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ABSTRACT 
The control and infrastructure layers are split into Software-Defined Networks (SDNs). With the control and 

infrastructure planes split, new network applications may be developed with more simplicity and greater 

independence. On the other hand, the disadvantages of SDN create a slew of questions. In large-scale networks, 

such as Wide Area Networks (WANs) covering huge areas, more propagation delays substantially contribute to 

network convergence time. In addition, traditional SDN restricts network design flexibility due to the influence 

of controller location on network performance in large-scale networks. SDN-based source routing (SR) has 

emerged as a viable solution to the issues above, where the packet header field is used to specify a packet's route. 

This study presents an SR-based End-to-End (E2E) traffic management framework called SoRBlock. In 

SoRBlock, inter-domain routing uses blockchain technology, while intra-domain routing relies on the SR 

technique in SDNs. The simulation results show that the proposed SR-based SoRBlock framework outperforms 

the traditional hierarchical routing approach, HRA, in SDN networks by lowering path setup time (PST) and the 

number of controller messages. While the same (i.e., identical origin and target) service requests were used for 

all runs in the simulations, the proposed SoRBlock architecture presents almost three times less total PST 

between 45ms and 65ms than the HRA method between 130ms and 200ms due to the HRA approach's increased 

node-controller and controller-controller latencies. On the other hand, SoRBlock shows two times less PST 

([75ms – 90ms]) than HRA ([150ms – 175ms]) when different service requests (i.e., different origin and target) 

were used. Concerning Controller Messages Processed (CMP), the HRA deals nearly 50% more controller 

messages between 7 and 15 than the SoRBlock between 3 and 10 when the number of domains varies, while the 

CMP in the SoRBlock scheme ([10 - 17]) approaches that in the HRA framework ([15 - 20]) regarding the ratio 

while the count of nodes rises in domains. 
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Yazılım Tanımlı Ağlarda Trafik Yönetimi İçin Blokzincir Destekli 

Kaynak Yönlendirmesinin Uygulanması 
 

ÖZ 
Kontrol ve veri katmanları, Yazılım Tanımlı Ağlarda (YTA) bölünmüştür. Kontrol ve veri düzlemlerinin 

ayrılmasıyla, yeni ağ uygulamaları daha basit ve bağımsız bir şekilde geliştirilebilir. Öte yandan, Yazılım 

Tanımlı Ağların dezavantajları birçok sorun oluşturmaktadır. Geniş Alan Ağları (WAN'lar) gibi büyük ölçekli 

ağlarda, daha fazla yayılma gecikmesi, ağ yakınsama süresine önemli ölçüde katkıda bulunmaktadır. Ek olarak, 

geleneksel YTA, büyük ölçekli ağlarda denetleyici konumunun ağ performansı üzerindeki etkisi nedeniyle ağ 

tasarım esnekliğini kısıtlar. YTA-bazlı kaynak yönlendirmesi, paket başlık alanının bir paketin ağ üzerindeki 

yolunu belirtmek için kullanıldığı ve yukarıdaki sorunlara uygulanabilir bir çözüm olarak ortaya çıkmıştır. Bu 

çalışma, SoRBlock adlı kaynak yönlendirme tabanlı uçtan uca trafik yönetimi çerçevesini sunmaktadır. 
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SoRBlock'ta, ağlar arası yönlendirme, blokzincir teknolojisini kullanırken, ağ içi yönlendirme, YTA-bazlı kaynak 

yönlendirme tekniğine dayanmaktadır. Simülasyon sonuçları, önerilen kaynak yönlendirme tabanlı SoRBlock 

çerçevesinin, yol kurulum süresini (Path Setup Time - PST) ve işlenen denetleyici mesajlarının (Controller 

Messages Processed - CMP) sayısını azaltarak YTA ağlarında geleneksel hiyerarşik yönlendirme yaklaşımı olan 

HRA'dan daha iyi performans gösterdiğini göstermektedir. Önerilen SoRBlock mimarisi 45ms ve 65ms aralığında 

olmak üzere, tüm simülasyon çalıştırmalarında aynı (aynı kaynak ve hedef düğüm) hizmet isteklerinin 

kullanıldığı senaryoda, HRA yaklaşımının artan düğüm - denetleyici ve denetleyici - denetleyici gecikmelerinden 

dolayı HRA yönteminden 130ms ve 200ms aralığında olmak üzere neredeyse üç kat daha az toplam PST 

sunmaktadır. Öte yandan SoRBlock ([75ms – 90ms]), farklı hizmet istekleri (farklı kaynak ve hedef) 

kullanıldığında HRA'dan ([150ms – 175ms]) iki kat daha az PST göstermektedir. İşlenen Denetleyici Mesajları 

(CMP) bakımından, etki alanı (domain) sayısı arttığında HRA ([7 - 15]), SoRBlock'tan ([3 - 10]) yaklaşık %50 

daha fazla denetleyici mesajı işlerken, SoRBlock çerçevesinde ki CMP ([10 - 17]), HRA çerçevesinde ([15 - 20]) 

CMP'ye, etki alanlarındaki düğüm sayısı artarken oran olarak yaklaşmaktadır. 

 

Anahtar Kelimeler: Kaynak Yönlendirme, Blokzincir, Yazılım Tanımlı Ağlar, Trafik Yönetimi 

 

 

I. INTRODUCTION 
 

The centralized operations and administration in Software Defined Networking (SDN) [1] leads to 

scalability challenges owing to the recent per-flow forwarding state blast in networks caused by a 

growth in the count of nodes along with intelligent, flexible, and policy-driven service requests.  One 

challenge is that WANs can suffer from extended propagation delays due to the controller's 

requirement to deploy flow rules on each data plane device along the flow's route. Long propagation 

delays may result in lengthy path setup times in large-scale SDN networks with many geographically 

dispersed switches. Route setup delay may not affect elephants and/or ordinary flows. However, the 

Quality of Service (QoS) of delay-aware flows might be considerably degraded [2] from such lengthy 

path setup times. Another scalability challenge in SDN networks is the message processing load by 

data plane devices and SDN controllers. SDN switches may struggle to process OpenFlow messages 

because of their limited processing capability. Because SDN devices can hold a certain amount of flow 

rules in flow tables, the "match-and-action" concept may affect the granularity with which flows are 

controlled. A similar problem with resource capacity affects SDN controllers while processing service 

request setup status messages. They only have a slight processor and storage capacity installed on their 

computers. The controller message load to process increases as the network expands, resulting in a 

network computation bottleneck. Finally, SDN switches have limited storage capabilities to maintain 

flow rules. SDN devices often keep flow tables and rules in TCAM-based memories [3]. However, the 

TCAM memories are expensive, power-costly, and restricted storage resources. In order to handle 

SDN architecture's scalability challenges, it is necessary to diminish the number of network incidents 

handled in the control layer and only process needed network incidents [4]. 

 

Increasing the scalability of SDN by lowering the number of flow rules in the switches has recently 

been deemed a potential strategy, i.e., easing the information change among the controller and data 

layer nodes [5]. At the origin node, Source Routing (SR) lays out the whole route from source to 

target. SDN networks' centralized management allows the controller to keep track of the network's 

global topology. This means that various objectives may be met by using different enhanced SR 

strategies. Similar to SDN-based destination routing, source switch-based route encapsulation aims to 

save flow information in the packet header. This means that all that would be required of each 

intermediary switch along the line is to read the correct egress ports and send the packets. To provide 

fine-grained traffic management, a limited and finite amount of flow rules may be exploited by all 

flows without requiring any interaction from the controller during route creation. 

