types:

(i) A border device (rounded devices) connected to a border device in a different domain by an

interconnecting link and (ii) a core network node (diagonal devices) without an interconnecting link.

Black dashed lines represent the links among controllers and infrastructure nodes. There is also a BC

network among controllers. Blue dashed lines show the connections in the BC amongst controllers.

The thick blue lines show the pathlets, which compromise the E2E path, over the E2E path computed

by the source-domain (Domain 1 in Figure 3) controller in domains. The green lines represent the SR-

based intra-domain paths computed by controllers of domains over the E2E path. The red numbers are

the port ID numbers of the network nodes.

The controller used in the SoRBlock framework has new modules and standard modules such as

topology manager, statistics manager, etc. The Blockchain Manager (BM) and its sub-components are

the primary BC enabler module. This component is a domain controller performing all BC-related

operations. The Validator Agent is capable of proving new blocks from other controllers under BC's

block validation criteria. The Hashing Agent is in charge of hashing transactions and blocks before

transmitting to the BC. The Transaction/Block Agent is responsible for implementing the

transactions/blocks that comprise the BC. The Consensus Protocol Handler conducts the BC

consensus mechanism. The Resource Monitoring Manager (RMM) continually tracks network

resources, such as bandwidth, latency, and jitter, to detect network modifications. It alerts the BM

module of any updates and instructs it to construct the related transaction(s). Additionally, the

controller design has novel applications. The Global Routing Agent (GRA) performs the cross-domain

1258

routing capabilities when a controller receives an inter-domain service request. GRA uses transactions'

ingress and egress fields to determine an E2E route for the arriving service request. The Blockchain

Application (BA) is in charge of transmitting and receiving blocks and managing messages related to

service requests.

In the framework, a pathlet is represented as: Given 𝐺𝑖 = (𝑉𝑖, 𝐸𝑖), let 𝑉𝑖
∗ denote the set of border

devices in the network 𝑁𝑖 where 𝑉𝑖
∗ ⊆ 𝑉𝑖, a path 𝑃 = 〈𝑣𝑖

1, … , 𝑣𝑖
𝑛〉 is named a pathlet if (∀ 𝑣𝑖

𝑗
∊ 𝑃) ∊

𝑉𝑖 and 𝑣𝑖
1, 𝑣𝑖

𝑛 ∊ 𝑉𝑖
∗ . A pathlet is a path that connects two border node pairs (entry and leaving nodes)

in a domain. The nodes at the beginning and end of a pathlet are referred to as ingress and egress

nodes. For example, as shown in Figure 3, paths R10-R12, R10-R9-R12, and R10-R9-R11-R10

(assuming duplex links) are pathlets between border devices R10 and R10 in Domain 3.

Each BC node represents a domain controller and operates its BC replica using the inter-domain level

routing mechanism. Within the context of inter-domain routing, BC nodes generate transactions from

pathlets and their associated QoS values. As a result, domain controllers calculate separate pathlets for

all network border node pairings. A transaction's data structure consists of the following elements: Tx

ID, Signature, Domain Number, Pathlet ID, Ingress Node, Egress Node, Max Bandwidth, and Min

Delay. When a domain is added to the BC network, it begins producing the first transactions for the

pathlets between the edge network nodes. Depending on the BC's consensus procedure, they are

subsequently broadcast as blocks to the network or the corresponding BC nodes. Once a network

variation affecting QoS, such as a bandwidth adjustment on a link, impacts the state of a pathlet, the

controller produces a new transaction indicating the pathlet's variation. Controllers use the most up-to-

date transaction for pathlets with the same IDs by checking the transaction IDs while finding an E2E

route for service. The logic behind this procedure is that the most up-to-date transaction reflects the

recent state of the respective pathlet concerning QoS parameters in the network. As in any BC

application, a block has two parts in SoRBlock: block header and block body. The block header

includes Block ID, Previous Block Hash, Merkle Root Hash, Primary-ID, and Timestamp data fields.

The block body keeps pathlet transactions that domain controllers use to compute inter-domain E2E

paths for service requests.

