

RESEARCH ARTICLE

A new goodness-of-fit test for the inverse Gaussian distribution

Hadi Alizadeh Noughabi^{∗1} D, Mohammad Shafaei Noughabi² D

¹*Department of Statistics, University of Birjand, Birjand, Iran* ²*Department of Mathematics and Statistics, University of Gonabad, Gonabad, Iran*

Abstract

The Inverse Gaussian (IG) distribution is widely used in practice and therefore an important issue is to develop a powerful goodness-of-fit test (GOF) for this distribution. In this article, we propose and examine a new GOF test for the IG distribution based on a new estimate of Kullback-Leibler (KL) information. The properties of the test statistic are presented. In order to compute the proposed test statistic, parameters of the IG distribution are estimated by maximum likelihood estimators, which are simple explicit estimators. Critical values and the actual sizes of the proposed test are obtained. Through a simulation study, power values of the proposed test are compared with some prominent existing tests. Finally, two illustrative examples are presented and analyzed.

Mathematics Subject Classification (2020). 62G10, 94A17, 62P30

Keywords. Inverse Gaussian distribution, Kullback-Leibler information, Monte Carlo simulation, goodness-of-fit tests, critical points, test power

1. Introduction

The IG distribution is an important statistical model for analyzing right skewed data with positive support. Its density function is

$$
f(x; \mu, \lambda) = \left(\frac{\lambda}{2\pi x^3}\right)^{1/2} \exp\left\{-\frac{\lambda}{2\mu^2 x}(x-\mu)^2\right\}, \quad x > 0,
$$

where μ and λ are parameters. The mean and variance of this distribution are μ and μ^3/λ , respectively.

Various applications based on IG distribution assumption are widely addressed by the literature in different fields of science as electrical networks, cardiology, hydrology, meteorology, ecology, physiology, demography, employment service, and etc., (e.g., [5, 6, 9, 18, 19, 24, 42]). Therefore, constructing powerful GOF tests for the IG distribution is an important issue. In this article, we develop a distribution-free test for the IG distribution using an estimate of KL information.

Assuming [th](#page-12-1)at X_1, \ldots, X_n is t[he](#page-12-0) sample from a distribution F , we wish to assess wheth[er](#page-12-2) [the](#page-12-3) [un](#page-12-4)[kn](#page-12-5)[own](#page-13-0) $F(x)$ can be satisfactorily approximated by a IG model $G(x)$. GOF tests are

[∗]Corresponding Author.

Email addresses: alizadehhadi@birjand.ac.ir (H.A. Noughabi), mohamad.shafaee@gmail.com (M.S. Noughabi)

Received: 25.11.2022; Accepted: 02.03.2024

designed to measure how well the observed sample data fits some proposed model. One class of GOF tests that can be used consists of tests based on the distance between the empirical and hypothesized distribution functions. Five of the known tests in this class are Cramer-von Mises (W^2) , Kolmogorov-Smirnov (D) , Kuiper (V) , Watson (U^2) , and Anderson-Darling (A^2) . For more details about these tests (see, [13]).

Many researchers have been interested in GOF tests for different distributions and then different tests are developed in the literature. For example, see [7, 11, 13, 23, 32, 33]. Moreover, GOF tests based on censored samples are developed by some authors including [3, 4, 28, 35–39, 41].

Suppose a random variable X has a distribution function $F(x)$ with a continuous density function $f(x)$. Then, the entropy $H(f)$ of X was defined by [43] to be

$$
H(f) = -\int_{-\infty}^{\infty} f(x) \log f(x) dx.
$$

The problem of estimation of $H(f)$ based on a random sam[ple](#page-13-1) from $F(x)$ has been considered by many authors including $[12, 17, 22, 30, 44, 45, 50]$.

Vasicek [45] expressed a useful representation of entropy for the univariate *X* in terms of the quantile function as

$$
H(f) = \int_0^1 \log \left\{ \frac{d}{du} Q(u) \right\} du,
$$

where $Q(u) = F^{-1}(u) = \inf\{x : F(x) \ge u\}$ is the quantile function. Then, he constructed an estimate by replacing the distribution function *F* by the empirical distribution function *Fn*, and using a difference operator instead of the differential operator. The derivative of $F^{-1}(p)$ is then estimated by a function of the order statistics obtained from the sample. With X_1, \ldots, X_n being the sample, the estimator is given by

$$
HV_{mn} = \frac{1}{n} \sum_{i=1}^{n} \log \left\{ \frac{n}{2m} (X_{(i+m)} - X_{(i-m)}) \right\},\,
$$

where *m* is positive integer, $m \leq \frac{n}{2}$ $\frac{n}{2}$, and $X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(n)}$ are the order statistics and $X_{(i)} = X_{(1)}$ if $i < 1, X_{(i)} = X_{(n)}$ if $i > n$. Vasicek (1976) established the consistency of HV_{mn} for the population entropy $H(f)$.

Vasicek's sample entropy has been most widely used extensively for developing entropybased statistical procedures, see [2, 15, 16, 20, 34].

In many practical problems, it is very important to test whether the underlying distribution has a specific form since most parametric statistical methods assume an underlying distribution in the development of methods.

Assuming that X_1, \ldots, X_n is th[e](#page-11-0) [sam](#page-12-9)[ple](#page-12-10) [fro](#page-12-11)[m a](#page-13-5) distribution F , we wish to assess whether the unknown $F(x)$ can be satisfactorily approximated by a parametric model $G(x|\theta)$, where *θ* is a model parameter which is usually unknown.

