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Abstract
The Inverse Gaussian (IG) distribution is widely used in practice and therefore an im-
portant issue is to develop a powerful goodness-of-fit test (GOF) for this distribution. In
this article, we propose and examine a new GOF test for the IG distribution based on
a new estimate of Kullback-Leibler (KL) information. The properties of the test statis-
tic are presented. In order to compute the proposed test statistic, parameters of the IG
distribution are estimated by maximum likelihood estimators, which are simple explicit
estimators. Critical values and the actual sizes of the proposed test are obtained. Through
a simulation study, power values of the proposed test are compared with some prominent
existing tests. Finally, two illustrative examples are presented and analyzed.
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1. Introduction
The IG distribution is an important statistical model for analyzing right skewed data

with positive support. Its density function is

f(x; µ, λ) =
(

λ

2πx3

)1/2
exp

{
− λ

2µ2x
(x − µ)2

}
, x > 0,

where µ and λ are parameters. The mean and variance of this distribution are µ and
µ3/

λ, respectively.
Various applications based on IG distribution assumption are widely addressed by the

literature in different fields of science as electrical networks, cardiology, hydrology, me-
teorology, ecology, physiology, demography, employment service, and etc., (e.g., [5, 6, 9,
18, 19, 24, 42]). Therefore, constructing powerful GOF tests for the IG distribution is an
important issue. In this article, we develop a distribution-free test for the IG distribution
using an estimate of KL information.

Assuming that X1, . . . , Xn is the sample from a distribution F , we wish to assess whether
the unknown F (x) can be satisfactorily approximated by a IG model G(x). GOF tests are
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designed to measure how well the observed sample data fits some proposed model. One
class of GOF tests that can be used consists of tests based on the distance between the
empirical and hypothesized distribution functions. Five of the known tests in this class
are Cramer-von Mises (W 2), Kolmogorov-Smirnov (D), Kuiper (V ), Watson (U2), and
Anderson-Darling (A2). For more details about these tests (see, [13]).

Many researchers have been interested in GOF tests for different distributions and
then different tests are developed in the literature. For example, see [7, 11, 13, 23, 32, 33].
Moreover, GOF tests based on censored samples are developed by some authors including
[3, 4, 28,35–39,41].

Suppose a random variable X has a distribution function F (x) with a continuous density
function f(x). Then, the entropy H(f) of X was defined by [43] to be

H(f) = −
∫ ∞

−∞
f(x) log f(x) dx.

The problem of estimation of H(f) based on a random sample from F (x) has been con-
sidered by many authors including [12,17,22,30,44,45,50].

Vasicek [45] expressed a useful representation of entropy for the univariate X in terms
of the quantile function as

H(f) =
∫ 1

0
log

{
d

du
Q(u)

}
du,

where Q(u) = F −1(u) = inf{x : F (x) ≥ u} is the quantile function. Then, he constructed
an estimate by replacing the distribution function F by the empirical distribution function
Fn, and using a difference operator instead of the differential operator. The derivative of
F −1(p) is then estimated by a function of the order statistics obtained from the sample.
With X1, . . . , Xn being the sample, the estimator is given by

HVmn = 1
n

n∑
i=1

log
{

n

2m
(X(i+m) − X(i−m))

}
,

where m is positive integer, m ≤ n
2 , and X(1) ≤ X(2) ≤ ... ≤ X(n) are the order statistics

and X(i) = X(1) if i < 1, X(i) = X(n) if i > n. Vasicek (1976) established the consistency
of HVmn for the population entropy H(f).

Vasicek’s sample entropy has been most widely used extensively for developing entropy-
based statistical procedures, see [2, 15,16,20,34].

In many practical problems, it is very important to test whether the underlying distri-
bution has a specific form since most parametric statistical methods assume an underlying
distribution in the development of methods.

Assuming that X1, . . . , Xn is the sample from a distribution F , we wish to assess whether
the unknown F (x) can be satisfactorily approximated by a parametric model G(x|θ), where
θ is a model parameter which is usually unknown.

The KL discrimination has been widely studied in the literature as a central index for
measuring quantitative similarity between two probability distributions. The KL discrim-
ination of f from g is defined by

D(f, g|θ) =
∫

f(x) log f(x)
g(x|θ)

dx.