The inter-domain level routing is conducted after particular requested service-related messages are

exchanged among domains. When a user/client sends a QoS-based inter-domain service request to a

(source) domain controller through the S_Req message, the controller begins searching for an E2E

inter-domain level route using its BC ledger, considering the QoS metrics and priority specified in the

message. The inter-domain level E2E route is composed of pathlets connecting an edge device of its

network (i.e., source-domain) to an edge device of the destination-domain through an overlay network,

which is abstracted by using the BC's pathlet transactions. The path consisting of the thick blue

pathlets, R1-R4-R5-R7-R10-R12-R13, is an example inter-domain level E2E path in Figure 3. Reject

reply is sent back to the user if the source-domain controller cannot locate an inter-domain level E2E

route that meets the service request requirements indicated in the S_Req message created by the BA

module. The user/client is notified of this by the S_Res message. Each domain controller with a pathlet

on the inter-domain level E2E path (domain controllers 2, 3, and 4 in Figure 3) is queried by the

origin-domain controller to arrange the specified QoS values after getting back the P_Req messages

generated by the BA module. S_Res message with an Accept answer is sent to the user/client by the

source-domain controller, which states that the service request may be met and that the network will

commence if all relevant domain controllers give Accept replies to the source-domain controller. A

Reject response in P_Res messages from any domain controller across an E2E route causes the source-

domain controller to search for a new intra-domain level E2E path with the same attributes and

criteria.

B. SOURCE ROUTING-BASED INTRA-DOMAIN LEVEL ROUTING

There are three primary strategies identified and exploited for SR [6], [14], [15]. The most basic

approach to constructing SR is to use the Label Sequence and Pointer solution. The series of (switch

1259

port) labels is encoded in packet headers, and the reference to the following label is encoded in a

distinct header field. The source/destination MAC address and IP(v6) address are good candidates for

preserving labels (without additional transmission costs). The Label Sequence with TTL method

utilizes TTL rather than a separate entry for the pointer to the following label (opposite the previous

approach). Finally, the Switch IDs technique assumes unique identifier switch IDs and defines the

route as a series of switch IDs. This necessitates a fixed matching table in each network device

containing the IDs of surrounding devices. Because a switch can identify its ID in the chain, there is

no requirement for a pointer. These implementations reserve their intrinsic advantages and

disadvantages.

Figure 4. Packet header ports and TTL values in PIDTTL-based SR implementation.

This study employs the PIDTTL implementation due to efficient header space usage. The source

and/or destination MAC addresses are used to encode the corresponding list of data plane device

output ports. MAC address fields, in particular, are filled with a list of output ports that each node

along the route will use to direct each packet. The TTL field is also utilized as a reference to the

following port number in the MAC address. Figure 4 shows the Next Port Number (i.e., node output

ports) and TTL (Time-to-Live) values of packet headers when packets arrive at network nodes in

PIDTTL-based SR implementation.

 Time-To-Live (TTL): It is an eight-bit header showing how many hops the packet has left.

The target node must know that it is the final hop to handle the payload in SR. As a result, the

TTL was created with this purpose in mind, and its value is set at the origin node and then

dropped by one with each successive hop.

 Next Port Number: It is a four-bit field that contains the packet's subsequent output port on a

node over the computed intra-domain path. The node reads the corresponding port number

using the current value in the TTL field of the packet header.

After Accept responses in P_Res messages, SR-based intra-domain level routing is conducted by

domain controllers. These controllers add a flow rule in flow tables of only respective ingress border

nodes of their domains for the service request packets. The relevant flow entry modifies each packet

header to contain port numbers and TTL value that the packet traverse through inside the domain for

the SR, as explained in subsection IV-B. In the example of Figure 3, after controller 2 sends a P_Res

message to the source domain (i.e., domain 1) controller, the domain 2 controller inserts a flow entry

in the flow table of R5 for the packets of the requested service to traverse through the domain 2.

1260

Figure 5. Flow entry data structure inserted in flow tables of the ingress network nodes of domains over the

E2E path.

Figure 5 represents the data structure of flow entries added in the flow tables of the ingress network

nodes of domains over the E2E path. The flow entry added in R5 by domain controller 2 modifies the

header of each packet matching the flow entry to include an initial TTL value matching the hop count

and port ID sequence as 4 and 〈1, 2, 3, 3〉, respectively, in the case of Figure 3. The TTL value is

decremented as usual by each node that the packet traverse through inside the domain points to the

subsequent port number encoded in the MAC address. This process is applied in each domain over the

E2E inter-domain level routing path computed by the source domain controller. When the packets pass

to the next domain over the E2E path, the ingress node of the domain that the packets traverse through

modifies the headers of the packets accordingly by means of the corresponding flow entry inserted by

the relevant domain controller. For example, the flow entry added in R10 by controller 3 modifies

each packet header to include the initial TTL value and port sequence as 2 and 〈 2, 4〉, respectively,

when the packets come from R7 to R10 in the case of Figure 3.

VI. EXPERIMENTAL RESULTS

The performance of SoRBlock is tested by analyzing its Path Setup Time (PST) and Controller

Messages Processed (CMP) parameters to those of the hierarchy-based routing approach, Hierarchical

Routing Approach (HRA), presented in our previous research [9].