 

A potential solution to these issues mentioned above (i.e., path setup time latency and augmented 

controller message processing) might be utilizing an SR approach in routing functionalities, i.e., 

putting the route information into the packet headers [6], [7]. This allows putting a limited number of 

flow-independent forwarding rules into the network devices, which considerably diminishes the 
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forwarding state and improves the control plane scalability by reducing the workload on controllers to 

add flow entries into data layer nodes. 

 

This work exploits and builds on the idea proposed in our previous study [8]. This study integrates a 

Port IDs and TTL (PIDTTL) based SR scheme for intra-domain traffic management into our 

blockchain (BC)-supported QoS-concentrated cross-network routing framework [8] in order to enable 

QoS-based end-to-end (E2E) routing in SDNs. This study aims to design and implement an E2E 

routing framework (SoRBlock) in SDNs, where inter-domain level routing exploits BC technology and 

intra-domain level routing leverages the SR scheme. The performance of the SoRBlock framework is 

quantified regarding Path Setup Time and the number of Controller Messages Processed (by 

controllers) metrics. SoRBlock is also compared against a QoS-aware routing strategy in SDNs, 

Hierarchical Routing Approach (HRA), presented in our earlier research [9] to evaluate the 

performance gains. This study is certainly not the first to conceive SR. However, it is the first to 

effectively couple the SR concept, SDN, and BC to implement and demonstrate the collaboration of 

combined SDN, BC, and SR schemes on inter-domain routing applicability. 

 

The following outline is the body of this paper: The next section presents studies exploiting SR in 

SDN. Section III briefly discusses SDN, SR, and BC to render this study self-sufficient. Section IV 

introduces the details of SR-based intra-domain and BC-enhanced inter-domain routing strategies in 

SDN in this study. Section V presents the experimental numbers before the final notes in the 

Conclusion section. 

 

 

II. RELATED WORK 
 

A packet's complete routing path may be determined solely by the origin using SR. Because of its 

simple and lower-state routing packets, it has already received substantial attention. SDN research also 

leverages the SR concept. SDN-based SR was suggested by [6] for scalable service chaining in the 

data center. The packet header contains the route information. Intermediary data plane nodes' ports are 

represented as straight integers to eliminate the requirement for additional bytes for route information. 

 

On the other hand, SDN-based data centers concentrate on route installation rather than path 

discovery. Furthermore, it does not provide QoS. A novel forwarding method for OpenFlow-based 

systems is discussed by [10], who emphasizes the controller scalability and performance difficulties in 

SDNs. The equation for the number-encoded SR route is derived in this study. This dramatically 

minimizes the number of routing states sent to forwarding nodes by pushing the route rule to the 

ingress node. Using OpenFlow and NOX controller extensions, StEERING [11] attempts to set up a 

route that travels through certain middle-boxes. Splitting a single flow table into many small tables is 

the approach to limiting "rule explosion". StEERING utilizes Graph Theory to provide a solution to 

the route planning conundrum. StEERING's main shortcoming is the absence of QoS support. It uses 

middle-boxes procedures to find the best route. With SlickFlow [12], the emphasis is on resolving 

problems at the source through SR. The controller's fault recovery program sends the route 

information to the entry nodes in special headers. Each part of the journey includes all hops and other 

routes to the next hop.  

 

In order to virtualize the data center network, SecondNet [13] uses SR through MPLS port switching. 

SecondNet uses shorter pathways and, as a result, does not encounter some of the limits associated 

with service chaining that apply to linking pairs of virtual machines. Improved flexibility and 

performance are the goals of [14]'s source-routed fabric. A source-routed fabric in leaf-spine data 

center topologies is discussed in the paper, which estimates the throughput advantages of the proposed 

fabric over existing forwarding methods. For data centers, the architecture described by [7] is 

comparable to the port switching procedure developed by [15] and the SR techniques shown in [14]. 

Wireless networks may also benefit from the use of SR. One of the most used SR schemes in MANET 

and Ad-Hoc networks is Dynamic Source Routing (DSR) [16]. A packet's route data may be included 
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in its header, allowing intermediary nodes to avoid maintaining a routing table in DSR. Finally, 

Segment Routing [17] is an alternate SR-based method proposed by the IETF to provide 

simplification, improved traffic engineering, and quick reroute capabilities. 

 

New traffic engineering activities and services demand low-overhead routing and forwarding 

disruptions over-complicated network topologies. Source routing (SR) reduces network states to 

provide expressiveness and agility. M-PolKA [18], a topology-agnostic multipath source routing 

strategy and orchestration framework for reliable communications, examines exceptional 

characteristics from Residue Number System (RNS) polynomial arithmetic. Current routing protocols 

do not consider the communication characteristics of different applications. SDN was considered a 

solution, but it has scalability issues. Source Routing over IPv6 (SRv6), a decentralized source routing 

protocol, is expected to scale better. The proposed system in [19], Acar, uses SRv6 and adapts routing 

based on application bandwidth requirements and network link utilization. SDN has scalability issues 

in WANs due to the separation of control and data planes, which causes increased response time and 

overhead. The authors in [20] proposed the Source-Path Routing Model (SPRM) framework that 

addresses scalability, performance, and link failure issues by combining proactive and reactive 

approaches. They employ multiple pre-calculated paths and dynamic network state information (NSI) 

to assign the best path for an incoming flow. They also utilize multiple paths as a backup to each other 

in case of link failures. [21] proposes an SDN-based approach for quickly recovering Time Sensitive 

Networks (TSN) from failure events using SR and a stateless data plane. The authors employ a TSN 

failure recovery routing heuristic to minimize link congestion and TSN subgraphs to quickly 

reschedule flows in problematic areas. The authors in [22] introduce SRCV, a mechanism for 

verifying control-data plane consistency in P4-based SDN at runtime. SRCV uses active probe traffic 

with source routing labels, collects matching flow rule information, and compares it with control plane 

flow rules information through symbolic execution. Table 1 summarizes the related works studying SR 

and SDN. 

 
Table 1. Summary of Related Works 

WORK SUMMARY 

[6] A scalable service chaining at which the NF-path path is encoded into the packet header 

[7] A forwarding method compactly encoding a packet's network route in its address fields 

[10] Focus on SR to solve SDN-based WAN convergence and controller placement issues 

[11] A framework for dynamically routing traffic through any sequence of middleboxes 

[12] An SR-based fast failure recovery by adding alternative path data into the packet 

header. 

[13] Data center network virtualization architecture using port-switching-based SR 

[14] SR-based clean abstraction and efficient implementation for future network fabrics 

[15] An SR approach for increased scalability and robustness in multi-tenant datacenters 

[16] Dynamic Source Routing (DSR) for Mobile Ad Hoc Networks for IPv4 

[17] Defining SR functions that are required in the IS-IS protocol 

[18] Topology-agnostic multipath source routing strategy and orchestration framework  

[19] A routing by considering application bandwidth requirements and link utilization 

[20] SPRM framework to address scalability, performance, and link failure issues in SDN 

[21] An SDN-based approach for ultra-fast TSN recovery using SR and stateless data plane 

[22] An SR-based control-data plane runtime consistency verification mechanism using P4 

SoRBlock 
An SR-based E2E traffic management framework in which inter-domain routing uses 

BC, while intra-domain routing relies on the SR technique in SDNs 

 

SR is seen as a surrogate to the traditional hop-based forwarding strategy in SDN, as seen by the 

concepts described in this section. Despite this, there are a variety of implementation models to choose 

from. Despite this, other implementation forms exist. Supplementing these notions, this study 

demonstrates the applicability of SR strategies in actual SDN environments. However, this study 

differs from the works mentioned above in different ways. First, QoS information is considered in the 
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path selection process to support QoS provisioning. Second, BC is exploited to reduce further QoS-

related signaling overhead messages handling by network controllers to enhance control plane 

scalability in SDN networks. Third, SR-based intra-domain and BC-enhanced inter-domain routing 

approaches cooperate to propose an E2E traffic management scheme. Therefore, this study is the first 

to exploit the confederacy of the SR, BC, and SDN concepts to manage E2E traffic to the best of the 

author’s knowledge. 

