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Ozet

Bu calismada; Brinkman-Forchheimer Denklemlerinin ¢dziimlerinin H " normunda a Darcy Katsayisina siirekli

bagimlilig1 gosterilmistir.
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On continuous dependence on Darcy coefficient of the Brinkman-Forchheimer

equations

Abstract

In this paper the continuous dependence of solutions of the Brinkman-Forchheimer equations on the Darcy coefficient in

H' norm is proved.
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1. Introduction

In this paper we consider the following initial-boundary value problem for the Brinkman- Forchheimer equations:

u, = }/Au—au—b‘ u ‘au—Vp, Vu=0, xeQ, t>0, (1.1)
u(x,O):uo(x) S xeQ, (1.2)
u=0 s xedQ, t>0 (1.3)

Here u = (ul,uz,u3) is the fluid velocity vector, y > 0 is the Brinkman coefficient, a >0 is the Darcy coefficient, 5 >0 is
the Forchheimer coefficient, p is the pressure, « € [1,2] is a given number, Q is a bounded domain of R’ whose
boundary 9Q is assumed to be of class C*. We study the problem of continuous dependence of solutions to the problem

(1.1)—(1.3) on coefficient a .
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This type works can be found the articles of Ames ve Straughan [1], Ames ve Payne [2]. They investigated structural
stability in flows of fluid in porous media represented by the Darcy and Brinkman systems. Celebi, Kalantarov and Ugurlu [3-

4] proved continuous dependence of solutions of the Brinkman- Forchheimer coefficients in A' norm and Dinlemez [5]
worked the structural stability for a class of nonlinear wave equations. Continuous dependence of solutions on coefficients of

equations reflects the effect of small changes in coefficients of equations on the solutions. Our purpose is to present continuous

dependence on Darcy coefficient in H' norm. Throughout this paper we will use the function spaces

—~1

Hi(QR)={ ue H}(QR): V.u=0 | and I’(QR’), where I'(QR)= Ho(QR') c I*(QR).

1

P

For convenience we will write ZZ(Q,R3) = EZ(Q) and ﬁé(Q,Rﬂ = Ho(Q). We define | u Hp :[j u”(x) dx] for
Q

the norm in L 7(€2) where 1< p<o.

2. Continuous Dependence On The Darcy Coefficient

In this section we are going to prove that the solution of the problem (1,1)-(1,3) depends continuous on the Darcy
coefficient @ in H'(Q) norm. The following existence and uniqueness theorem for the problem (1,1)-(1,3) can be found

in [4].

Theorem 2.1.

Assume that 1< <2 . Then for any u, € ;{v(]) (Q) , there exists a unique solution u € C([O,T]; I}/(]) (Q)) of the problem

(1.1) — (1.3). Furthermore, we have

sup
0<t<T

vi()| <0 and [ |u()] @ <o (£)

for any T >0, where D is a generic positive constant depending on the initial data and the parameters of (1,1).

Now assume that (u, p) is the solution of the problem

u, = ;/Au—alu—b‘ u ‘au—Vp, Vu=0, xeQ, t>0, (2.1)
u(x,O):uO(x) S xeQ, (2.2)
u=0 . xedQ, t>0, (2.3)

and (v,q) is the solution of the problem

v, = yAv—azv—b‘ v ‘av—Vq, Vu=0, xeQ, t>0, (2.4)
v(x,O):uo(x) s xeQ, (2.5)
v=0 R xedQ, t>0. (2.6)

Let w=u—-v, 7=p—q and a=a —a,.Then (w,7) is a solution of the problem,
w, = }/Aw—alw—&v—b(‘ u ‘au—‘ v ‘av)—Vir , Vw=0, xeQ, >0 (2.7)

w(x,0)=0 , xeQ, (2.8)
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w=0 R xedQ, t>0 (2.9)

The main result of this paper is the following theorem:

Theorem 2.2.

Let w be the solution of the problem (2.7)—(2.9) and 27 >1. Then w satisfies the estimate,
al

[ V(o) ’

g | wn) | < La-a) . vi>o0, (2.10)

where L is a positive constant depending on the parameters of (1.1).

Proof :
Multiplying (2.7) by w in r (Q) we get

%% | woy |+ 7] vw) |+ af wor [T = -a(vy w(t))—b(\ u(@) |"uo)-| vy [ v w(t)). (2.11)

Since the operator F:R>— R’ defined by F(u):‘ u ‘au is monotone, we have (| u(t) |a u(t)—| v(t) |a v(t) , w(t)) > 0.

Hence, from (2.11) we get

= 25w |4 A vwo | a] wo | < | d b0 wo)| 2.12)
Using Young’s inequality in (2.12) we have
1d q°
> | woy |+ 7] vw) |+ af wor | < ‘;— | uy |+ % | wy | (2.13)
By Poincare-Friedrichs inequality,

~2
= S w4 2 v a v s | val’ (2.14)

where b, is a positive constant.
Multiplication of (2.7) with W, in r (Q) we obtain

1d
2 dr

{ | w | +a] wo | 2} w | wo | =-a 00, wt(t))—b(‘ u(t) | u) | vy [y w,(z)) (2.15)

Now we will estimate the following inequaity. Using the mean value theorem and Holder’s inequality respectively we obtain

b (‘ u ‘au—‘ v ‘av, wl) < ‘ b ‘30{ ( H u ;4—‘ v ;) H WHG.‘ w, . (2.16)
Hence we use Sobolev inequality , we get
b(lul us|v[vowm)| = opads ([ va] s v} vw] | w].

where d, is the constant in the Sobolev inequality

[vl, < alw]. 1spss ()
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which is valid for each ve H, (Q,R?) . Then from Theorem 2.1 and using Young inequality we get

= |b (‘ u ‘au—‘ v ‘av, wt) W, Ti180% o d;“?* D*| Vw HZ

sl\
2

Let use Cauchy-Schwarz and Young inequalities in (2.4) we obtain

2a+2
< .
2a+2

2
2 3a 2 2
[ 7+ 2 [P+ 2 av ]+ 8w
a,

Then by using (E,) and from Theorem 2.1 in (2.18) we have

2
2 3a

— || v
2 1
a,

", L [(ay7) + #*(d, D).
2

Therefore using (2.17) and (2.19) in (2.15) we get

~2
N %M vl s ]| < Koat L

t

2 2
v |+ LOH Vw H

where K, = > |:(d0 yD) + v*(d, D)M] and L,= 180° &® d>**D* .

2
a,

If we multiply (2.14) by =20 we have

4
~2
w2 v e ] w] s T%bg [ vu |

Adding (2.20) and (2.21) we obtain

2

Vi

L vl s e wl’] w@e-n)] v s nw|'s on 5 | v ekt s 9
! 2

Inequality of (2.22) implies

2(6) + ky Z(1) < & {ZL | va | S|+ K
4 @,
where k, = min{;r , (Z)} and Z(1)= 7] Y|+ (cea)] w[ -

Solving the differential inequality (2.23) and using Theorem 2.1 we arrive at

2| 2L, 6 K
Z(1) < az(z‘) bD + =D + 4}.

a a, 0
Therefore we have completed the proof of the theorem we have

HVw(t)H—)O as a—> 0, t>0.
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