In the experiments, Mininet simulator and Ryu controller were employed to create and model SDN

networking devices and measure the results for the respective parameters listed in Table 2 during the

experiments. MATLAB software was used to carry out numerical computations. A custom BC

network built in Java has been used with different counts of network elements (i.e., data plane nodes

and controllers) and two different transaction sizes (original pathlet transactions number as

SoRBlock_Org and 500K transactions as SoRBlock_500K).

Table 2. List of parameters and notations used in the equations.

SYMBOL DEFINITION

𝑆𝑓
𝑘 = { 𝑠𝑗

𝑓
𝑘 ∣ 𝑠𝑗

𝑓
𝑘 𝑖𝑠 𝑎 𝑠𝑤𝑖𝑡𝑐ℎ, 𝑠𝑗 ∊𝑓

 𝑆𝑓
 }

List of data plane nodes connected to k-th controller on

the E2E path for flow 𝑓

𝐶𝑓
 = { 𝑐𝑓

𝑘 ∣ 𝑐𝑓
𝑘 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟, 𝑐 ∊

𝑘 𝐶} List of controllers on the E2E route for flow 𝑓

𝑇(𝑥)𝑝𝑟𝑜𝑐
𝑦

Duration to process a message (𝑥) at a network device

(𝑦)

𝑇(𝑥)𝑝𝑟𝑜𝑝
𝑦→𝑧

Duration to propagate a message (𝑥) from a network

device (𝑦) to a network device (𝑧)

𝑇(𝑝𝑎𝑡ℎ𝐿)𝑐𝑜𝑚𝑝
𝑦

 Duration to find an intra-domain route at controller (𝑦)

𝑇(𝑝𝑎𝑡ℎ𝐸2𝐸𝐵𝐶
)𝑐𝑜𝑚𝑝

𝑦
 Duration to find an E2E route for the service demand

1261

using BC at controller (𝑦)

𝑇(𝑝𝑎𝑡ℎ𝐸2𝐸)𝑐𝑜𝑚𝑝
𝐵𝑅 Time to find an E2E route for the service demand at BR

𝑝𝑓
 1st packet of flow 𝑓

ρ packet_in message from a switch to a domain controller

θ flow_mod message from a domain controller to a switch

𝑚
Various messages sent among domain controllers and

BR

ℎ
→

𝑓

 Source-host

𝑠
→

𝑓

 Source-switch

𝑐
→

𝑓

 Source-domain controller

𝑁
→

𝑓

 Source-domain

𝑁
←

𝑓

 Destination-domain

𝐵𝑅 A (super) controller called "Broker"

𝐵𝑖 List of edge network nodes in i-th domain

Table 3 tabulates the parameters and their corresponding values used in the simulations. |S| and
|𝐶|represents the total number of nodes and controllers used in the simulations, respectively. Their

values vary from 25 to 100 nodes and 5 to 10 controllers depending on the topologies, as shown in the

figures. The edge nodes within a topology vary between 2 and 4 nodes.

Table 3. Parameters and values used in the simulations

PARAMETER VALUE

|𝑆| 25 – 100

|𝐶| 5 – 10

𝑇(𝑥)𝑝𝑟𝑜𝑐
𝑦

 0.1ms – 1ms

𝑇(𝑥)𝑝𝑟𝑜𝑝
𝑦→𝑧

 8ms – 45ms

𝑇(𝑝𝑎𝑡ℎ𝐿)𝑐𝑜𝑚𝑝
𝑦

 1ms – 3ms

𝑇(𝑝𝑎𝑡ℎ𝐸2𝐸𝐵𝐶
)𝑐𝑜𝑚𝑝

𝑦
 6ms – 15ms

𝑇(𝑝𝑎𝑡ℎ𝐸2𝐸)𝑐𝑜𝑚𝑝
𝐵𝑅 6ms – 15ms

|𝐵𝑖| 2– 4

Link Bandwidth 100 Gbps

Request bandwidth 1 Mbps

RAM 12 GB

CPU Intel(R) Core(TM) i7-5500U CPU @ 2.40GHz 2.40 GHz

OS Ubuntu 14.04 in Oracle VirtualBox, Windows 11 Pro (Host)

Runs 20

Connectivity Degree 0.5

BC Transaction Size Original and 500K

The experiments have considered inter-ISP service requests (i.e., the origin and target nodes of a

service request are in different domains) with bandwidth resources (1 Mbps). Sufficient bandwidth

(100 Gbps) in links is supplied to prevent service denial because of resource shortage to evaluate the

real impact of these three options. Also, the Erdos-Renyi model [26] is used to haphazardly create

networks with 0.5 connectivity degrees for infrastructure nodes and domain controllers. Additionally,

each experiment was performed twenty times to surpass 95% statistical significance using the same

and distinct service demands situations in each run. Lastly, all trials were conducted on an Intel Core

i7-5500 machine with 12GB RAM running Ubuntu 14.04 in Oracle VirtualBox.