 

 

III. OVERVIEW OF SR, SDN, AND BC 
 

This section briefly explains SR, SDN, and BC to make this paper self-inclusive. 

 

A. SOURCE ROUTING (SR)  

 
It is possible to set up a complete route from a single origin node to a single destination in SR. It 

requires the insertion of the set of labels into the packet header, which the switch fabric will handle. 

The process of SR can be facilitated by deploying a network controller in SDN, which will be 

responsible for the path computation and the population of path insertion entries into the edge 

switches. Reducing the amount of forwarding state may be accomplished via SR [23]. By reducing the 

number of states, significant reductions in switch TCAM can be achieved, resulting in more cost-

effective switching equipment. In theory, switches could send packets with minimum flow-

independent forwarding rules when employing SR because the path is encoded in the packet header. 

Each packet's route is represented as a list of labels that roughly correspond to the ports of the data 

plane nodes it must traverse. The switches can free up much TCAM capacity by not keeping 

forwarding entries to all network destinations at the L2 or L3 levels. 

 

Because network topology may not match the route given by the source node, the usage of SR is 

restricted in practical networks. For this problem to exist, the source node must be deprived of a global 

topological perspective to establish a reliable route. As a result of the SDN controller's global topology 

perspective, it can accomplish globally optimal resource allocation and efficiency, including E2E 

routes. This means that in the scope of SDN, it is rather probable that a route will be found for SR. 

SDN uses SR in a variety of ways, including in data center networks [6], WANs [10], fault 

tolerance/recovery [13], and so on. 

 

B. SOFTWARE-DEFINED NETWORKING (SDN) 

 
The control plane and forwarding planes are intended to be separated by SDN. Network engineers and 

technicians benefit from this isolation, allowing them to use network resources more effectively and 

expedite service delivery. SDN also makes it simpler to modify the properties of entire networks via 

programmability. Network administration is more superficial because it is split from the data plane. 

SDN design [1] allows network administrators to simply and swiftly control and modify their 

networks' resources using self-written, flexible, and proprietary-free applications. Furthermore, unlike 

traditional networking, controllers in SDN possess a global view of the entire network since the 

network is logically centralized. As a result, they can dynamically improve resource allocation and 

flow management. 
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Figure 1. An outline of SDN with fundamental components. 

 

Furthermore, the control and forwarding layers of SDN are interconnected through interfaces. These 

interfaces let devices communicate with others in the network. East-West APIs [24] aim to exchange 

information between controllers, which may be from the same or different organizations. Northbound 

APIs make network application and controller(s) interaction possible for network services. On the 

other hand, southbound APIs, as shown in Figure 1, enable access between the controller(s) and 

forwarding layer nodes such as routers, physical switches, or virtual switches. OpenFlow [25] is the 

primary southbound protocol for interaction between the control and data layers. 

 

C. BLOCKCHAIN (BC) 

 
BC technology is a democratic system where all participants working and participating in a network 

can follow the processes without a centralized authority. In another aspect, the system is a distributed 

database that records all transactions performed. Thanks to its decentralized structure, all operations 

performed without a centralized agent are executed with specific protocols and trust mechanisms. The 

overall BC structure is created by writing each activity, referred to as a transaction, into the blocks and 

adding it to the chain. 

 

 
 

Figure 2. A visual depiction of a block's data structure in the BC. 
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A generic block data format in a BC is shown in Figure 2. A block's structure is primarily composed 

of: (i) a block header, which contains different data describing the block, and (ii) a block body, which 

contains the batch and count of transactions included inside the block. The construction of the BC 

might alter based on the applications and consensus methods that utilize it. Data such as the version or 

identifier, encrypted transaction values in a Merkle tree, a timestamp, and difficulty variables are 

included in the block header. The hashed value of the preceding/parent block is also included. The 

network's users use private and public keys to conduct transactional activities. Users' network access is 

protected by private keys, which act as a kind of identification. 

 

 

IV. MOTIVATION 
 
Combining SR, SDN, and BC can give networks a safe and effective routing solution. This method is 

not just tamper-proof and decentralized; it also gives users more say over how their data goes 

throughout the network. The optimal and reliable path for data to travel through a network may be 

determined using SR. SDNs allow the route to be dynamically altered based on current network 

circumstances, allowing optimal data delivery. BC may be used to make the network more secure and 

resistant to manipulation by storing and verifying routing information. 

 

Altogether, SR, SDN, and BC can provide a complete answer for decreasing routing path setup times. 

This is especially relevant in networks that provide time-sensitive activities, such as online stock 

trading or live video conferencing. Combining these three technologies can be an effective strategy for 

easing the burden on routing controllers. Maintaining and updating the routing table is the controller's 

responsibility in conventional routing systems, which can burden the controller's resources and 

negatively impact performance. Organizations can relieve pressure on the controller by shifting part of 

the work to SR, SDNs, and BC. 

 

The controller does not have to spend as much time maintaining and updating the flow tables and rules 

if SR is used to indicate the exact path that data should follow via the network. In order to ensure that 

data is delivered fast and effectively while minimizing the need for manual intervention and updates 

from the controller, SDNs allow for the routing path to be dynamically altered based on real-time 

network circumstances. BC can offer a decentralized and tamper-resistant solution to store and 

validate routing information to cut down on the time and effort needed for path construction and 

verification and the need for the controller to maintain centralized flow tables and rules. 

 

Blending these three technologies can be especially helpful in sectors like banking, healthcare, and 

logistics, where safe and dependable transport is essential. When applied to a healthcare network, for 

instance, SR can guarantee the safe and timely transfer of patient information to the treating physician. 

Using BC can increase security by making routing data more difficult to alter and easier to verify. In 

addition, this method can give more programmability in routing, which opens the door to 

individualized routing solutions that meet the unique requirements of each business. This can boost 

efficiency, save money, and enhance safety and dependability. 

 

Overall, SR, SDN, and BC form a powerful routing solution. Organizations may build a fast, secure, 

and reliable network by combining the benefits of these three technologies, lessening the time spent on 

path creation and verification and lightening the controller's workload.  

 

 

V. SoRBlock: AN END-TO-END TRAFFIC MANAGEMENT 

FRAMEWORK 
 
This section presents the technical details of the proposed E2E routing framework, \emph{SoRBlock}, 

in two parts. First, a BC-based inter-domain level routing is presented in subsection IV-A. 
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Subsequently, the intra-domain level routing exploiting the SDN-based SR approach to form E2E 

connectivity is presented in subsection IV-B. 

 

A. BLOCKCHAIN-BASED INTER-DOMAIN LEVEL ROUTING 

 
This subsection presents an overview of the BC-based inter-domain level routing strategy in line with 

the framework discussed in [8] and used in this study. Readers can refer to [8] for more details. 

 

 
 

Figure 3. A representation of the proposed traffic management framework, SoRBlock, with BC-assisted inter-

domain routing and SR-based intra-domain routing schemes for 4 SDN domains. 
 

Figure 3 exhibits the proposed traffic management framework, SoRBlock, with BC-assisted inter-

domain routing and SR-based intra-domain routing schemes. Figure 3 embodies the SoRBlock with 4 

SDN domains with devices managed by corresponding controllers. Infrastructure nodes are two types: 

(i) A border device (rounded devices) connected to a border device in a different domain by an 

interconnecting link and (ii) a core network node (diagonal devices) without an interconnecting link. 

Black dashed lines represent the links among controllers and infrastructure nodes. There is also a BC 

network among controllers. Blue dashed lines show the connections in the BC amongst controllers. 