Note that D(f, g) = 0 if and only if f(x) = g(x|θ) with probability 1. The KL dis-
crimination is used for developing entropy models and tests, for example, Arizono and
Ohta [2] and Ebrahimi et al. [16] proposed tests for normality and exponentiality, respec-
tively, based on D(f, g|θ) that are the same as the tests introduced by [20] and [45] based
on maximum entropy. Mudholkar and Tian [29] and Choi and Kim [10] proposed tests
for inverse Gaussian and Laplace distributions, respectively, based on maximum entropy
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models. Recently, Alizadeh and Arghami [34] investigated general treatment of GOF tests
based on KL information.

Recently, Alizadeh [31] proposed a new estimate of the KL discrimination and then
constructed a test statistic for testing the validity of a model. His test statistic is

DAmn = − 1
n

n∑
i=1

log
{

n

2m

(
G(X(i+m); θ̂) − G(X(i−m); θ̂)

)}
,

where G is the distribution function of g. Here, θ is a model parameter which is usually
unknown, and θ̂ is a reasonable equivariant estimate of θ.

Noughabi [31] showed that the test statistic is non-negative just like the KL divergence,
i.e., DAmn ≥ 0 . Also, the test based on DAmn is consistent. Then, he proposed tests
for normal, exponential, Laplace and Weibull distributions and compared the power of
these tests with the other existing tests and showed that his test has a good power against
different alternatives. In this paper, we apply the Alizadehs test statistic and suggest a
GOF test for the IG distribution.

In Section 2, we propose a new GOF test statistic for the IG distribution based on an
estimate of KL divergence. In Section 3, the critical points, the actual sizes and the power
values of the proposed test are computed by Monte Carlo simulations and then compared
with some known competing tests. Section 4 contains a real example for illustrative
purpose. The following section contains a brief conclusion.

2. The proposed test statistic
In information theory, the KL divergence is a non-symmetric measure of the difference

between two probability distributions f and g. Typically, f represents the true distribution
of the observations and g represents a theoretical model or approximation of f .

Suppose X1, . . . , Xn is a random sample from an unknown continuous distribution F
with a probability density function f(x). Let G(x; θ) be a parametric family of distribu-
tions with probability density function g(x; θ). Then, the hypothesis of interest is

H0 : f(x) = g(x; θ) , for some θ ∈ Ω.

The alternative to H0 is a two-sided alternative of the form
H1 : f(x) ̸= g(x; θ), for any θ ∈ Ω.

To discriminate between the two hypotheses H0 and H1, Noughabi [31] used the KL
divergence.

Let f denote the true density function and G = {g(., θ) : θ ∈ Ω} be a selected statistical
model for the data distribution f , where Ω is a subset of Rp. When f actually belongs to
G, the minimal value, min

θ∈Ω
D(f, g(., θ)), of the KL divergence is zero. On the other hand,

when f does not belong to G, the minimal KL divergence is strictly positive. Therefore,
a GOF test can be constructed which would reject H0 : f ∈ G for large value of D(f, g),
where

D(f, g; θ) =
∫ ∞

−∞ f(x) log f(x) dx −
∫ ∞

−∞ f(x) log {g(x; θ)} dx

= −H(f) − Ef {log(g(X; θ))} ,

where H(f) is the entropy of f . Noughabi [31] proposed to estimate D(f, g) by
DAmn = −HVmn − HAmn,

where HVmn is Vasiceks estimate of H(f) and HAmn is the semi-parametric estimate of
Ef {log(g(X; θ))}, given by

HAmn = 1
n

n∑
i=1

log
{

G(X(i+m); θ̂) − G(X(i−m); θ̂)
X(i+m) − X(i−m)

}
.
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Here, θ̂ can be any reasonable equivariant estimate of θ. Consequently, the general test
statistic proposed by [31] is as follows:

DAmn = − 1
n

n∑
i=1

log
{

n

2m

(
G(X(i+m); θ̂) − G(X(i−m); θ̂)

)}
,

where DAmn denote the estimate of D(f, g; θ) and G is the distribution function of g.

Given a random sample X1, . . . , Xn from a continuous probability distribution F with
a density f(x) over a non-negative support, the hypothesis of interest is

H0 : f(x) = f0(x; µ, λ) =
(

λ

2πx3

)1/2
exp

{
− λ

2µ2x
(x − µ)2

}
, x > 0, for some (µ, λ) ∈ Θ,

where µ and λ are unspecified and Θ = R+ × R+. The alternative to H0 is
H1 : f(x) ̸= f0(x; µ, λ), for any (µ, θ) ∈ Θ.