The KL discrimination has been widely studied in the literature as a central index for measuring quantitative similarity between two probability distributions. The KL discrimination of *f* from *g* is defined by

$$
D(f, g|\theta) = \int f(x) \, \log \frac{f(x)}{g(x|\theta)} \, dx.
$$

Note that $D(f, g) = 0$ if and only if $f(x) = g(x|\theta)$ with probability 1. The KL discrimination is used for developing entropy models and tests, for example, Arizono and Ohta [2] and Ebrahimi et al. [16] proposed tests for normality and exponentiality, respectively, based on $D(f, q|\theta)$ that are the same as the tests introduced by [20] and [45] based on maximum entropy. Mudholkar and Tian [29] and Choi and Kim [10] proposed tests for inverse Gaussian and Laplace distributions, respectively, based on maximum entropy models. Recently, Alizadeh and Arghami [34] investigated general treatment of GOF tests based on KL information.

Recently, Alizadeh [31] proposed a new estimate of the KL discrimination and then constructed a test statistic for testing the validity of a model. His test statistic is

$$
DA_{mn} = -\frac{1}{n} \sum_{i=1}^{n} \log \left\{ \frac{n}{2m} \left(G(X_{(i+m)}; \hat{\theta}) - G(X_{(i-m)}; \hat{\theta}) \right) \right\},\,
$$

where *G* is the distribution function of *g*. Here, θ is a model parameter which is usually unknown, and $\hat{\theta}$ is a reasonable equivariant estimate of θ .

Noughabi [31] showed that the test statistic is non-negative just like the KL divergence, i.e., $DA_{mn} \geq 0$. Also, the test based on DA_{mn} is consistent. Then, he proposed tests for normal, exponential, Laplace and Weibull distributions and compared the power of these tests with the other existing tests and showed that his test has a good power against different alte[rna](#page-13-6)tives. In this paper, we apply the Alizadehs test statistic and suggest a GOF test for the IG distribution.

In Section 2, we propose a new GOF test statistic for the IG distribution based on an estimate of KL divergence. In Section 3, the critical points, the actual sizes and the power values of the proposed test are computed by Monte Carlo simulations and then compared with some known competing tests. Section 4 contains a real example for illustrative purpose. The following section contains a brief conclusion.

2. The proposed test statistic

In information theory, the KL divergence is a non-symmetric measure of the difference between two probability distributions *f* and *g*. Typically, *f* represents the true distribution of the observations and *g* represents a theoretical model or approximation of *f*.

Suppose X_1, \ldots, X_n is a random sample from an unknown continuous distribution *F* with a probability density function $f(x)$. Let $G(x;\theta)$ be a parametric family of distributions with probability density function $g(x; \theta)$. Then, the hypothesis of interest is

$$
H_0: f(x) = g(x; \theta), \quad for \; some \; \theta \in \Omega.
$$

The alternative to H_0 is a two-sided alternative of the form

$$
H_1: f(x) \neq g(x; \theta), \quad \text{for any } \theta \in \Omega.
$$

To discriminate between the two hypotheses H_0 and H_1 , Noughabi [31] used the KL divergence.

Let *f* denote the true density function and $G = \{g(.,\theta) : \theta \in \Omega\}$ be a selected statistical model for the data distribution *f*, where Ω is a subset of R^p . When *f* actually belongs to *G*, the minimal value, $\min D(f, g(., \theta))$, of the KL divergence is zero. O[n t](#page-13-6)he other hand, when *f* does not belong to *G*, the minimal KL divergence is strictly positive. Therefore, a GOF test can be constructed which would reject $H_0: f \in G$ for large value of $D(f, g)$, where

$$
D(f, g; \theta) = \int_{-\infty}^{\infty} f(x) \log f(x) dx - \int_{-\infty}^{\infty} f(x) \log \{g(x; \theta)\} dx
$$

 $= -H(f) - E_f \{ \log(g(X; \theta)) \},$

where $H(f)$ is the entropy of f. Noughabi [31] proposed to estimate $D(f, g)$ by

$$
DA_{mn} = -HV_{mn} - HA_{mn},
$$

where HV_{mn} is Vasiceks estimate of $H(f)$ and HA_{mn} is the semi-parametric estimate of E_f {log($g(X; \theta)$ }, given by

$$
HA_{mn} = \frac{1}{n} \sum_{i=1}^{n} \log \left\{ \frac{G(X_{(i+m)}; \hat{\theta}) - G(X_{(i-m)}; \hat{\theta})}{X_{(i+m)} - X_{(i-m)}} \right\}.
$$

Here, $\hat{\theta}$ can be any reasonable equivariant estimate of θ . Consequently, the general test statistic proposed by [31] is as follows:

$$
DA_{mn} = -\frac{1}{n} \sum_{i=1}^{n} \log \left\{ \frac{n}{2m} \left(G(X_{(i+m)}; \hat{\theta}) - G(X_{(i-m)}; \hat{\theta}) \right) \right\},\,
$$

w[he](#page-13-6)re DA_{mn} denote the estimate of $D(f, g; \theta)$ and *G* is the distribution function of *g*.