The thick blue lines show the pathlets, which compromise the E2E path, over the E2E path computed 

by the source-domain (Domain 1 in Figure 3) controller in domains. The green lines represent the SR-

based intra-domain paths computed by controllers of domains over the E2E path. The red numbers are 

the port ID numbers of the network nodes. 

 

The controller used in the SoRBlock framework has new modules and standard modules such as 

topology manager, statistics manager, etc. The Blockchain Manager (BM) and its sub-components are 

the primary BC enabler module. This component is a domain controller performing all BC-related 

operations. The Validator Agent is capable of proving new blocks from other controllers under BC's 

block validation criteria. The Hashing Agent is in charge of hashing transactions and blocks before 

transmitting to the BC. The Transaction/Block Agent is responsible for implementing the 

transactions/blocks that comprise the BC. The Consensus Protocol Handler conducts the BC 

consensus mechanism. The Resource Monitoring Manager (RMM) continually tracks network 

resources, such as bandwidth, latency, and jitter, to detect network modifications. It alerts the BM 

module of any updates and instructs it to construct the related transaction(s). Additionally, the 

controller design has novel applications. The Global Routing Agent (GRA) performs the cross-domain 
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routing capabilities when a controller receives an inter-domain service request. GRA uses transactions' 

ingress and egress fields to determine an E2E route for the arriving service request. The Blockchain 

Application (BA) is in charge of transmitting and receiving blocks and managing messages related to 

service requests. 

 

In the framework, a pathlet is represented as: Given 𝐺𝑖 =  (𝑉𝑖, 𝐸𝑖), let 𝑉𝑖 
∗  denote the set of border 

devices in the network 𝑁𝑖 where 𝑉𝑖 
∗ ⊆ 𝑉𝑖, a path 𝑃 = 〈𝑣𝑖

1, … , 𝑣𝑖
𝑛〉 is named a pathlet if (∀ 𝑣𝑖

𝑗
∊ 𝑃) ∊

𝑉𝑖 and 𝑣𝑖
1, 𝑣𝑖

𝑛 ∊ 𝑉𝑖 
∗ . A pathlet is a path that connects two border node pairs (entry and leaving nodes) 

in a domain. The nodes at the beginning and end of a pathlet are referred to as ingress and egress 

nodes. For example, as shown in Figure 3, paths R10-R12, R10-R9-R12, and R10-R9-R11-R10 

(assuming duplex links) are pathlets between border devices R10 and R10 in Domain 3. 

 

Each BC node represents a domain controller and operates its BC replica using the inter-domain level 

routing mechanism. Within the context of inter-domain routing, BC nodes generate transactions from 

pathlets and their associated QoS values. As a result, domain controllers calculate separate pathlets for 

all network border node pairings. A transaction's data structure consists of the following elements: Tx 

ID, Signature, Domain Number, Pathlet ID, Ingress Node, Egress Node, Max Bandwidth, and Min 

Delay. When a domain is added to the BC network, it begins producing the first transactions for the 

pathlets between the edge network nodes. Depending on the BC's consensus procedure, they are 

subsequently broadcast as blocks to the network or the corresponding BC nodes. Once a network 

variation affecting QoS, such as a bandwidth adjustment on a link, impacts the state of a pathlet, the 

controller produces a new transaction indicating the pathlet's variation. Controllers use the most up-to-

date transaction for pathlets with the same IDs by checking the transaction IDs while finding an E2E 

route for service. The logic behind this procedure is that the most up-to-date transaction reflects the 

recent state of the respective pathlet concerning QoS parameters in the network. As in any BC 

application, a block has two parts in SoRBlock: block header and block body. The block header 

includes Block ID, Previous Block Hash, Merkle Root Hash, Primary-ID, and Timestamp data fields. 

The block body keeps pathlet transactions that domain controllers use to compute inter-domain E2E 

paths for service requests. 

 

The inter-domain level routing is conducted after particular requested service-related messages are 

exchanged among domains. When a user/client sends a QoS-based inter-domain service request to a 

(source) domain controller through the S_Req message, the controller begins searching for an E2E 

inter-domain level route using its BC ledger, considering the QoS metrics and priority specified in the 

message. The inter-domain level E2E route is composed of pathlets connecting an edge device of its 

network (i.e., source-domain) to an edge device of the destination-domain through an overlay network, 

which is abstracted by using the BC's pathlet transactions. The path consisting of the thick blue 

pathlets, R1-R4-R5-R7-R10-R12-R13, is an example inter-domain level E2E path in Figure 3. Reject 

reply is sent back to the user if the source-domain controller cannot locate an inter-domain level E2E 

route that meets the service request requirements indicated in the S_Req message created by the BA 

module. The user/client is notified of this by the S_Res message. Each domain controller with a pathlet 

on the inter-domain level E2E path (domain controllers 2, 3, and 4 in Figure 3) is queried by the 

origin-domain controller to arrange the specified QoS values after getting back the P_Req messages 

generated by the BA module. S_Res message with an Accept answer is sent to the user/client by the 

source-domain controller, which states that the service request may be met and that the network will 

commence if all relevant domain controllers give Accept replies to the source-domain controller. A 

Reject response in P_Res messages from any domain controller across an E2E route causes the source-

domain controller to search for a new intra-domain level E2E path with the same attributes and 

criteria. 

 

B. SOURCE ROUTING-BASED INTRA-DOMAIN LEVEL ROUTING 

 
There are three primary strategies identified and exploited for SR [6], [14], [15]. The most basic 

approach to constructing SR is to use the Label Sequence and Pointer solution. The series of (switch 
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port) labels is encoded in packet headers, and the reference to the following label is encoded in a 

distinct header field. The source/destination MAC address and IP(v6) address are good candidates for 

preserving labels (without additional transmission costs). The Label Sequence with TTL method 

utilizes TTL rather than a separate entry for the pointer to the following label (opposite the previous 

approach). Finally, the Switch IDs technique assumes unique identifier switch IDs and defines the 

route as a series of switch IDs. This necessitates a fixed matching table in each network device 

containing the IDs of surrounding devices. Because a switch can identify its ID in the chain, there is 

no requirement for a pointer. These implementations reserve their intrinsic advantages and 

disadvantages. 

 

 
 

Figure 4. Packet header ports and TTL values in PIDTTL-based SR implementation. 

 

This study employs the PIDTTL implementation due to efficient header space usage. The source 

and/or destination MAC addresses are used to encode the corresponding list of data plane device 

output ports. MAC address fields, in particular, are filled with a list of output ports that each node 

along the route will use to direct each packet. The TTL field is also utilized as a reference to the 

following port number in the MAC address. Figure 4 shows the Next Port Number (i.e., node output 

ports) and TTL (Time-to-Live) values of packet headers when packets arrive at network nodes in 

PIDTTL-based SR implementation. 

 Time-To-Live (TTL): It is an eight-bit header showing how many hops the packet has left. 

The target node must know that it is the final hop to handle the payload in SR. As a result, the 

TTL was created with this purpose in mind, and its value is set at the origin node and then 

dropped by one with each successive hop.  

 Next Port Number: It is a four-bit field that contains the packet's subsequent output port on a 

node over the computed intra-domain path. The node reads the corresponding port number 

using the current value in the TTL field of the packet header. 

 

After Accept responses in P_Res messages, SR-based intra-domain level routing is conducted by 

domain controllers. These controllers add a flow rule in flow tables of only respective ingress border 

nodes of their domains for the service request packets. The relevant flow entry modifies each packet 

header to contain port numbers and TTL value that the packet traverse through inside the domain for 

the SR, as explained in subsection IV-B. In the example of Figure 3, after controller 2 sends a P_Res 

message to the source domain (i.e., domain 1) controller, the domain 2 controller inserts a flow entry 

in the flow table of R5 for the packets of the requested service to traverse through the domain 2. 
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Figure 5. Flow entry data structure inserted in flow tables of the ingress network nodes of domains over the 

E2E path. 
 