We proposed the following test statistic for test of the IG distribution.

DAmn = − 1
n

n∑
i=1

log
{

n

2m

(
G(X(i+m); θ̂) − G(X(i−m); θ̂)

)}
,

where G is the IG distribution function and θ̂ = (µ̂, λ̂), where

µ̂ = X̄ and λ̂ = n
n∑

i=1

(
1
/

Xi − 1
/

X̄
) .

Clearly, we reject the null hypothesis for large values of the test statistic.
According to [31], the test statistic is non-negative, i.e., DAmn ≥ 0, and also the test

based on DAmn is consistent. The mentioned properties of test statistic are presented in
the following theorems. The proof of these theorems can be found in [31].

Theorem 2.1. Let X1, ..., Xn be a random sample from an unknown continuous distribu-
tion F with probability density function f(x) and distribution function G be known. Then,
we have

DAmn ≥ 0 .

Theorem 2.2. Let F be a completely unknown continuous distribution and G be the
null distribution with unspecified parameters. Then under H1, the test based on DAmn is
consistent.

3. Simulation study
3.1. Critical values and type-I error control

Distribution of the proposed test statistic DAmn under the null hypothesis cannot be
evaluated analytically. Therefore, the critical values of the test statistic DAmn is obtained
by the Monte Carlo method.

For our test statistic DAmn, its sample value is calculated for 100,000 simulated random
samples of size n from the IG with parameters 1 and 1. Then, the critical values are
determined for different significance levels α = 0.01, 0.05, 0.10. For α = 0.05, since 1−α =
0.95 = 95000/100000, the 95000-th order statistic is evaluated and the critical value is
specified. Also, for α = 0.01 and α = 0.10, the 99000-th and 90000-th order statistics
are evaluated and the critical values are determined. The critical values obtained for the
proposed test statistic and sample sizes 10 ≤ n ≤ 100 are given in Table 1.
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Table 1. Critical values of the test statistic.

α
n 0.01 0.05 0.10
10 0.5546 0.4523 0.4130
15 0.4509 0.3868 0.3613
20 0.3809 0.3308 0.3107
25 0.3511 0.3129 0.2979
30 0.3336 0.3025 0.2899
40 0.2991 0.2755 0.2663
50 0.2776 0.2589 0.2515
75 0.2599 0.2480 0.2431
100 0.2456 0.2366 0.2329

Clearly, the proposed test statistic depends on the window size m. The value of m
can be obtained from heuristic formula m = [n/3 + 1] for a given n, where [x] means the
integer part of x. For example, we recommend m = 4 for n = 10, m = 7 for n = 20,
m = 11 for n = 30, and m = 17 for n = 50. We observe that the optimal m increases as
n increases while m/n → 0.

Figure 1 shows the empirical densities of the proposed test statistic for sample sizes
n = 10, 20, 30, 50. Moreover, for different values of λ (λ = 0.5, 1, 2, 4), the empirical
density of the test statistic is derived with 100,000 samples of sizes n = 10, 20, 30, 50
from the IG distribution with parameter λ. The empirical densities of the proposed test
are displayed in Figure 2.

Figure 1. Estimated empirical densities of the test statistic generated with
100,000 samples of size n = 10, 20, 30, 50 from the IG distribution with parame-
ters µ = 1 and λ = 1.

We evaluate the estimated type I error control using the critical values of the proposed
test. We generated random samples from different IG populations and then obtained the
actual sizes of the proposed test. The results are displayed in Table 2. It is evident that
the empirical percentiles given in Table 1 provides an excellent type I error control. Also,
we can see that the actual sizes of the proposed test are acceptable but for the other tests
the actual sizes are different with the nominal size α = 0.05. Therefore, we can use our
test in practice confidently.
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Figure 2. Estimated empirical densities of the test statistic generated with
100,000 samples of size n = 10, 20, 30, 50 from the IG distribution with parame-
ters µ = 1 and λ = 0.5, 1, 2, 4.