Given a random sample X_1, \ldots, X_n from a continuous probability distribution F with a density $f(x)$ over a non-negative support, the hypothesis of interest is

$$
H_0: f(x) = f_0(x; \mu, \lambda) = \left(\frac{\lambda}{2\pi x^3}\right)^{1/2} \exp\left\{-\frac{\lambda}{2\mu^2 x}(x-\mu)^2\right\}, \ x > 0, \text{ for some } (\mu, \lambda) \in \Theta,
$$

where μ and λ are unspecified and $\Theta = R^+ \times R^+$. The alternative to H_0 is

 $H_1: f(x) \neq f_0(x; \mu, \lambda), \quad for any (\mu, \theta) \in \Theta.$

We proposed the following test statistic for test of the IG distribution.

$$
DA_{mn} = -\frac{1}{n} \sum_{i=1}^{n} \log \left\{ \frac{n}{2m} \left(G(X_{(i+m)}; \hat{\theta}) - G(X_{(i-m)}; \hat{\theta}) \right) \right\},\,
$$

where *G* is the IG distribution function and $\hat{\theta} = (\hat{\mu}, \hat{\lambda})$, where

$$
\hat{\mu} = \bar{X} \quad \text{and} \quad \hat{\lambda} = \frac{n}{\sum_{i=1}^{n} \left(1 \big/ X_i - 1 \big/ \bar{X} \right)}.
$$

Clearly, we reject the null hypothesis for large values of the test statistic.

According to [31], the test statistic is non-negative, i.e., $DA_{mn} \geq 0$, and also the test based on *DAmn* is consistent. The mentioned properties of test statistic are presented in the following theorems. The proof of these theorems can be found in [31].

Theorem 2.1. Let X_1, \ldots, X_n be a random sample from an unknown continuous distribu*tion F with probability density function f*(*x*) *and distribution function [G](#page-13-6) be known. Then, we have*

$$
DA_{mn}\geq 0.
$$

Theorem 2.2. *Let F be a completely unknown continuous distribution and G be the null distribution with unspecified parameters. Then under* H_1 , the test based on DA_{mn} is *consistent.*

3. Simulation study

3.1. Critical values and type-I error control

Distribution of the proposed test statistic DA_{mn} under the null hypothesis cannot be evaluated analytically. Therefore, the critical values of the test statistic *DAmn* is obtained by the Monte Carlo method.

For our test statistic *DAmn*, its sample value is calculated for 100,000 simulated random samples of size n from the IG with parameters 1 and 1. Then, the critical values are determined for different significance levels $\alpha = 0.01, 0.05, 0.10$. For $\alpha = 0.05$, since $1 - \alpha =$ $0.95 = 95000/100000$, the 95000-th order statistic is evaluated and the critical value is specified. Also, for $\alpha = 0.01$ and $\alpha = 0.10$, the 99000-th and 90000-th order statistics are evaluated and the critical values are determined. The critical values obtained for the proposed test statistic and sample sizes $10 \le n \le 100$ are given in Table 1.

α 0.01 0.05 0.10 $\, n$ 0.4523 0.5546 0.4130 10 0.3868 0.3613 0.4509 15 0.3809 0.3308 0.3107 20 0.2979 0.3511 0.3129 25 0.3336 0.3025 0.2899 30 0.2991 0.2663 0.2755 40		
0.2589 0.2515 0.2776 50		
0.2599 0.2431 75 0.2480		
0.2366 0.2329 0.2456 100		

Table 1. Critical values of the test statistic.

Clearly, the proposed test statistic depends on the window size *m*. The value of *m* can be obtained from heuristic formula $m = [n/3 + 1]$ for a given *n*, where [*x*] means the integer part of *x*. For example, we recommend $m = 4$ for $n = 10$, $m = 7$ for $n = 20$, $m = 11$ for $n = 30$, and $m = 17$ for $n = 50$. We observe that the optimal *m* increases as *n* increases while $m/n \to 0$.

Figure 1 shows the empirical densities of the proposed test statistic for sample sizes $n = 10, 20, 30, 50$. Moreover, for different values of λ ($\lambda = 0.5, 1, 2, 4$), the empirical density of the test statistic is derived with 100,000 samples of sizes $n = 10, 20, 30, 50$ from the IG distribution with parameter λ . The empirical densities of the proposed test are displayed in Figure 2.

Figure 1. Estimated empirical densities of the test statistic generated with 100,000 samples of size $n = 10, 20, 30, 50$ from the IG distribution with parameters $\mu = 1$ and $\lambda = 1$.

We evaluate the estimated type I error control using the critical values of the proposed test. We generated random samples from different IG populations and then obtained the actual sizes of the proposed test. The results are displayed in Table 2. It is evident that the empirical percentiles given in Table 1 provides an excellent type I error control. Also, we can see that the actual sizes of the proposed test are acceptable but for the other tests the actual sizes are different with the nominal size $\alpha = 0.05$. Therefore, we can use our test in practice confidently.

Figure 2. Estimated empirical densities of the test statistic generated with 100,000 samples of size $n = 10, 20, 30, 50$ from the IG distribution with parameters $\mu = 1$ and $\lambda = 0.5, 1, 2, 4$.

Table 2. Type I error control of the tests for the nominal significance level $alpha = 0.05$.