1262

A. PATH SETUP TIME

The Path Setup Time (PST) is the time required to deploy the appropriate flow rule records that enable

SR by altering the header information in the flow tables of domain entrance nodes along the E2E path.

Thus, several stages contribute to the PST measure. It is typically characterized by (i)

networking/topology-related latency, such as the RTT between the controller and the infrastructure

nodes and the time required for controller-to-controller message/packet transmission, and (ii)

node/controller-related latency, such as node and/or controller packet/message process time and

controller route calculation time. If either of these latencies is excessive, the associated path setup

latency increases, resulting in a lengthier flow rule installation, removal, or modification duration in

nodes' flow tables. Subsequently, it may lead to congestion at both the control and data layer levels

and a lengthy network recovery time. Thus, PST is a crucial parameter for evaluating the efficiency of

routing architectures in SDN networks, as it contributes to the overall network scalability. Table 2

tabulates the parameters and notations used in PST and CMP metrics of SoRBlock and HRA

frameworks.

𝑃𝑆𝑇𝑆𝑜𝑅𝐵𝑙𝑜𝑐𝑘 = 𝑇(𝑆_𝑅𝑒𝑞)𝑝𝑟𝑜𝑐
ℎ
→

𝑓

+ 𝑇(𝑆_𝑅𝑒𝑞)𝑝𝑟𝑜𝑝
ℎ
→

𝑓

 → 𝑠
→

𝑓

+ 𝑇(𝑆_𝑅𝑒𝑞)𝑝𝑟𝑜𝑐
𝑠
→

𝑓

+ 𝑇(𝑆_𝑅𝑒𝑞)𝑝𝑟𝑜𝑝
𝑠
→

𝑓

 → 𝑐
→

𝑓

+ 𝑇(𝑆_𝑅𝑒𝑞)𝑝𝑟𝑜𝑐
𝑐
→

𝑓

+ 𝑇(𝑝𝑎𝑡ℎ𝐸2𝐸𝐵𝐶
)𝑐𝑜𝑚𝑝

𝑐
→

𝑓

+ max
∀ 𝑐 ∊ 𝐶𝑓

𝑓
𝑘

{𝑇(𝑃_𝑅𝑒𝑞)𝑝𝑟𝑜𝑝
𝑐
→

𝑓

 → 𝑐𝑓
𝑘

+ 𝑇(𝑃_𝑅𝑒𝑞)𝑝𝑟𝑜𝑐

𝑐𝑓
𝑘

+ 𝑇(𝑃_𝑅𝑒𝑠)𝑝𝑟𝑜𝑐

𝑐𝑓
𝑘

+ 𝑇(𝑃_𝑅𝑒𝑠)𝑝𝑟𝑜𝑝

𝑐𝑓
𝑘 → 𝑐

→
𝑓

+ max
∀ 𝑠𝑗

𝑓
𝑘 ∊ 𝑆𝑓

𝑘
{𝑇(𝜃)𝑝𝑟𝑜𝑝

𝑐𝑓
𝑘 → 𝑠𝑗

𝑓
𝑘

} + 𝑇(𝑃_𝑅𝑒𝑠)𝑝𝑟𝑜𝑐
𝑐
→

𝑓

}

+ 𝑇(𝑆_𝑅𝑒𝑠)𝑝𝑟𝑜𝑐
𝑐
→

𝑓

+ 𝑇(𝑆_𝑅𝑒𝑠)𝑝𝑟𝑜𝑝
𝑐
→

𝑓

 → 𝑠
→

𝑓

+ 𝑇(𝑆_𝑅𝑒𝑠)𝑝𝑟𝑜𝑐
𝑠
→

𝑓

+ 𝑇(𝑆_𝑅𝑒𝑠)𝑝𝑟𝑜𝑝
𝑠
→

𝑓

 → ℎ
→

𝑓

+ 𝑇(𝑆_𝑅𝑒𝑠)𝑝𝑟𝑜𝑐
ℎ
→

𝑓

(1)

Equation (1) presents the PST formula of a flow for a service request in the proposed SoRBlock

framework. It primarily includes: (i) process and propagation duration of S_Req and S_Res messages

at/among
ℎ
→

𝑓

 ,
𝑠

→
𝑓

 ,
𝑐
→

𝑓

 (ii) computation duration for
ℎ
→

𝑓

 to find an available E2E route for the service

demand using BC, and (iii) max of processing and propagation duration of P_Req, P_Res, and

flow_mod messages at/among the controllers and data plane nodes on the E2E route.