Table 2. Type I error control of the tests for the nominal significance level
alpha = 0.05.

n W 2 D V U2 A2 T1 T2 DAmn

IG(1, 0.5) 10 0.0669 0.0641 0.0567 0.0573 0.0644 0.0581 0.0411 0.0493
20 0.0699 0.0664 0.0572 0.0585 0.0671 0.0558 0.0462 0.0530
30 0.0708 0.0664 0.0571 0.0587 0.0679 0.0506 0.0476 0.0545
50 0.0716 0.0686 0.0574 0.0598 0.0678 0.0488 0.0522 0.0532

IG(1, 2) 10 0.0380 0.0384 0.0459 0.0449 0.0408 0.0482 0.0415 0.0485
20 0.0362 0.0381 0.0464 0.0442 0.0393 0.0513 0.0488 0.0509
30 0.0375 0.0385 0.0461 0.0453 0.0407 0.0489 0.0478 0.0488
50 0.0366 0.0396 0.0456 0.0453 0.0394 0.0503 0.0498 0.0469

IG(1, 4) 10 0.0312 0.0316 0.0445 0.0421 0.0361 0.0488 0.0439 0.0486
20 0.0297 0.0309 0.0434 0.0411 0.0337 0.0473 0.0455 0.0507
30 0.0291 0.0306 0.0427 0.0404 0.0336 0.0502 0.0464 0.0482
50 0.0288 0.0319 0.0434 0.0417 0.0335 0.0484 0.0516 0.0469

IG(1, 8) 10 0.0269 0.0278 0.0426 0.0397 0.0329 0.0489 0.0405 0.0486
20 0.0253 0.0280 0.0433 0.0398 0.0309 0.0451 0.0492 0.0474
30 0.0249 0.0271 0.0425 0.0389 0.0306 0.0497 0.0462 0.0476
50 0.0240 0.0268 0.0412 0.0379 0.0292 0.0486 0.0471 0.0448

3.2. Power comparison
In this section, we compare the power values of our test with the power values of the

competing tests against various alternatives by Monte Carlo simulation. We consider the
popular and common tests which are used in practice and statistical software as competitor
tests. The test statistics of these tests are briefly described as follows. For more details
about these tests, see [13].

Let X(1) ≤ X(2) ≤ . . . ≤ X(n) are the order statistics based on the random sample
X1, . . . , Xn.

(1) The Cramer-von Mises statistic [48]:

W 2 = 1
12n

+
n∑

i=1

(2i − 1
2n

− F0(X(i); µ̂, λ̂)
)2

.
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(2) The Watson statistic [49]:

U2 = W 2 − n
(
P̄ − 0.5

)2
,

where P̄ is the mean of F0(X(i); µ̂, λ̂), i = 1, . . . , n.

(3) The Kolmogorov-Smirnov statistic [25]:
D = max(D+, D−)

where

D+ = max
1≤i≤n

{
i

n
− F0(X(i); µ̂, λ̂)

}
; D− = max

1≤i≤n

{
F0(X(i); µ̂, λ̂) − i − 1

n

}
.

(4) The Kuiper statistic [26]:
V = D+ + D−

(5) The Anderson-Darling statistic [1]:

A2 = −n − 1
n

n∑
i=1

(2i − 1)
{

log F0(X(i); µ̂, λ̂) + log
[
1 − F0(X(n−i+1); µ̂, λ̂)

]}
.

In the above test statistics, F0(x) is the cumulative distribution function of the IG distri-
bution and (µ̂, λ̂) are the maximum likelihood estimates of the parameter (µ, λ).

Moreover, we consider two recent tests suggested by [46] and [47] in our power compari-
son. One test transforms the observations to approximately normally distributed observa-
tions and then uses Shapiro-Wilk test for assessing univariate normality (T1). The other
test is based on a transformation of data to gamma variables with shape parameter equal
to 1/2 and uses Anderson-Darling test for testing the gamma distribution (T2). For more
details about these tests, see [46,47]. Also, an R package for these tests is provided by [21].

In power comparison, we considered the following alternatives.
• the exponential distribution Exp(θ) with density θ exp(−θx),
• the Weibull distribution with density θxθ−1 exp

(
−xθ

)
, denoted by W (θ),

• the gamma distribution with density Γ(θ)−1xθ−1 exp (−x), denoted by Γ(θ),
• the lognormal law LN(θ) with density (θx)−1(2π)−1/2 exp

(
−(log x)2

/
(2θ2)

)
,

• the Pareto distribution Pa(θ) with density θ
/

xθ+1,
• the half-normal HN distribution with density Γ(2/π)1/2 exp

(
−x2/

2
)
,

• the uniform distribution U with density 1, 0 ≤ x ≤ 1,
• the Beta distribution Beta(α, β) with density xα−1(1 − x)β−1

/
Beta(α, β), 0 ≤

x ≤ 1,
• the modified extreme value EW (θ), with distribution function 1−exp

(
θ−1(1 − ex)

)
;

• the linear increasing failure rate law LF (θ) with density (1+θx) exp
(
−x − θx2/

2
)
,

• Dhillons [14] law DL(θ) with distribution function 1 − exp
(
−(log(x + 1))θ+1

)
,

• Chens [8] distribution CH(θ), with distribution function 1 − exp
(
2

(
1 − exθ

))
.