	\boldsymbol{n}	$\overline{W^2}$	\overline{D}	V	$\overline{U^2}$	$\overline{A^2}$	T_1	T_2	$\overline{D}A_{mn}$
IG(1, 0.5)	10	0.0669	0.0641	0.0567	0.0573	0.0644	0.0581	0.0411	0.0493
	20	0.0699	0.0664	0.0572	0.0585	0.0671	0.0558	0.0462	0.0530
	30	0.0708	0.0664	0.0571	0.0587	0.0679	0.0506	0.0476	0.0545
	50	0.0716	0.0686	0.0574	0.0598	0.0678	0.0488	0.0522	0.0532
IG(1,2)	10	0.0380	0.0384	0.0459	0.0449	0.0408	0.0482	0.0415	0.0485
	20	0.0362	0.0381	0.0464	0.0442	0.0393	0.0513	0.0488	0.0509
	30	0.0375	0.0385	0.0461	0.0453	0.0407	0.0489	0.0478	0.0488
	50	0.0366	0.0396	0.0456	0.0453	0.0394	0.0503	0.0498	0.0469
IG(1,4)	10	0.0312	0.0316	0.0445	0.0421	0.0361	0.0488	0.0439	0.0486
	20	0.0297	0.0309	0.0434	0.0411	0.0337	0.0473	0.0455	0.0507
	30	0.0291	0.0306	0.0427	0.0404	0.0336	0.0502	0.0464	0.0482
	50	0.0288	0.0319	0.0434	0.0417	0.0335	0.0484	0.0516	0.0469
IG(1,8)	10	0.0269	0.0278	0.0426	0.0397	0.0329	0.0489	0.0405	0.0486
	20	0.0253	0.0280	0.0433	0.0398	0.0309	0.0451	0.0492	0.0474
	30	0.0249	0.0271	0.0425	0.0389	0.0306	0.0497	0.0462	0.0476
	50	0.0240	0.0268	0.0412	0.0379	0.0292	0.0486	0.0471	0.0448

3.2. Power comparison

In this section, we compare the power values of our test with the power values of the competing tests against various alternatives by Monte Carlo simulation. We consider the popular and common tests which are used in practice and statistical software as competitor tests. The test statistics of these tests are briefly described as follows. For more details about these tests, see [13].

Let $X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(n)}$ are the order statistics based on the random sample X_1, \ldots, X_n .

(1) The Cramer-v[on M](#page-12-12)ises statistic [48]:

$$
W^{2} = \frac{1}{12n} + \sum_{i=1}^{n} \left(\frac{2i-1}{2n} - F_{0}(X_{(i)}; \hat{\mu}, \hat{\lambda}) \right)^{2}.
$$

(2) The Watson statistic [49]:

$$
U^2 = W^2 - n(\bar{P} - 0.5)^2,
$$

where \overline{P} is the mean [of](#page-13-7) $F_0(X_{(i)}; \hat{\mu}, \hat{\lambda}), i = 1, \ldots, n$.

(3) The Kolmogorov-Smirnov statistic [25]:

$$
D = \max(D^+, D^-)
$$

where

$$
D^{+} = \max_{1 \leq i \leq n} \left\{ \frac{i}{n} - F_0(X_{(i)}; \hat{\mu}, \hat{\lambda}) \right\}; \quad D^{-} = \max_{1 \leq i \leq n} \left\{ F_0(X_{(i)}; \hat{\mu}, \hat{\lambda}) - \frac{i-1}{n} \right\}.
$$

(4) The Kuiper statistic [26]:

$$
V=D^++D^-
$$

(5) The Anderson-Darling statistic [1]:

$$
A^{2} = -n - \frac{1}{n} \sum_{i=1}^{n} (2i - 1) \left\{ \log F_{0}(X_{(i)}; \hat{\mu}, \hat{\lambda}) + \log \left[1 - F_{0}(X_{(n-i+1)}; \hat{\mu}, \hat{\lambda}) \right] \right\}.
$$

In the above test statistics, $F_0(x)$ is the [c](#page-11-1)umulative distribution function of the IG distribution and $(\hat{\mu}, \hat{\lambda})$ are the maximum likelihood estimates of the parameter (μ, λ) .

Moreover, we consider two recent tests suggested by [46] and [47] in our power comparison. One test transforms the observations to approximately normally distributed observations and then uses Shapiro-Wilk test for assessing univariate normality (*T*1). The other test is based on a transformation of data to gamma variables with shape parameter equal to $1/2$ and uses Anderson-Darling test for testing the g[am](#page-13-8)ma d[istr](#page-13-9)ibution (T_2) . For more details about these tests, see [46,47]. Also, an R package for these tests is provided by [21].

In power comparison, we considered the following alternatives.

- the exponential distribution $Exp(\theta)$ with density $\theta exp(-\theta x)$,
- the Weibull distribut[ion](#page-13-8) [wi](#page-13-9)th density $\theta x^{\theta-1} \exp(-x^{\theta})$, denoted by $W(\theta)$,
- the gamma distribution with density $\Gamma(\theta)^{-1} x^{\theta-1} \exp(-x)$, denoted by $\Gamma(\theta)$,
- the lognormal law $LN(\theta)$ with density $(\theta x)^{-1}(2\pi)^{-1/2} \exp\left(-(\log x)^2/(2\theta^2)\right)$,
- the Pareto distribution $Pa(\theta)$ with density $\theta \big/ x^{\theta+1}$,
- the half-normal *HN* distribution with density $\Gamma(2/\pi)^{1/2}$ exp $(-x^2/2)$,
- the uniform distribution *U* with density 1, $0 \leq x \leq 1$,
- the Beta distribution $Beta(\alpha, \beta)$ with density $x^{\alpha-1}(1-x)^{\beta-1}/Beta(\alpha, \beta)$, $0 \le$ *x ≤* 1,
- the modified extreme value $EW(\theta)$, with distribution function 1−exp $(\theta^{-1}(1-e^x))$;
- the linear increasing failure rate law $LF(\theta)$ with density $(1+\theta x) \exp(-x \theta x^2/2)$,
- Dhillons [14] law $DL(\theta)$ with distribution function $1 \exp(-(\log(x+1))^{\theta+1})$,
- Chens [8] distribution $CH(\theta)$, with distribution function $1 \exp(2(1 e^{x^{\theta}})).$

The powers of [th](#page-12-14)e considered tests are computed by Monte Carlo simulation. Under each alternative, 100,000 samples of size 10, 20, 30 and 50 are generated. Then, the power of the correspo[nd](#page-12-15)ing test was estimated by the frequency of the event the test statistic is smaller than the critical point. The power estimates are presented in Tables 3–6. For each alternative, the bold type in these tables indicates the test achieving the maximal power.