𝑃𝑆𝑇𝐻𝑅𝐴 = 𝑇(𝑝𝑓
)

𝑝𝑟𝑜𝑐
ℎ
→

𝑓

+ 𝑇(𝑝𝑓
)

𝑝𝑟𝑜𝑝
ℎ
→

𝑓

 → 𝑠
→

𝑓

+ 𝑇(𝑝𝑓
)

𝑝𝑟𝑜𝑐
𝑠
→

𝑓

+ 𝑇(𝜌)𝑝𝑟𝑜𝑐
𝑠
→

𝑓

+ 𝑇(𝜌)𝑝𝑟𝑜𝑝
𝑠
→

𝑓

 → 𝑐
→

𝑓

+ 𝑇(𝜌)𝑝𝑟𝑜𝑐
𝑐
→

𝑓

+ 𝑇(𝑚)𝑝𝑟𝑜𝑝
𝑐
→

𝑓

 → 𝐵𝑅

max

{(𝑇(𝑚)𝑝𝑟𝑜𝑝

𝐵𝑅 →
𝑐
→

𝑓

+ 𝑇(𝑝𝑎𝑡ℎ𝐿)𝑐𝑜𝑚𝑝
𝑐
→

𝑓

+ 𝑇(𝑚)𝑝𝑟𝑜𝑝
𝑐
→

𝑓

 → 𝐵𝑅

) , (𝑇(𝑚)𝑝𝑟𝑜𝑝

𝐵𝑅 →
𝑐
←

𝑓

+ 𝑇(𝑝𝑎𝑡ℎ𝐿)𝑐𝑜𝑚𝑝
𝑐
←

𝑓

+ 𝑇(𝑚)𝑝𝑟𝑜𝑝
𝑐
←

𝑓

 → 𝐵𝑅

)}

+ 𝑇(𝑝𝑎𝑡ℎ𝐸2𝐸)𝑐𝑜𝑚𝑝
𝐵𝑅

+ max
∀ 𝑐 ∊ 𝐶𝑓

𝑓
𝑘

{𝑇(𝑚)𝑝𝑟𝑜𝑝

𝐵𝑅 → 𝑐𝑓
𝑘

+ 𝑇(𝑝𝑎𝑡ℎ𝐿)𝑐𝑜𝑚𝑝

𝑐𝑓
𝑘

+ 𝑇(𝑚)𝑝𝑟𝑜𝑝

𝑐𝑓
𝑘 →𝐵𝑅

+ max
∀ 𝑠𝑗

𝑓
𝑘 ∊ 𝑆𝑓

𝑘
{𝑇(𝜃)𝑝𝑟𝑜𝑝

𝑐𝑓
𝑘 → 𝑠𝑗

𝑓
𝑘

} + 𝑇(𝑚)𝑝𝑟𝑜𝑐
𝐵𝑅 }

(2)

Equation (2) gives the PST formula of a flow for a service request in the HRA framework. It contains:

(i) process and propagation duration for the 1st packet of flow 𝑓 and respective packet_in message

at/among
ℎ
→

𝑓

 ,
𝑠

→
𝑓

 ,
𝑐
→

𝑓

 (ii) max of (a) propagation duration of intra-domain route demand messages

from 𝐵𝑅 to
𝑐
→

𝑓

 + intra-domain route calculation duration at
𝑐
→

𝑓

 and (b) the same operations for
𝑐
←

𝑓

 ,

1263

(iii) calculation duration to find an available E2E route for the service demand at 𝐵𝑅, and (iv) max of

processing and propagation duration of route demand messages and flow_mod messages at/among 𝐵𝑅,

controllers, and data plane nodes on the E2E route.

Figure 6a and Figure 6c show the total path setup times in SoRBlock with the original (SoRBlock_Org)

and 500K (SoRBlock_500K) transactions sizes and the HRA scheme while changing the count of

infrastructure nodes in domains. Intra-domain nodes are randomly connected, while inter-domain

connections mimic NSFNET topology. While the same (i.e., exact origin and target) service requests

were used for all runs in Figure 6a, different service requests (i.e., different origin and target) were

used in Figure 6c. As shown in Figure 6a, the presented SR architecture surpasses the HRA method

regarding the augmentation ratio in total PST, owing to the HRA approach's increased node-controller

and controller-controller latencies in both Figure 6a and Figure 6c. That is because the proposed model

utilizes available transactions to identify the E2E route with fewer control messages than the HRA

method and restricts the deployment of flow rules to the domains' entrance nodes.

(a) Random connectivity in intra-domains - NSFNET

in inter-domains - Same requests.
(b) Random connectivity in inter-domains - USNET in

intra-domains - Same requests.

(c) Random connectivity in intra-domains - NSFNET

in inter-domains - Different requests.
(d) Random connectivity in inter-domains - USNET in

intra-domains - Different requests.

Figure 6. PST performances of the SoRBlock and HRA frameworks.