The powers of the considered tests are computed by Monte Carlo simulation. Under
each alternative, 100,000 samples of size 10, 20, 30 and 50 are generated. Then, the power
of the corresponding test was estimated by the frequency of the event the test statistic is
smaller than the critical point. The power estimates are presented in Tables 3–6. For each
alternative, the bold type in these tables indicates the test achieving the maximal power.
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Table 3. Monte Carlo power estimates of the tests for n = 10 and at level α =
0.05.

Alternative W 2 D V U2 A2 T1 T2 DAmn

Exp(1) 0.4182 0.3847 0.2977 0.3320 0.4223 0.3466 0.3184 0.2800
W (0.05) 0.7950 0.7628 0.6818 0.6972 0.8079 0.6443 0.6877 0.5327
W (2) 0.1811 0.1609 0.1391 0.1597 0.1916 0.1930 0.1443 0.1907
Γ(0.5) 0.7527 0.7189 0.6341 0.6594 0.7606 0.6202 0.6417 0.5398
Γ(2) 0.1731 0.1563 0.1220 0.1401 0.1783 0.1743 0.1351 0.1446
HN 0.4271 0.3917 0.3146 0.3557 0.4330 0.3565 0.3243 0.3452
LN(0, 0.5) 0.0380 0.0376 0.0468 0.0454 0.0430 0.0490 0.0526 0.0550
LN(0, 1) 0.1045 0.0966 0.0711 0.0773 0.1041 0.0923 0.0668 0.0671
LN(0, 2) 0.4827 0.4337 0.3221 0.3367 0.5037 0.3199 0.3265 0.1757
P a(0.5) 0.2353 0.1932 0.1865 0.1999 0.2596 0.0612 0.0810 0.2391
P a(1) 0.3581 0.2962 0.3025 0.3229 0.3607 0.1355 0.2005 0.4646
P a(2) 0.3338 0.2679 0.3251 0.3418 0.3673 0.0942 0.1149 0.4923
U 0.5341 0.4795 0.4445 0.4849 0.5559 0.4338 0.3778 0.5414
Beta(2, 2) 0.2535 0.2188 0.2098 0.2351 0.2739 0.2388 0.1733 0.3072
Beta(2, 0.5) 0.6005 0.4831 0.6214 0.6238 0.6557 0.4053 0.2915 0.7679
Beta(0.5, 2) 0.7666 0.7343 0.6496 0.6819 0.7755 0.6387 0.6598 0.5936
Beta(2, 5) 0.1984 0.1764 0.1482 0.1713 0.2100 0.1995 0.1510 0.1989
CH(0.5) 0.7736 0.7397 0.6559 0.6784 0.7833 0.6312 0.6625 0.5462
CH(1) 0.4386 0.4029 0.3216 0.3631 0.4451 0.3710 0.3383 0.3359
CH(1.5) 0.2908 0.2593 0.2208 0.2526 0.3025 0.2684 0.2157 0.2831
LF (2) 0.4093 0.3758 0.3047 0.3443 0.4158 0.3664 0.3237 0.3315
LF (4) 0.3877 0.3561 0.2927 0.3296 0.3958 0.3458 0.3006 0.3339
EV (0.5) 0.4398 0.4024 0.3207 0.3625 0.4459 0.3679 0.3380 0.3354
EV (1.5) 0.4444 0.4064 0.3421 0.3846 0.4539 0.3782 0.3345 0.3937
DL(1) 0.1599 0.1460 0.1091 0.1250 0.1628 0.1527 0.1237 0.1120
DL(1.5) 0.1203 0.1101 0.0900 0.1017 0.1264 0.1411 0.1066 0.1080

Table 4. Monte Carlo power estimates of the tests for n = 20 and at level α =
0.05.