Table 3. Monte Carlo power estimates of the tests for $n = 10$ and at level $\alpha =$ $0.05.$

Alternative	$\overline{W^2}$	\overline{D}	V	$\overline{U^2}$	$\overline{A^2}$	$\overline{T_1}$	T_2	DA_{mn}
Exp(1)	0.4182	0.3847	0.2977	0.3320	0.4223	0.3466	0.3184	0.2800
W(0.05)	0.7950	0.7628	0.6818	0.6972	0.8079	0.6443	0.6877	0.5327
W(2)	0.1811	0.1609	0.1391	0.1597	0.1916	0.1930	0.1443	0.1907
$\Gamma(0.5)$	0.7527	0.7189	0.6341	0.6594	0.7606	0.6202	0.6417	0.5398
$\Gamma(2)$	0.1731	0.1563	0.1220	0.1401	0.1783	0.1743	0.1351	0.1446
HN	0.4271	0.3917	0.3146	0.3557	0.4330	0.3565	0.3243	0.3452
LN(0, 0.5)	0.0380	0.0376	0.0468	0.0454	0.0430	0.0490	0.0526	0.0550
LN(0,1)	0.1045	0.0966	0.0711	0.0773	0.1041	0.0923	0.0668	0.0671
LN(0,2)	0.4827	0.4337	0.3221	0.3367	0.5037	0.3199	0.3265	0.1757
Pa(0.5)	0.2353	0.1932	0.1865	0.1999	0.2596	0.0612	0.0810	0.2391
Pa(1)	0.3581	0.2962	$0.3025\,$	0.3229	0.3607	0.1355	0.2005	0.4646
Pa(2)	0.3338	0.2679	$0.3251\,$	0.3418	0.3673	0.0942	0.1149	0.4923
U	0.5341	0.4795	0.4445	0.4849	0.5559	0.4338	0.3778	$0.5414\,$
Beta(2,2)	0.2535	0.2188	0.2098	0.2351	0.2739	0.2388	0.1733	0.3072
Beta(2, 0.5)	0.6005	0.4831	0.6214	0.6238	0.6557	0.4053	0.2915	0.7679
Beta(0.5, 2)	0.7666	0.7343	0.6496	0.6819	0.7755	0.6387	0.6598	0.5936
Beta(2, 5)	0.1984	0.1764	0.1482	0.1713	0.2100	0.1995	0.1510	0.1989
CH(0.5)	0.7736	0.7397	0.6559	0.6784	0.7833	0.6312	0.6625	0.5462
CH(1)	0.4386	0.4029	0.3216	0.3631	0.4451	0.3710	0.3383	0.3359
CH(1.5)	0.2908	0.2593	0.2208	0.2526	0.3025	0.2684	0.2157	0.2831
LF(2)	0.4093	0.3758	0.3047	0.3443	0.4158	0.3664	0.3237	0.3315
LF(4)	0.3877	0.3561	0.2927	0.3296	0.3958	0.3458	0.3006	0.3339
EV(0.5)	0.4398	0.4024	0.3207	0.3625	0.4459	0.3679	0.3380	0.3354
EV(1.5)	0.4444	0.4064	0.3421	0.3846	0.4539	0.3782	0.3345	0.3937
DL(1)	0.1599	0.1460	0.1091	0.1250	0.1628	0.1527	0.1237	0.1120
DL(1.5)	0.1203	0.1101	0.0900	0.1017	0.1264	0.1411	0.1066	0.1080

Table 4. Monte Carlo power estimates of the tests for $n = 20$ and at level $\alpha =$ 0*.*05.