Additionally, Figure 6b and Figure 6d illustrate the overall path setup duration in the SoRBlock using

the original and 500K transaction sizes in the BC and HRA strategies, respectively, while altering the

number of domains. Intra-domain nodes are linked in a manner similar to that of the USNET, while

inter-domain connections are formed at random. In Figure 6b, the same (i.e., exact origin and target)

1264

service requests for each iteration are used, while in Figure 6d, unique service requests (i.e., distinct

origin and target) are employed. The overall path setup time grows as the number of domains in the

findings rises for all SoRBlock_Org and SoRBlock_500K arrangements and HRA. This occurs as a

consequence of the increased number of domains, which results in a massive load of pathlets and

hence transactions arriving from each domain, resulting in increased path computation times and

latency. In Figure 6d, SR-based schemes surpass the HRA method about twice as much as the HRA

strategy in Path Setup Time, whereas SR-based schemes easily quadruple the HRA performance in

Figure 6b. On the other hand, Figure 6d further validates the superior performance of the SoRBlock

scheme while calculating E2E paths from the current transactions. That is because the SoRBlock's

routing approach is quicker than the HRA scheme.

B. CONTROLLER MESSAGES PROCESSED

As the network increases in size relative to the nodes (e.g., end-points, data plane devices, controllers,

etc.), the controllers may need to deal with increased flow demands, and the associated messages

exchanged and processed between network nodes and the others in order to establish a QoS-based E2E

path across multiple domains. However, due to the restricted computing resources available to the

controllers, such as the CPU and RAM, these message exchange and processing tasks might result in

the controllers being a bottleneck. The controllers must minimize the number of messages exchanged

and processed to establish an E2E route for service request packets. Thus, Controller Messages

Processed (CMP) is another key indicator for assessing the performance of routing schemes in SDN

networks, as it contributes to the overall network's scalability. The CMP measure indicates the number

of messages processed to establish an E2E route for packets of a service request at/by corresponding

decision-maker controllers, i.e., controllers on the E2E route and Broker (if available), in this research.

𝐶𝑀𝑃𝑆𝑜𝑅𝐵𝑙𝑜𝑐𝑘 = 2𝑥| 𝐶𝑓
 | + ∑ | 𝑆𝑓

𝑘 |

∀ 𝑐 ∊ 𝐶𝑓

𝑓
𝑘

 (3)

Equation (3) shows the counts of CMP to arrange an E2E route for a flow of service demand in the

SoRBlock framework. It primarily includes: (i) an S_Req message from
ℎ
→

𝑓

 to
𝑐
→

𝑓

 , (ii) P_Req messages

from
𝑐
→

𝑓

 to the other controllers on the E2E route computed for the service demand, (iii) P_Res

messages from the controllers on the E2E route computed for the service demand to the
𝑐
→

𝑓

 in return

for the P_Req messages, (iv) an S_Res message from
𝑐
→

𝑓

 to
ℎ
→

𝑓

 , and (v) flow_mod messages from the

controllers to the data plane nodes in their domains on the E2E route.

𝐶𝑀𝑃𝐻𝑅𝐴 = 4 + |𝐵 𝑁
→

𝑓

| + |𝐵 𝑁
←

𝑓

| + 2𝑥| 𝐶𝑓
 | + ∑ | 𝑆𝑓

𝑘 |

∀ 𝑐 ∊ 𝐶𝑓

𝑓
𝑘

 (4)

Likewise, Equation (4) presents the number of CMP to install an E2E route for a flow of service

demand in the HRA framework. It basically contains: (i) a packet_in message from
𝑠

→
𝑓

 to
𝑐
→

𝑓

 , (ii) an

E2E route demand message from
𝑐
→

𝑓

 to the 𝐵𝑅, (iii) two computing demand messages from 𝐵𝑅 to the

𝑐
→

𝑓

 and destination-controller (for intra-domain route announcements among every edge device and

source/destination node pairs), (iv) messages including pathlet announcements for every edge device

and source/destination node pairs from
𝑐
→

𝑓

 and
𝑐
←

𝑓

 to 𝐵𝑅, (v) messages (including corresponding edge

device pairs in every domain) from the 𝐵𝑅 to the controllers on the E2E route, (vi) approval messages

(for the demanded pathlets in every domain) from the controllers on the E2E route to 𝐵𝑅, and (vii)

flow_mod messages from the controllers on the E2E route to the data plane nodes in their domains on

the E2E route.

1265

Figure 7 shows the controller messages processed in the proposed framework with the original

(SoRBlock_Org) and 500K (SoRBlock_500K) transaction sizes and HRA scheme while changing the

count of infrastructure nodes in each domain. Intra-domain nodes are randomly connected, while inter-

domain connections mimic NSFNET topology in Figure 7a. Intra-domain nodes mimic USNET

topology, while inter-domain connections are randomly connected under different service requests

(i.e., distinct origin and targets) in Figure 7b.