Alternative W 2 D V U2 A2 T1 T2 DAmn

Exp(1) 0.6787 0.6309 0.5197 0.5686 0.6804 0.5927 0.5749 0.5532
W (0.05) 0.9637 0.9508 0.9106 0.9224 0.9659 0.9040 0.9288 0.8578
W (2) 0.3415 0.2955 0.2573 0.2957 0.3613 0.3232 0.2574 0.3846
Γ(0.5) 0.9521 0.9363 0.8887 0.9074 0.9535 0.8815 0.9054 0.8653
Γ(2) 0.3034 0.2676 0.2067 0.2416 0.3141 0.3106 0.2480 0.2786
HN 0.7046 0.6538 0.5689 0.6178 0.7112 0.6230 0.5956 0.6614
LN(0, 0.5) 0.0362 0.0365 0.0465 0.0458 0.0417 0.0620 0.0513 0.0566
LN(0, 1) 0.1423 0.1247 0.0867 0.0995 0.1418 0.1374 0.0997 0.0846
LN(0, 2) 0.7217 0.6672 0.5238 0.5531 0.7307 0.5434 0.5650 0.3694
P a(0.5) 0.4541 0.3582 0.3473 0.3584 0.4808 0.1480 0.2134 0.5582
P a(1) 0.7189 0.6121 0.6635 0.6604 0.7428 0.3493 0.4557 0.8717
P a(2) 0.6754 0.5456 0.6733 0.6686 0.7338 0.2492 0.2266 0.8865
U 0.8481 0.7826 0.7883 0.8033 0.8702 0.6977 0.6592 0.9100
Beta(2, 2) 0.5009 0.4216 0.4257 0.4602 0.5415 0.4200 0.3343 0.6449
Beta(2, 0.5) 0.9248 0.8252 0.9439 0.9304 0.9556 0.6858 0.6121 0.9916
Beta(0.5, 2) 0.9606 0.9453 0.9066 0.9249 0.9633 0.8949 0.9105 0.9120
Beta(2, 5) 0.3770 0.3252 0.2793 0.3182 0.3967 0.3472 0.2781 0.4172
CH(0.5) 0.9606 0.9463 0.9030 0.9201 0.9621 0.8900 0.9077 0.8739
CH(1) 0.7197 0.6679 0.5791 0.6276 0.7262 0.6167 0.5939 0.6644
CH(1.5) 0.5413 0.4761 0.4278 0.4749 0.5619 0.4730 0.4037 0.5846
LF (2) 0.6855 0.6355 0.5549 0.6034 0.6934 0.6153 0.5791 0.6542
LF (4) 0.6630 0.6094 0.5367 0.5843 0.6727 0.6038 0.5658 0.6415
EV (0.5) 0.7216 0.6685 0.5810 0.6297 0.7281 0.6148 0.5939 0.6654
EV (1.5) 0.7407 0.6856 0.6242 0.6693 0.7522 0.6397 0.6065 0.7444
DL(1) 0.2639 0.2328 0.1711 0.1994 0.2685 0.2641 0.2134 0.2009
DL(1.5) 0.2050 0.1784 0.1417 0.1638 0.2150 0.2256 0.1741 0.1918
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Table 5. Monte Carlo power estimates of the tests for n = 30 and at level α =
0.05.