Alternate	$\overline{W^2}$	D	V	$\overline{U^2}$	$\overline{A^2}$	T_1	T_2	DA_{mn}
Exp(1)	0.8294	0.7864	0.6874	0.7323	0.8316	0.7440	0.7361	0.7343
W(0.05)	0.9945	0.9912	0.9784	0.9825	${ 0.9948}$	0.9733	0.9835	0.9554
W(2)	0.4821	0.4159	0.3698	0.4166	0.5093	0.4488	0.3630	0.5520
$\Gamma(0.5)$	0.9902	0.9853	0.9684	0.9754	0.9904	0.9683	0.9769	0.9591
$\Gamma(2)$	0.4259	0.3742	0.2948	0.3398	0.4393	0.4098	0.3441	0.4096
HN	0.8588	0.8151	0.7481	0.7884	0.8651	0.7669	0.7480	0.8356
LN(0, 0.5)	0.0360	0.0369	0.0470	0.0462	0.0426	0.0681	0.0558	0.0579
LN(0,1)	0.1721	0.1497	0.1052	0.1202	0.1740	0.1712	0.1299	0.1106
LN(0,2)	0.8503	0.8077	0.6785	0.7078	0.8553	0.7001	0.7274	0.5227
Pa(0.5)	0.6399	0.5167	0.5173	0.5076	0.6780	0.3295	0.3703	0.7628
Pa(1)	0.8970	0.8137	0.8710	0.8563	0.9193	0.5374	0.6370	0.9754
Pa(2)	0.8669	0.7469	0.8743	0.8563	$\,0.9136\,$	0.4228	0.3540	0.9789
U	0.9572	0.9201	0.9361	0.9347	0.9692	0.8481	0.8237	0.9846
Beta(2,2)	0.6929	0.5933	0.6137	0.6404	0.7402	0.5506	0.4471	0.8412
Beta(2, 0.5)	0.9904	0.9623	0.9953	0.9910	0.9968	0.8511	0.8196	0.9997
Beta(0.5, 2)	0.9937	0.9894	0.9782	0.9834	0.9943	0.9703	0.9777	0.9807
Beta(2,5)	0.5279	0.4575	0.4017	0.4498	0.5562	0.4691	0.3831	0.5990
CH(0.5)	0.9929	0.9887	0.9741	0.9797	0.9933	0.9700	0.9799	0.9650
CH(1)	0.8706	0.8265	0.7564	0.7966	0.8767	0.7678	0.7507	0.8374
CH(1.5)	0.7183	0.6476	0.6028	0.6486	0.7422	0.6143	0.5429	0.7721
LF(2)	0.8424	0.7979	0.7321	0.7726	0.8498	0.7591	0.7368	0.8254
LF(4)	0.8236	0.7772	0.7159	0.7562	0.8320	0.7416	0.7133	0.8191
EV(0.5)	0.8706	0.8270	0.7565	0.7959	0.8769	0.7720	0.7499	0.8395
EV(1.5)	0.8891	0.8458	0.8045	0.8369	0.8987	0.7894	0.7666	0.9013
DL(1)	0.3544	0.3118	0.2323	0.2705	0.3626	0.3515	0.2934	0.2973
DL(1.5)	0.2844	0.2474	0.1945	0.2261	0.2999	0.3071	0.2429	0.2808

Table 5. Monte Carlo power estimates of the tests for $n = 30$ and at level $\alpha =$ 0*.*05.

The power of the aforementioned test statistic depends on the alternative distribution and the window size. It is not possible to have the best value of *m* which attains the maximum powers for all alternatives. Therefore, based on a broad Monte Carlo analysis, we determine the optimal *m* to be the values of *m* which attain good (not best) powers for all alternative distributions. The value of *m* can be obtained from heuristic formula $m = [n/3 + 1]$ for a given *n*, where [*x*] means the integer part of *x*. For example, we recommend $m = 4$ for $n = 10$, $m = 7$ for $n = 20$, $m = 11$ for $n = 30$, and $m = 17$ for $n = 50$ as the optimal values which the proposed test attains good (not best) power values against all alternatives. We observe that the optimal *m* increases as *n* increases.

It is evident from Tables 3-6 that there is no one uniformly most powerful test against all alternatives. Under various alternatives, sometimes the proposed test has a higher power, and sometimes other tests do. However, for almost alternatives the tests based on *A*² and *DAmn* statistics have the most power.

Power study reveals the tests A^2 and DA_{mn} have a high power and generally they outperform the other tests under the different alternatives. The power differences between these tests and the other tests are substantial. In other hand, from Table 2, we found that the actual size of the proposed test based on DA_{mn} was acceptable. Consequently, the proposed test based on *DAmn* statistic should be recommended in practice. Finally, we can generally conclude that the test *DAmn* has a good performance against almost alternatives and this test can be confidently recommended in practice.

4. Illustrative examples

In this section, we illustrate how the tests can be applied to test the GOF for the IG distribution when the observations are available.

Example 4.1. Folks and Chhikara [18] considered the following dataset, consisting of 19 fracture toughness of MIG (metal inert gas) welds.

54.4, 62.6, 63.2, 67.0, 70.2, 70.5, 70.6, 71.4, 71.8, 74.1, 74.1, 74.3, 78.8, 81.8, 83.0, 84.4, 85.3, 86.9, 87.3.

They concluded by using the KS statistic that the IG distribution is a reasonable fit. Histogram of the considered data set is presented in Figure 3.

Figure 3. Histogram of data in Example 1 and a fitted IG density function.

Here, we apply the considered tests to these data. First, the ML estimates of μ and λ are computed as:

$$
\hat{\mu} = 74.3 \text{ and } \hat{\lambda} = 4923.952.
$$

Then, the value of each test statistic is computed and also the critical value of each test at the significance level 0.05 is obtained by Monte Carlo simulation. Results are summarized in Table 7.

Test	Value of the test statistic	Critical value	Decision
W^2	0.05379	0.83473	Not reject H_0
D	0.13339	0.21478	Not reject H_0
V	0.24056	0.33114	Not reject H_0
U^2	0.05030	0.12381	Not reject H_0
A^2	0.37997	0.83192	Not reject H_0
T_1	0.96487	0.90046	Not reject H_0
T_2	0.02417	1.44810	Not reject H_0
	0.29149	0.34384	Not reject H_0

Table 7. The value of the test statistics and critical values at 5% level.

Because the value of each test statistic is smaller than the corresponding critical value, the IG hypothesis is not rejected for these data at the significance level of 0.05. Based on the considered tests, the data did not provide evidence against the null hypothesis. Also, two tests *T*¹ and *T*² do not reject the null hypothesis. Therefore, we can conclude that the underlying distribution of these data is an IG distribution.

Example 4.2. The following data represent active repair times (in hours) for an airborne communication transceiver.

0.2, 0.3, 0.5, 0.5, 0.5, 0.5, 0.6, 0.6, 0.7, 0.7, 0.7, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0, 1.1, 1.3, 1.5, 1.5, 1.5, 1.5, 2.0, 2.0, 2.2, 2.5, 3.0, 3.0, 3.3, 3.3, 4.0, 4.0, 4.5, 4.7, 5.0, 5.4, 5.4, 7.0, 7.5, 8.8, 9.0, 10.3, 22.0, 24.5.