(a) Random connectivity in intra-domains - NSFNET

in inter-domains.
(b) Random connectivity in inter-domains - USNET in

intra-domains.

Figure 7. CMP in the SoRBlock and HRA frameworks.

Figure 7a and Figure 7b present that the proposed SR-based framework has an improved performance

than the HRA scheme regarding various numbers of domains and nodes. Particularly, the HRA deals

with nearly 50% more controller messages than the proposed framework when the number of domains

varies in Figure 7b. This is because of the count of border nodes in domains. Interestingly, the number

of controller messages processed in the SoRBlock scheme approaches that in the HRA framework with

respect to ratio. At the same time, the count of nodes rises in domains, as illustrated in Figure 7a,

because more nodes are utilized on the E2E path. Furthermore, the number of controller messages is

higher in Figure 7a due to the random service request model used and the growing count of nodes on

the E2E paths as the intra-domain node number increases.

VII. CONCLUSION

This study has presented an E2E traffic management framework (SoRBlock) in SDNs, where inter-

domain level routing exploits BC technology and intra-domain level routing leverages the SR

approach. The experimental results have illustrated that the proposed SoRBlock architecture

outperforms the traditional hierarchical routing scheme (HRA) by reducing path setup time and

controller messages processed in SDN networks. The simulation findings demonstrate that by

reducing path setup time (PST) and the quantity of controller messages, the proposed SR-based

SoRBlock architecture outperforms the conventional hierarchical routing strategy, HRA, in SDN

networks. The proposed SoRBlock architecture presents ([45ms - 65ms]) almost three times less total

PST than the HRA method ([130ms - 200ms]), even though the same (i.e., exact origin and target)

service requests were used for all runs. This is because the HRA approach has higher node-controller

and controller-controller latencies. On the other hand, when different service requests (i.e., different

origin and target) were employed, SoRBlock displayed PST that was two times lower ([75ms - 90ms])

than HRA ([150ms - 175ms]). When the number of domains changes, the HRA processes

approximately 50% more controller messages than the SoRBlock ([3 - 10]), although the ratio of CMP

1266

in the SoRBlock scheme ([10 - 17]) approaches that in the HRA framework ([15 - 20]) as the number of

nodes increases in domains.

This study is in its infancy stage and needs improvements and research from various aspects because it

demonstrates a new potential application for BC and a new research avenue. In future work, it is

planned to work on the scalability and security performances of SoRBlock by analyzing and evaluating

metrics such as transaction/block throughput and delay as well as possible attacks in the BC in

addition to improving PST and CMP metrics performances.

ACKNOWLEDGMENT: This work is supported by the Scientific & Technological Research

Council of Türkiye (TUBITAK) under Grant No. 120E448.

VIII. REFERENCES

[1] D. Kreutz, F. M. V. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg, S. Azodolmolky,

and S. Uhlig, “Software-Defined Networking: A Comprehensive Survey,” Proceedings of the IEEE,

vol. 103, no. 1, pp. 14–76, Jan. 2015.

[2] M. Karakus and A. Durresi, “Quality of Service (QoS) in Software Defined Networking

(SDN): A survey,” Journal of Network and Computer Applications, vol. 80. pp. 200–218, 2017.

[3] A. Ghiasian, “Impact of TCAM Size on Power Efficiency in a Network of OpenFlow

Switches,” IET Networks, vol. 9, no. 6, pp. 367–371, Nov. 2020.

[4] M. Karakus and A. Durresi, “A Survey: Control Plane Scalability Issues and Approaches in

Software-Defined Networking (SDN),” Computer Networks, vol. 112, pp. 279-293, 2017.

[5] P. L. Ventre et al., “Segment Routing: A Comprehensive Survey of Research Activities,

Standardization Efforts, and Implementation Results,” IEEE Communications Surveys & Tutorials,

vol. 23, no. 1, pp. 182–221, 2021.

[6] A. Abujoda, H. R. Kouchaksaraei, and P. Papadimitriou, “SDN-based Source Routing for

Scalable Service Chaining in Datacenters,” in Wired/Wireless Internet Communications: 14th IFIP

WG 6.2 International Conference (WWIC 2016), Thessaloniki, Greece, 2016, pp. 66–77.

[7] A. Hari, T. V Lakshman, and G. Wilfong, “Path Switching: Reduced-State Flow Handling in

SDN using Path Information,” in Proceedings of the 11th ACM Conference on Emerging Networking

Experiments and Technologies, Heidelberg, Germany, 2015, pp. 1–7.

[8] M. Karakus and E. Guler, “RoutingChain: A Proof-of-Concept Model for a Blockchain-

Enabled QoS-Based Inter-AS Routing in SDN,” in 2020 IEEE International Black Sea Conference on

Communications and Networking (BlackSeaCom), Odessa, Ukraine, 2020, pp. 1-6.