Figure 5 represents the data structure of flow entries added in the flow tables of the ingress network 

nodes of domains over the E2E path. The flow entry added in R5 by domain controller 2 modifies the 

header of each packet matching the flow entry to include an initial TTL value matching the hop count 

and port ID sequence as 4 and 〈1, 2, 3, 3〉, respectively, in the case of Figure 3. The TTL value is 

decremented as usual by each node that the packet traverse through inside the domain points to the 

subsequent port number encoded in the MAC address. This process is applied in each domain over the 

E2E inter-domain level routing path computed by the source domain controller. When the packets pass 

to the next domain over the E2E path, the ingress node of the domain that the packets traverse through 

modifies the headers of the packets accordingly by means of the corresponding flow entry inserted by 

the relevant domain controller. For example, the flow entry added in R10 by controller 3 modifies 

each packet header to include the initial TTL value and port sequence as 2 and 〈 2, 4〉, respectively, 

when the packets come from R7 to R10 in the case of Figure 3. 

 

 

VI. EXPERIMENTAL RESULTS 
 
The performance of SoRBlock is tested by analyzing its Path Setup Time (PST) and Controller 

Messages Processed (CMP) parameters to those of the hierarchy-based routing approach, Hierarchical 

Routing Approach (HRA), presented in our previous research [9]. 

 

In the experiments, Mininet simulator and Ryu controller were employed to create and model SDN 

networking devices and measure the results for the respective parameters listed in Table 2 during the 

experiments. MATLAB software was used to carry out numerical computations. A custom BC 

network built in Java has been used with different counts of network elements (i.e., data plane nodes 

and controllers) and two different transaction sizes (original pathlet transactions number as 

SoRBlock_Org and 500K transactions as SoRBlock_500K).  

 
Table 2. List of parameters and notations used in the equations. 

SYMBOL DEFINITION 

𝑆𝑓
𝑘 = { 𝑠𝑗

𝑓
𝑘 ∣ 𝑠𝑗

𝑓
𝑘  𝑖𝑠 𝑎 𝑠𝑤𝑖𝑡𝑐ℎ, 𝑠𝑗  ∊𝑓

 𝑆𝑓
 } 

List of data plane nodes connected to k-th controller on 

the E2E path for flow 𝑓 

𝐶𝑓
 = { 𝑐𝑓

𝑘 ∣ 𝑐𝑓
𝑘  𝑖𝑠 𝑎 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟, 𝑐 ∊ 

𝑘 𝐶} List of controllers on the E2E route for flow 𝑓 

𝑇(𝑥)𝑝𝑟𝑜𝑐
𝑦

 
Duration to process a message (𝑥) at a network device 

(𝑦) 

𝑇(𝑥)𝑝𝑟𝑜𝑝
𝑦→𝑧

 
Duration to propagate a message (𝑥 ) from a network 

device (𝑦) to a network device (𝑧) 

𝑇(𝑝𝑎𝑡ℎ𝐿)𝑐𝑜𝑚𝑝
𝑦

 Duration to find an intra-domain route at controller (𝑦) 

𝑇(𝑝𝑎𝑡ℎ𝐸2𝐸𝐵𝐶
)𝑐𝑜𝑚𝑝

𝑦
 Duration to find an E2E route for the service demand 
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using BC at controller (𝑦) 

𝑇(𝑝𝑎𝑡ℎ𝐸2𝐸)𝑐𝑜𝑚𝑝
𝐵𝑅  Time to find an E2E route for the service demand at BR 

𝑝𝑓
  1st packet of flow 𝑓 

ρ  packet_in message from a switch to a domain controller 

θ flow_mod message from a domain controller to a switch 

𝑚 
Various messages sent among domain controllers and 

BR 

ℎ
→

𝑓

  Source-host 

𝑠
→

𝑓

  Source-switch 

𝑐
→

𝑓

  Source-domain controller 

𝑁
→

𝑓

  Source-domain 

𝑁
←

𝑓

  Destination-domain 

𝐵𝑅 A (super) controller called "Broker" 

𝐵𝑖 List of edge network nodes in i-th domain 

 

Table 3 tabulates the parameters and their corresponding values used in the simulations. |S| and  
|𝐶|represents the total number of nodes and controllers used in the simulations, respectively. Their 

values vary from 25 to 100 nodes and 5 to 10 controllers depending on the topologies, as shown in the 

figures. The edge nodes within a topology vary between 2 and 4 nodes. 

 
Table 3. Parameters and values used in the simulations 

PARAMETER VALUE 

|𝑆| 25 – 100 

|𝐶| 5  – 10 

𝑇(𝑥)𝑝𝑟𝑜𝑐
𝑦

 0.1ms – 1ms 

𝑇(𝑥)𝑝𝑟𝑜𝑝
𝑦→𝑧

 8ms – 45ms 

𝑇(𝑝𝑎𝑡ℎ𝐿)𝑐𝑜𝑚𝑝
𝑦

 1ms – 3ms 

𝑇(𝑝𝑎𝑡ℎ𝐸2𝐸𝐵𝐶
)𝑐𝑜𝑚𝑝

𝑦
 6ms – 15ms 

𝑇(𝑝𝑎𝑡ℎ𝐸2𝐸)𝑐𝑜𝑚𝑝
𝐵𝑅  6ms – 15ms 

|𝐵𝑖| 2– 4 

Link Bandwidth 100 Gbps 

Request bandwidth 1 Mbps 

RAM 12 GB 

CPU Intel(R) Core(TM) i7-5500U CPU @ 2.40GHz   2.40 GHz 

OS Ubuntu 14.04 in Oracle VirtualBox, Windows 11 Pro (Host) 

Runs 20 

Connectivity Degree 0.5 

BC Transaction Size Original and 500K 

 

The experiments have considered inter-ISP service requests (i.e., the origin and target nodes of a 

service request are in different domains) with bandwidth resources (1 Mbps). Sufficient bandwidth 

(100 Gbps) in links is supplied to prevent service denial because of resource shortage to evaluate the 

real impact of these three options. Also, the Erdos-Renyi model [26] is used to haphazardly create 

networks with 0.5 connectivity degrees for infrastructure nodes and domain controllers. Additionally, 

each experiment was performed twenty times to surpass 95% statistical significance using the same 

and distinct service demands situations in each run. Lastly, all trials were conducted on an Intel Core 

i7-5500 machine with 12GB RAM running Ubuntu 14.04 in Oracle VirtualBox. 
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A. PATH SETUP TIME 

 
The Path Setup Time (PST) is the time required to deploy the appropriate flow rule records that enable 

SR by altering the header information in the flow tables of domain entrance nodes along the E2E path. 

Thus, several stages contribute to the PST measure. It is typically characterized by (i) 

networking/topology-related latency, such as the RTT between the controller and the infrastructure 

nodes and the time required for controller-to-controller message/packet transmission, and (ii) 

node/controller-related latency, such as node and/or controller packet/message process time and 

controller route calculation time. If either of these latencies is excessive, the associated path setup 

latency increases, resulting in a lengthier flow rule installation, removal, or modification duration in 

nodes' flow tables. Subsequently, it may lead to congestion at both the control and data layer levels 

and a lengthy network recovery time. Thus, PST is a crucial parameter for evaluating the efficiency of 

routing architectures in SDN networks, as it contributes to the overall network scalability. Table 2 

tabulates the parameters and notations used in PST and CMP metrics of SoRBlock and HRA 

frameworks. 