These data are used by [27] and [40]. They fitted the IG distribution and finally concluded that the fit is good. Histogram of the considered data set is presented in Figure 4.

Figure 4. Histogram of data in Example 2 and a fitted IG density function.

The ML estimates of μ and λ for the considered data are computed as:

 $\hat{\mu} = 3.6267$ *and* $\hat{\lambda} = 1.6242$.

In Table 8, the values of test statistics and also the critical values of tests at the significance level 0.05 are presented.

Test	Value of the test statistic	Critical value	Decision
W^2	0.03677	0.15440	Not reject H_0
D	0.07245	0.14281	Not reject H_0
V	0.14081	0.22023	Not reject H_0
U^2	0.03676	0.12505	Not reject H_0
A^2	0.23926	0.85266	Not reject H_0
T_1	0.98273	0.95020	Not reject H_0
T_2	0.32354	1.47697	Not reject H_0
DA_{mn}	0.23126	0.27266	Not reject H_0

Table 8. The value of the test statistics and critical values at 5% level.

Since the value of each test statistic is smaller than the corresponding critical value, the IG hypothesis is not rejected for these data at the significance level of 0.05. Also, two tests T_1 and T_2 do not reject the null hypothesis. Consequently, we conclude that these data follow an IG distribution.

5. Conclusions

In this paper, we have proposed a new GOF test for the IG distribution based on an estimate of KL information. We have stated the properties of the proposed test and computed the critical values, the actual sizes and powers of the test. Through a Monte Carlo simulation, we have shown that the proposed test is powerful against some alternatives. Also, we have shown that the actual sizes of the proposed test are acceptable. Therefore, the proposed test can be confidently used in practice. Finally, we have considered two real data sets and have illustrated how the proposed test can be employed to test the GOF for the IG distribution when a sample is available.

Acknowledgements

The authors are grateful to the anonymous referees and the associate editor for providing some useful comments on an earlier version of this manuscript.