[9] M. Karakus and A. Durresi, “A Scalable Inter-AS QoS Routing Architecture in Software

Defined Network (SDN),” in Proceedings - International Conference on Advanced Information

Networking and Applications (AINA 2015), Gwangju, Korea (South), 2015, pp. 148–154.

[10] M. Soliman, B. Nandy, I. Lambadaris, and P. Ashwood-Smith, “Exploring Source Routed

Forwarding in SDN-based WANs,” in 2014 IEEE International Conference on Communications

(ICC), Sydney, Australia, 2014, pp. 3070–3075.

1267

[11] Y. Zhang et al., “StEERING: A Software-Defined Networking for Inline Service Chaining,”

in 2013 21st IEEE International Conference on Network Protocols (ICNP), Goettingen, Germany,

2013, pp. 1–10.

[12] R. M. Ramos, M. Martinello, and C. Esteve Rothenberg, “SlickFlow: Resilient Source

Routing in Data Center Networks Unlocked by OpenFlow,” in 38th Annual IEEE Conference on

Local Computer Networks, Sydney, NSW, Australia, 2013, pp. 606–613.

[13] C. Guo et al., “Secondnet: A Data Center Network Virtualization Architecture with

Bandwidth Guarantees,” in Proceedings of the 6th International Conference, Philadelphia,

Pennsylvania, USA, 2010, pp. 1–12.

[14] S. A. Jyothi, M. Dong, and P. B. Godfrey, “Towards a Flexible Data Center Fabric with

Source Routing,” in Proceedings of the 1st ACM SIGCOMM Symposium on Software Defined

Networking Research (SOSR ’15). Santa Clara, CA, USA, 2015, pp. 1-8.

[15] K. Papadopoulos and P. Papadimitriou, “Leveraging on Source Routing for Scalability and

Robustness in Datacenters,” in 2019 IEEE 2nd 5G World Forum (5GWF), Dresden, Germany, 2019,

pp. 148–153.

[16] The Dynamic Source Routing Protocol (DSR) for Mobile Ad Hoc Networks for IPv4, IETF

RFC 4728, 2007.

[17] Segment Routing with IS-IS Routing Protocol, Draft-previdi-filsfils-isis-segment-routing-02,

IETF (Work in Progress), 2013.

[18] R. S. Guimarães et al., “M-PolKA: Multipath Polynomial Key-Based Source Routing for

Reliable Communications,” IEEE Transactions on Network and Service Management, vol. 19, no. 3,

pp. 2639–2651, 2022.

[19] T. Sugiura, K. Takahashi, K. Ichikawa, and H. Iida, “Acar: An Application-Aware Network

Routing System using SRv6,” in 2022 IEEE 19th Annual Consumer Communications & Networking

Conference (CCNC), Las Vegas, NV, USA, 2022, pp. 751–752.

[20] S. Komajwar and T. Korkmaz, “SPRM: Source Path Routing Model and Link Failure

Handling in Software-Defined Networks,” IEEE Transactions on Network and Service Management,

vol. 18, no. 3, pp. 2873–2887, 2021.

[21] G. N. Kumar, K. Katsalis, P. Papadimitriou, P. Pop, and G. Carle, “Failure Handling for Time-

Sensitive Networks using SDN and Source Routing,” in 2021 IEEE 7th International Conference on

Network Softwarization (NetSoft), Tokyo, Japan, 2021, pp. 226–234.

[22] J. Xia, P. Cui, Z. Li, and J. Lan, “SRCV: A Source Routing based Consistency Verification

Mechanism in SDN,” in 2021 3rd International Conference on Advances in Computer Technology,

Information Science and Communication (CTISC), Shanghai, China, 2021, pp. 77–81.

[23] Q. Dong, J. Li, Y. Ma, and S. Han, “A Path Allocation Method Based on Source Routing in

SDN Traffic Engineering,” in 2019 IEEE International Conference on Smart Cloud (SmartCloud),

Tokyo, Japan, 2019, pp. 163–168.

[24] P. Lin et al., “A West-East Bridge based SDN Inter-Domain Testbed,” Communications

Magazine, IEEE, vol. 53, no. 2, pp. 190–197, Feb. 2015.

1268

[25] N. McKeown et al., “OpenFlow: Enabling Innovation in Campus Networks,” SIGCOMM

Comput. Commun. Rev., vol. 38, no. 2, pp. 69–74, Mar. 2008.

[26] A. Erdős P. and Rényi, “On the Strength of Connectedness of a Random Graph,” Acta

Mathematica Academiae Scientiarum Hungarica, vol. 12, no. 1, pp. 261–267, 1964.