 

𝑃𝑆𝑇𝑆𝑜𝑅𝐵𝑙𝑜𝑐𝑘 = 𝑇(𝑆_𝑅𝑒𝑞)𝑝𝑟𝑜𝑐
ℎ
→

𝑓

 

+ 𝑇(𝑆_𝑅𝑒𝑞)𝑝𝑟𝑜𝑝
ℎ
→

𝑓

  → 𝑠
→

𝑓

 

+ 𝑇(𝑆_𝑅𝑒𝑞)𝑝𝑟𝑜𝑐
𝑠
→

𝑓

 

+ 𝑇(𝑆_𝑅𝑒𝑞)𝑝𝑟𝑜𝑝
𝑠
→

𝑓

  → 𝑐
→

𝑓

 

+ 𝑇(𝑆_𝑅𝑒𝑞)𝑝𝑟𝑜𝑐
𝑐
→

𝑓

 

+ 𝑇(𝑝𝑎𝑡ℎ𝐸2𝐸𝐵𝐶
)𝑐𝑜𝑚𝑝

𝑐
→

𝑓

 

+ max
∀ 𝑐 ∊ 𝐶𝑓

 
𝑓
𝑘

{𝑇(𝑃_𝑅𝑒𝑞)𝑝𝑟𝑜𝑝
𝑐
→

𝑓

  → 𝑐𝑓
𝑘

+ 𝑇(𝑃_𝑅𝑒𝑞)𝑝𝑟𝑜𝑐

𝑐𝑓
𝑘

+ 𝑇(𝑃_𝑅𝑒𝑠)𝑝𝑟𝑜𝑐

𝑐𝑓
𝑘

+ 𝑇(𝑃_𝑅𝑒𝑠)𝑝𝑟𝑜𝑝

𝑐𝑓
𝑘  → 𝑐

→
𝑓

 

+ max
∀ 𝑠𝑗

𝑓
𝑘  ∊ 𝑆𝑓

𝑘
{𝑇(𝜃)𝑝𝑟𝑜𝑝

𝑐𝑓
𝑘  → 𝑠𝑗

𝑓
𝑘

} + 𝑇(𝑃_𝑅𝑒𝑠)𝑝𝑟𝑜𝑐
𝑐
→

𝑓

 

}

+ 𝑇(𝑆_𝑅𝑒𝑠)𝑝𝑟𝑜𝑐
𝑐
→

𝑓

 

+ 𝑇(𝑆_𝑅𝑒𝑠)𝑝𝑟𝑜𝑝
𝑐
→

𝑓

  → 𝑠
→

𝑓

 

+ 𝑇(𝑆_𝑅𝑒𝑠)𝑝𝑟𝑜𝑐
𝑠
→

𝑓

 

+ 𝑇(𝑆_𝑅𝑒𝑠)𝑝𝑟𝑜𝑝
𝑠
→

𝑓

  → ℎ
→

𝑓

 

+ 𝑇(𝑆_𝑅𝑒𝑠)𝑝𝑟𝑜𝑐
ℎ
→

𝑓

 

 

(1) 

 

Equation (1) presents the PST formula of a flow for a service request in the proposed SoRBlock 

framework. It primarily includes: (i) process and propagation duration of S_Req and S_Res messages 

at/among 
ℎ
→

𝑓

 , 
𝑠

→
𝑓

 , 
𝑐
→

𝑓

  (ii) computation duration for 
ℎ
→

𝑓

  to find an available E2E route for the service 

demand using BC, and (iii) max of processing and propagation duration of P_Req, P_Res, and 

flow_mod messages at/among the controllers and data plane nodes on the E2E route. 

 

𝑃𝑆𝑇𝐻𝑅𝐴 = 𝑇( 𝑝𝑓
 )

𝑝𝑟𝑜𝑐
ℎ
→

𝑓

 

+ 𝑇( 𝑝𝑓
 )

𝑝𝑟𝑜𝑝
ℎ
→

𝑓

  → 𝑠
→

𝑓

 

+ 𝑇( 𝑝𝑓
 )

𝑝𝑟𝑜𝑐
𝑠
→

𝑓

 

+ 𝑇(𝜌)𝑝𝑟𝑜𝑐
𝑠
→

𝑓

 

+ 𝑇(𝜌)𝑝𝑟𝑜𝑝
𝑠
→

𝑓

  → 𝑐
→

𝑓

 

+ 𝑇(𝜌)𝑝𝑟𝑜𝑐
𝑐
→

𝑓

 

+ 𝑇(𝑚)𝑝𝑟𝑜𝑝
𝑐
→

𝑓

  → 𝐵𝑅 
 

max
 

{(𝑇(𝑚)𝑝𝑟𝑜𝑝

𝐵𝑅 → 
𝑐
→

𝑓

 

+ 𝑇(𝑝𝑎𝑡ℎ𝐿)𝑐𝑜𝑚𝑝
𝑐
→

𝑓

 

+ 𝑇(𝑚)𝑝𝑟𝑜𝑝
𝑐
→

𝑓

  → 𝐵𝑅 
 

) , (𝑇(𝑚)𝑝𝑟𝑜𝑝

𝐵𝑅 → 
𝑐
←

𝑓

 

+ 𝑇(𝑝𝑎𝑡ℎ𝐿)𝑐𝑜𝑚𝑝
𝑐
←

𝑓

 

+ 𝑇(𝑚)𝑝𝑟𝑜𝑝
𝑐
←

𝑓

  → 𝐵𝑅 
 

)}

+ 𝑇(𝑝𝑎𝑡ℎ𝐸2𝐸)𝑐𝑜𝑚𝑝
𝐵𝑅

+ max
∀ 𝑐 ∊ 𝐶𝑓

 
𝑓
𝑘

{𝑇(𝑚)𝑝𝑟𝑜𝑝

𝐵𝑅 → 𝑐𝑓
𝑘

+ 𝑇(𝑝𝑎𝑡ℎ𝐿)𝑐𝑜𝑚𝑝

𝑐𝑓
𝑘

+ 𝑇(𝑚)𝑝𝑟𝑜𝑝

𝑐𝑓
𝑘  →𝐵𝑅

+ max
∀ 𝑠𝑗

𝑓
𝑘  ∊ 𝑆𝑓

𝑘
{𝑇(𝜃)𝑝𝑟𝑜𝑝

𝑐𝑓
𝑘  → 𝑠𝑗

𝑓
𝑘

} + 𝑇(𝑚)𝑝𝑟𝑜𝑐
𝐵𝑅 } 

(2) 

 

Equation (2) gives the PST formula of a flow for a service request in the HRA framework. It contains: 

(i) process and propagation duration for the 1st packet of flow 𝑓 and respective packet_in message 

at/among 
ℎ
→

𝑓

 , 
𝑠

→
𝑓

 , 
𝑐
→

𝑓

  (ii) max of (a) propagation duration of intra-domain route demand messages 

from 𝐵𝑅 to 
𝑐
→

𝑓

  + intra-domain route calculation duration at 
𝑐
→

𝑓

  and (b) the same operations for 
𝑐
←

𝑓

 , 
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(iii) calculation duration to find an available E2E route for the service demand at 𝐵𝑅, and (iv) max of 

processing and propagation duration of route demand messages and flow_mod messages at/among 𝐵𝑅, 

controllers, and data plane nodes on the E2E route. 

 

Figure 6a and Figure 6c show the total path setup times in SoRBlock with the original (SoRBlock_Org) 

and 500K (SoRBlock_500K) transactions sizes and the HRA scheme while changing the count of 

infrastructure nodes in domains. Intra-domain nodes are randomly connected, while inter-domain 

connections mimic NSFNET topology. While the same (i.e., exact origin and target) service requests 

were used for all runs in Figure 6a, different service requests (i.e., different origin and target) were 

used in Figure 6c. As shown in Figure 6a, the presented SR architecture surpasses the HRA method 

regarding the augmentation ratio in total PST, owing to the HRA approach's increased node-controller 

and controller-controller latencies in both Figure 6a and Figure 6c. That is because the proposed model 

utilizes available transactions to identify the E2E route with fewer control messages than the HRA 

method and restricts the deployment of flow rules to the domains' entrance nodes. 