References

- [1] T.W. Anderson and D.A. Darling, *A test of goodness of fit*, J. Amer. Statist. Assoc. **49** (268), 765-769, 1954.
- [2] I. Arizono and H. Ohta, *A test for normality based on Kullback-Leibler information*, Amer. Statist. **43** (1), 20-22, 1989.
- [3] N. Balakrishnan, A. Habibi Rad and N.R. Arghami, *Testing exponentiality based on Kullback-Leibler information with progressively type-II censored data*, IEEE Trans. Rel. **56** (2), 301-307, 2007.
- [4] N. Balakrishnan H.K.T. Ng and N. Kannan, *Goodness-of-fit tests based on spacings for progressively type-II censored data from a general location-scale distribution*, IEEE Trans. Rel. **53** (3), 349-356, 2004.
- [5] W.E. Bardsley, *Note on the use of the inverse Gaussian distribution for wind energy applications*, J. Appl. Meteorol. **19** (9), 1126-1130, 1980.
- [6] O.E. Barndorff-Nielsen, *A note on electrical networks and the inverse Gaussian distribution*, Adv. in Appl. Probab. **26** (1), 63-67, 1994.
- [7] G. Chen and N. Balakrishnan, *A general purpose approximate goodness-of-fit test*, J. Qual. Technol. **27** (2), 154-161, 1995.
- [8] Z. Chen, *A new two-parameter lifetime distribution with bathtub shape or increasing failure note function*, Statist. Probab. Lett. **49** (2), 155-161, 2000.
- [9] R.S. Chhikara and J.L. Folks, *The inverse Gaussian distribution as a lifetime model*, Technometrics **19** (4), 461-468, 1977.
- [10] B. Choi and K. Kim, *Testing goodness-of-fit for Laplace distribution based on maximum entropy*, Statistics **40** (6), 517-531, 2006.
- [11] S. Chouia and N. Seddik-Ameur, *Different EDF goodness-of-fit tests for competing risks models*, Comm. Statist. Simulation Comput. **52** (8), 3491-3501, 2023.
- [12] J.C. Correa, *A new estimator of entropy*, Comm. Statist. Theory Methods **24** (10), 2439-2449, 1995.
- [13] R.B. D'Agostino and M.A. Stephens, *Goodness-of-Fit Techniques*, Marcel Dekker, New York, 1986.
- [14] B.S. Dhillon, *Life distributions*, IEEE Trans. Rel. **30** (5), 457-459, 1981.
- [15] E.J. Dudewicz and E.C. van der Meulen, *Entropy-based tests of uniformity*, J. Amer. Statist. Assoc. **76** (376), 967-974, 1981.
- [16] N. Ebrahimi, M. Habibullah and E. Soofi, *Testing exponentiality based on Kullback-Leibler information*, J. R. Stat. Soc. Ser. B. Stat. Methodol. **54** (3), 739-748, 1992.
- [17] N. Ebrahimi, K. Pflughoeft and E. Soofi, *Two measures of sample entropy*, Statist. Probab. Lett. **20** (3), 225-234, 1994.
- [18] J.L. Folks and R.S. Chhikara, *The inverse Gaussian distribution and its statistical application-a review*, J. R. Stat. Soc. Ser. B. Stat. Methodol. **40** (3), 263-289, 1978.
- [19] J.L. Folks and R.S. Chhikara, *The Inverse Gaussian Distribution, Theory, Methodology and Applications*, Marcel Dekker, New York, 1989.
- [20] D.V. Gokhale, *On entropy-based goodness-of-fit test*, Comput. Statist. Data Anal. **1**, 157-165, 1983.
- [21] E. González-Estrada and J.A. Villaseñor, *An R package for testing goodness of fit: goft*, J. Stat. Comput. Simul. **88** (4), 726-751, 2018.
- [22] P. Hall and S.C. Morton, *On the estimation of entropy*, Ann. Inst. Statist. Math. **45** (1), 69-88, 1993.
- [23] C. Huber-Carol, N. Balakrishnan, M.S. Nikulin and M. Mesbah, *Goodness-of-Fit Tests and Model Validity*, Birkhauser, Boston, 2002.
- [24] N.L. Johnson, S. Kotz and N. Balakrishnan, *Continuous Univariate Distributions, 1 and 2*, Wiley, New York, 1994.
- [25] A.N. Kolmogorov, *Sulla determinazione empirica di une legge di distribuzione*, Giornale dell'Intituto Italiano degli Attuari **4**, 83-91, 1933.
- [26] N.H. Kuiper, *Tests concerning random points on a circle*, Proc. Koninkl. Nederl. Akad. van Wetenschappen, Ser. A **63**, 34-47, 1960.
- [27] S. Lee, I. Vonta and A. Karagrigoriou, *A maximum entropy type test of fit*, Comput. Statist. Data Anal. **55** (9), 2635-2643, 2011.
- [28] C-T. Lin, Y-L. Huang and N. Balakrishnan, *A new method for goodness-of-fit testing based on type-II right censored samples*, IEEE Trans. Rel. **57** (4), 633-642, 2008.
- [29] G.S. Mudholkar and L. Tian *An entropy characterization of the inverse Gaussian distribution and related goodness-of-fit test*, J. Statist. Plann. Inference **102** (2), 211- 221, 2002.
- [30] H.A. Noughabi, *A new estimator of entropy and its application in testing normality*, J. Stat. Comput. Simul. **80** (10), 1151-1162, 2010.
- [31] H.A. Noughabi, *A new estimator of Kullback-Leibler information and its application in goodness of fit tests*, J. Stat. Comput. Simul. **89** (10), 1914-1934, 2019.
- [32] H.A. Noughabi, *A new goodness of fit test for the logistic distribution*, Sankhya B **84**, 303-319, 2022.
- [33] H.A. Noughabi, *Cumulative residual entropy applied to testing uniformity*, Comm. Statist. Theory Methods **51** (12), 4151-4161, 2022.
- [34] H.A. Noughabi and N.R. Arghami, *General treatment of goodness of fit tests based on Kullback-Leibler information*, J. Stat. Comput. Simul. **83** (8), 1556-1569, 2013.
- [35] H.A. Noughabi and N. Balakrishnan, *Goodness of fit using a new estimate of Kullback-Leibler information based on type II censored data*, IEEE Trans. Rel. **64** (2), 627-635, 2015.
- [36] R. Pakyari, *Goodness-of-fit testing based on Gini index of spacings for progressively type-II censoring*, Comm. Statist. Simulation Comput. **52** (7), 3223-3232, 2023.
- [37] R. Pakyari and A. Baklizi, *On goodness-of-fit testing for Burr type X distribution under progressively type-II censoring*, Comput. Statist. **37** (5), 2249-2265, 2022.
- [38] R. Pakyari and N. Balakrishnan, *A general purpose approximate goodness-of-fit test for progressively type-II censored data*, IEEE Trans. Rel. **61** (1), 238-244, 2012.
- [39] R. Pakyari and N. Balakrishnan, *Goodness-of-fit tests for progressively type-II censored data from location-scale distributions*, J. Stat. Comput. Simul. **83** (1), 167-178, 2013.
- [40] G. Qiu and K. Jia, *Extropy estimators with applications in testing uniformity*, J. Nonparametr. Stat. **30** (1), 182-196, 2018.
- [41] A.H. Rad, F. Yousefzadeh and N. Balakrishnan, *Goodness-of-fit test based on Kullback-Leibler information for progressively type-II censored data*, IEEE Trans. Rel. **60** (3), 570-579, 2011.
- [42] V. Seshadri, *The Inverse Gaussian Distribution: Statistical Theory and Applications*, Springer, New York, 1999.
- [43] C.E. Shannon, *A mathematical theory of communications*, Bell Syst. Tech. J. **27** (3), 379-423, 1948.
- [44] B. van Es, *Estimating functionals related to a density by class of statistics based on spacings*, Scand. J. Stat. **19** (1), 61-72, 1992.
- [45] O. Vasicek, *A test for normality based on sample entropy*, J. R. Stat. Soc. Ser. B. Stat. Methodol. **38** (1), 54-59, 1976.
- [46] J.A. Villasenor and E. Gonzalez-Estrada, *Tests of fit for inverse Gaussian distributions*, Statist. Probab. Lett. **105**, 189-194, 2015.
- [47] J.A. Villasenor, E. Gonzalez-Estrada and A. Ochoa, *On testing the inverse Gaussian distribution hypothesis*, Sankhya B **81** (1), 60-74, 2019.
- [48] R. von Mises, *Wahrscheinlichkeitsrechnung und ihre Anwendung in der Statistik und theoretischen Physik*, Leipzig and Vienna: Deuticke, 1931.
- [49] G.S. Watson, *Goodness of fit tests on a circle*, Biometrika **48** (1-2), 109-114, 1961.
- [50] R. Wieczorkowski and P. Grzegorzewsky, *Entropy estimators improvements and comparisons*, Comm. Statist. Simulation Comput. **28** (2), 541-567, 1999.