 

  

(a) Random connectivity in intra-domains -  NSFNET 

in inter-domains - Same requests. 
(b) Random connectivity in inter-domains - USNET in 

intra-domains - Same requests. 

  

(c) Random connectivity in intra-domains - NSFNET 

in inter-domains - Different requests. 
(d) Random connectivity in inter-domains - USNET in 

intra-domains - Different requests. 
 

Figure 6.  PST performances of the SoRBlock and HRA frameworks. 

Additionally, Figure 6b and Figure 6d illustrate the overall path setup duration in the SoRBlock using 

the original and 500K transaction sizes in the BC and HRA strategies, respectively, while altering the 

number of domains. Intra-domain nodes are linked in a manner similar to that of the USNET, while 

inter-domain connections are formed at random. In Figure 6b, the same (i.e., exact origin and target) 
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service requests for each iteration are used, while in Figure 6d, unique service requests (i.e., distinct 

origin and target) are employed. The overall path setup time grows as the number of domains in the 

findings rises for all SoRBlock_Org and SoRBlock_500K arrangements and HRA. This occurs as a 

consequence of the increased number of domains, which results in a massive load of pathlets and 

hence transactions arriving from each domain, resulting in increased path computation times and 

latency. In Figure 6d, SR-based schemes surpass the HRA method about twice as much as the HRA 

strategy in Path Setup Time, whereas SR-based schemes easily quadruple the HRA performance in 

Figure 6b. On the other hand, Figure 6d further validates the superior performance of the SoRBlock 

scheme while calculating E2E paths from the current transactions. That is because the SoRBlock's 

routing approach is quicker than the HRA scheme. 

 

B. CONTROLLER MESSAGES PROCESSED 

 
As the network increases in size relative to the nodes (e.g., end-points, data plane devices, controllers, 

etc.), the controllers may need to deal with increased flow demands, and the associated messages 

exchanged and processed between network nodes and the others in order to establish a QoS-based E2E 

path across multiple domains. However, due to the restricted computing resources available to the 

controllers, such as the CPU and RAM, these message exchange and processing tasks might result in 

the controllers being a bottleneck. The controllers must minimize the number of messages exchanged 

and processed to establish an E2E route for service request packets. Thus, Controller Messages 

Processed (CMP) is another key indicator for assessing the performance of routing schemes in SDN 

networks, as it contributes to the overall network's scalability. The CMP measure indicates the number 

of messages processed to establish an E2E route for packets of a service request at/by corresponding 

decision-maker controllers, i.e., controllers on the E2E route and Broker (if available), in this research. 

 

𝐶𝑀𝑃𝑆𝑜𝑅𝐵𝑙𝑜𝑐𝑘 = 2𝑥| 𝐶𝑓
 | + ∑ | 𝑆𝑓

𝑘 |

∀ 𝑐 ∊ 𝐶𝑓
 

𝑓
𝑘

 (3) 

 

Equation (3) shows the counts of CMP to arrange an E2E route for a flow of service demand in the 

SoRBlock framework. It primarily includes: (i) an S_Req message from
ℎ
→

𝑓

  to 
𝑐
→

𝑓

 , (ii) P_Req messages 

from 
𝑐
→

𝑓

  to the other controllers on the E2E route computed for the service demand, (iii) P_Res 

messages from the controllers on the E2E route computed for the service demand to the 
𝑐
→

𝑓

  in return 

for the P_Req messages, (iv) an S_Res message from 
𝑐
→

𝑓

  to 
ℎ
→

𝑓

 , and (v) flow_mod messages from the 

controllers to the data plane nodes in their domains on the E2E route. 

 

𝐶𝑀𝑃𝐻𝑅𝐴 = 4 + |𝐵 𝑁
→

𝑓

 

| + |𝐵 𝑁
←

𝑓

 

| + 2𝑥| 𝐶𝑓
 | + ∑ | 𝑆𝑓

𝑘 |

∀ 𝑐 ∊ 𝐶𝑓
 

𝑓
𝑘

 (4) 

 

Likewise, Equation (4) presents the number of CMP to install an E2E route for a flow of service 

demand in the HRA framework. It basically contains: (i) a packet_in message from
𝑠

→
𝑓

  to
𝑐
→

𝑓

 , (ii) an 

E2E route demand message from
𝑐
→

𝑓

  to the 𝐵𝑅, (iii) two computing demand messages from 𝐵𝑅 to the 

𝑐
→

𝑓

  and destination-controller (for intra-domain route announcements among every edge device and 

source/destination node pairs), (iv) messages including pathlet announcements for every edge device 

and source/destination node pairs from
𝑐
→

𝑓

 and 
𝑐
←

𝑓

  to 𝐵𝑅, (v) messages (including corresponding edge 

device pairs in every domain) from the 𝐵𝑅 to the controllers on the E2E route, (vi) approval messages 

(for the demanded pathlets in every domain) from the controllers on the E2E route to 𝐵𝑅, and (vii) 

flow_mod messages from the controllers on the E2E route to the data plane nodes in their domains on 

the E2E route. 
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Figure 7 shows the controller messages processed in the proposed framework with the original 

(SoRBlock_Org) and 500K (SoRBlock_500K) transaction sizes and HRA scheme while changing the 

count of infrastructure nodes in each domain. Intra-domain nodes are randomly connected, while inter-

domain connections mimic NSFNET topology in Figure 7a. Intra-domain nodes mimic USNET 

topology, while inter-domain connections are randomly connected under different service requests 

(i.e., distinct origin and targets) in Figure 7b.  

 

  

(a) Random connectivity in intra-domains - NSFNET 

in inter-domains. 
(b) Random connectivity in inter-domains - USNET in 

intra-domains. 
 

Figure 7. CMP in the SoRBlock and HRA frameworks. 

Figure 7a and Figure 7b present that the proposed SR-based framework has an improved performance 

than the HRA scheme regarding various numbers of domains and nodes. Particularly, the HRA deals 

with nearly 50% more controller messages than the proposed framework when the number of domains 

varies in Figure 7b. This is because of the count of border nodes in domains. Interestingly, the number 

of controller messages processed in the SoRBlock scheme approaches that in the HRA framework with 

respect to ratio. At the same time, the count of nodes rises in domains, as illustrated in Figure 7a, 

because more nodes are utilized on the E2E path. Furthermore, the number of controller messages is 

higher in Figure 7a due to the random service request model used and the growing count of nodes on 

the E2E paths as the intra-domain node number increases. 

 

 

VII. CONCLUSION 
 

This study has presented an E2E traffic management framework (SoRBlock) in SDNs, where inter-

domain level routing exploits BC technology and intra-domain level routing leverages the SR 

approach. The experimental results have illustrated that the proposed SoRBlock architecture 

outperforms the traditional hierarchical routing scheme (HRA) by reducing path setup time and 

controller messages processed in SDN networks. The simulation findings demonstrate that by 

reducing path setup time (PST) and the quantity of controller messages, the proposed SR-based 

SoRBlock architecture outperforms the conventional hierarchical routing strategy, HRA, in SDN 

networks. The proposed SoRBlock architecture presents ([45ms - 65ms]) almost three times less total 

PST than the HRA method ([130ms - 200ms]), even though the same (i.e., exact origin and target) 

service requests were used for all runs. This is because the HRA approach has higher node-controller 

and controller-controller latencies. On the other hand, when different service requests (i.e., different 

origin and target) were employed, SoRBlock displayed PST that was two times lower ([75ms - 90ms]) 

than HRA ([150ms - 175ms]). When the number of domains changes, the HRA processes 

approximately 50% more controller messages than the SoRBlock ([3 - 10]), although the ratio of CMP 
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in the SoRBlock scheme ([10 - 17]) approaches that in the HRA framework ([15 - 20]) as the number of 

nodes increases in domains. 

  

This study is in its infancy stage and needs improvements and research from various aspects because it 

demonstrates a new potential application for BC and a new research avenue. In future work, it is 

planned to work on the scalability and security performances of SoRBlock by analyzing and evaluating 

metrics such as transaction/block throughput and delay as well as possible attacks in the BC in 

addition to improving PST and CMP metrics performances. 

 

ACKNOWLEDGMENT: This work is supported by the Scientific & Technological Research 

Council of Türkiye (TUBITAK) under Grant No. 120E448. 

 

 

 

VIII. REFERENCES 
 

[1] D. Kreutz, F. M. V. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg, S. Azodolmolky, 

and S. Uhlig, “Software-Defined Networking: A Comprehensive Survey,” Proceedings of the IEEE, 

vol. 103, no. 1, pp. 14–76, Jan. 2015. 

[2] M. Karakus and A. Durresi, “Quality of Service (QoS) in Software Defined Networking 

(SDN): A survey,” Journal of Network and Computer Applications, vol. 80. pp. 200–218, 2017. 

[3] A. Ghiasian, “Impact of TCAM Size on Power Efficiency in a Network of OpenFlow 

Switches,” IET Networks, vol. 9, no. 6, pp. 367–371, Nov. 2020. 

[4] M. Karakus and A. Durresi, “A Survey: Control Plane Scalability Issues and Approaches in 

Software-Defined Networking (SDN),” Computer Networks, vol. 112, pp. 279-293, 2017. 

[5] P. L. Ventre et al., “Segment Routing: A Comprehensive Survey of Research Activities, 

Standardization Efforts, and Implementation Results,” IEEE Communications Surveys & Tutorials, 

vol. 23, no. 1, pp. 182–221, 2021. 

[6] A. Abujoda, H. R. Kouchaksaraei, and P. Papadimitriou, “SDN-based Source Routing for 

Scalable Service Chaining in Datacenters,” in Wired/Wireless Internet Communications: 14th IFIP 

WG 6.2 International Conference (WWIC 2016), Thessaloniki, Greece, 2016, pp. 66–77. 

[7] A. Hari, T. V Lakshman, and G. Wilfong, “Path Switching: Reduced-State Flow Handling in 

SDN using Path Information,” in Proceedings of the 11th ACM Conference on Emerging Networking 

Experiments and Technologies, Heidelberg, Germany, 2015, pp. 1–7. 

[8] M. Karakus and E. Guler, “RoutingChain: A Proof-of-Concept Model for a Blockchain-

Enabled QoS-Based Inter-AS Routing in SDN,” in 2020 IEEE International Black Sea Conference on 

Communications and Networking (BlackSeaCom), Odessa, Ukraine, 2020, pp. 1-6. 

[9] M. Karakus and A. Durresi, “A Scalable Inter-AS QoS Routing Architecture in Software 

Defined Network (SDN),” in Proceedings - International Conference on Advanced Information 

Networking and Applications (AINA 2015), Gwangju, Korea (South), 2015, pp. 148–154. 

[10] M. Soliman, B. Nandy, I. Lambadaris, and P. Ashwood-Smith, “Exploring Source Routed 

Forwarding in SDN-based WANs,” in 2014 IEEE International Conference on Communications 

(ICC), Sydney, Australia, 2014, pp. 3070–3075. 



1267 

 

[11] Y. Zhang et al., “StEERING: A Software-Defined Networking for Inline Service Chaining,” 

in 2013 21st IEEE International Conference on Network Protocols (ICNP), Goettingen, Germany, 

2013, pp. 1–10. 

[12] R. M. Ramos, M. Martinello, and C. Esteve Rothenberg, “SlickFlow: Resilient Source 

Routing in Data Center Networks Unlocked by OpenFlow,” in 38th Annual IEEE Conference on 

Local Computer Networks, Sydney, NSW, Australia, 2013, pp. 606–613.  

[13] C. Guo et al., “Secondnet: A Data Center Network Virtualization Architecture with 

Bandwidth Guarantees,” in Proceedings of the 6th International Conference, Philadelphia, 

Pennsylvania, USA, 2010, pp. 1–12. 

[14] S. A. Jyothi, M. Dong, and P. B. Godfrey, “Towards a Flexible Data Center Fabric with 

Source Routing,” in Proceedings of the 1st ACM SIGCOMM Symposium on Software Defined 

Networking Research (SOSR ’15). Santa Clara, CA, USA, 2015, pp. 1-8. 

[15] K. Papadopoulos and P. Papadimitriou, “Leveraging on Source Routing for Scalability and 

Robustness in Datacenters,” in 2019 IEEE 2nd 5G World Forum (5GWF), Dresden, Germany, 2019, 

pp. 148–153. 

[16] The Dynamic Source Routing Protocol (DSR) for Mobile Ad Hoc Networks for IPv4, IETF 

RFC 4728, 2007. 

[17] Segment Routing with IS-IS Routing Protocol, Draft-previdi-filsfils-isis-segment-routing-02, 

IETF (Work in Progress), 2013. 

[18] R. S. Guimarães et al., “M-PolKA: Multipath Polynomial Key-Based Source Routing for 

Reliable Communications,” IEEE Transactions on Network and Service Management, vol. 19, no. 3, 

pp. 2639–2651, 2022. 

[19] T. Sugiura, K. Takahashi, K. Ichikawa, and H. Iida, “Acar: An Application-Aware Network 

Routing System using SRv6,” in 2022 IEEE 19th Annual Consumer Communications & Networking 

Conference (CCNC), Las Vegas, NV, USA, 2022, pp. 751–752. 

[20] S. Komajwar and T. Korkmaz, “SPRM: Source Path Routing Model and Link Failure 

Handling in Software-Defined Networks,” IEEE Transactions on Network and Service Management, 

vol. 18, no. 3, pp. 2873–2887, 2021. 

[21] G. N. Kumar, K. Katsalis, P. Papadimitriou, P. Pop, and G. Carle, “Failure Handling for Time-

Sensitive Networks using SDN and Source Routing,” in 2021 IEEE 7th International Conference on 

Network Softwarization (NetSoft), Tokyo, Japan, 2021, pp. 226–234. 

[22] J. Xia, P. Cui, Z. Li, and J. Lan, “SRCV: A Source Routing based Consistency Verification 

Mechanism in SDN,” in 2021 3rd International Conference on Advances in Computer Technology, 

Information Science and Communication (CTISC), Shanghai, China, 2021, pp. 77–81. 

[23] Q. Dong, J. Li, Y. Ma, and S. Han, “A Path Allocation Method Based on Source Routing in 

SDN Traffic Engineering,” in 2019 IEEE International Conference on Smart Cloud (SmartCloud), 

Tokyo, Japan, 2019, pp. 163–168. 

[24] P. Lin et al., “A West-East Bridge based SDN Inter-Domain Testbed,” Communications 

Magazine, IEEE, vol. 53, no. 2, pp. 190–197, Feb. 2015. 



1268 

 

[25] N. McKeown et al., “OpenFlow: Enabling Innovation in Campus Networks,” SIGCOMM 

Comput. Commun. Rev., vol. 38, no. 2, pp. 69–74, Mar. 2008. 

[26] A. Erdős P.  and Rényi, “On the Strength of Connectedness of a Random Graph,” Acta 

Mathematica Academiae Scientiarum Hungarica, vol. 12, no. 1, pp. 261–267, 1964. 

  