Alternative W 2 D V U2 A2 T1 T2 DAmn

Exp(1) 0.8294 0.7864 0.6874 0.7323 0.8316 0.7440 0.7361 0.7343
W (0.05) 0.9945 0.9912 0.9784 0.9825 0.9948 0.9733 0.9835 0.9554
W (2) 0.4821 0.4159 0.3698 0.4166 0.5093 0.4488 0.3630 0.5520
Γ(0.5) 0.9902 0.9853 0.9684 0.9754 0.9904 0.9683 0.9769 0.9591
Γ(2) 0.4259 0.3742 0.2948 0.3398 0.4393 0.4098 0.3441 0.4096
HN 0.8588 0.8151 0.7481 0.7884 0.8651 0.7669 0.7480 0.8356
LN(0, 0.5) 0.0360 0.0369 0.0470 0.0462 0.0426 0.0681 0.0558 0.0579
LN(0, 1) 0.1721 0.1497 0.1052 0.1202 0.1740 0.1712 0.1299 0.1106
LN(0, 2) 0.8503 0.8077 0.6785 0.7078 0.8553 0.7001 0.7274 0.5227
P a(0.5) 0.6399 0.5167 0.5173 0.5076 0.6780 0.3295 0.3703 0.7628
P a(1) 0.8970 0.8137 0.8710 0.8563 0.9193 0.5374 0.6370 0.9754
P a(2) 0.8669 0.7469 0.8743 0.8563 0.9136 0.4228 0.3540 0.9789
U 0.9572 0.9201 0.9361 0.9347 0.9692 0.8481 0.8237 0.9846
Beta(2, 2) 0.6929 0.5933 0.6137 0.6404 0.7402 0.5506 0.4471 0.8412
Beta(2, 0.5) 0.9904 0.9623 0.9953 0.9910 0.9968 0.8511 0.8196 0.9997
Beta(0.5, 2) 0.9937 0.9894 0.9782 0.9834 0.9943 0.9703 0.9777 0.9807
Beta(2, 5) 0.5279 0.4575 0.4017 0.4498 0.5562 0.4691 0.3831 0.5990
CH(0.5) 0.9929 0.9887 0.9741 0.9797 0.9933 0.9700 0.9799 0.9650
CH(1) 0.8706 0.8265 0.7564 0.7966 0.8767 0.7678 0.7507 0.8374
CH(1.5) 0.7183 0.6476 0.6028 0.6486 0.7422 0.6143 0.5429 0.7721
LF (2) 0.8424 0.7979 0.7321 0.7726 0.8498 0.7591 0.7368 0.8254
LF (4) 0.8236 0.7772 0.7159 0.7562 0.8320 0.7416 0.7133 0.8191
EV (0.5) 0.8706 0.8270 0.7565 0.7959 0.8769 0.7720 0.7499 0.8395
EV (1.5) 0.8891 0.8458 0.8045 0.8369 0.8987 0.7894 0.7666 0.9013
DL(1) 0.3544 0.3118 0.2323 0.2705 0.3626 0.3515 0.2934 0.2973
DL(1.5) 0.2844 0.2474 0.1945 0.2261 0.2999 0.3071 0.2429 0.2808

Table 6. Monte Carlo power estimates of the tests for n = 50 and at level α =
0.05.

Alternative W 2 D V U2 A2 T1 T2 DAmn

Exp(1) 0.9554 0.9324 0.8777 0.9052 0.9558 0.9040 0.9015 0.9067
W (0.05) 0.9998 0.9997 0.9988 0.9992 0.9998 0.9981 0.9993 0.9965
W (2) 0.7032 0.6209 0.5682 0.6205 0.7306 0.6180 0.5357 0.7562
Γ(0.5) 0.9997 0.9993 0.9977 0.9985 0.9997 0.9980 0.9987 0.9971
Γ(2) 0.6186 0.5477 0.4489 0.5063 0.6319 0.5643 0.4944 0.5886
HN 0.9717 0.9523 0.9237 0.9416 0.9740 0.9173 0.9117 0.9626
LN(0, 0.5) 0.0379 0.0379 0.0483 0.0475 0.0446 0.0764 0.0589 0.0565
LN(0, 1) 0.2295 0.1937 0.1360 0.1584 0.2333 0.2309 0.1772 0.1418
LN(0, 2) 0.9572 0.9358 0.8620 0.8815 0.9580 0.8778 0.9040 0.7385
P a(0.5) 0.8684 0.7541 0.7878 0.7384 0.9024 0.7076 0.6600 0.9535
P a(1) 0.9906 0.9655 0.9874 0.9804 0.9950 0.8270 0.8630 0.9996
P a(2) 0.9857 0.9422 0.9884 0.9806 0.9946 0.6486 0.5927 0.9997
U 0.9980 0.9918 0.9964 0.9950 0.9990 0.9620 0.9568 0.9998
Beta(2, 2) 0.9039 0.8222 0.8527 0.8627 0.9331 0.7394 0.6427 0.9773
Beta(2, 0.5) 0.9999 0.9994 1.0000 0.9999 1.0000 0.9704 0.9720 1.0000
Beta(0.5, 2) 0.9999 0.9997 0.9993 0.9995 0.9999 0.9978 0.9984 0.9995
Beta(2, 5) 0.7565 0.6718 0.6159 0.6655 0.7820 0.6391 0.5456 0.8159
CH(0.5) 0.9998 0.9997 0.9988 0.9993 0.9998 0.9978 0.9991 0.9979
CH(1) 0.9750 0.9561 0.9274 0.9448 0.9774 0.9204 0.9148 0.9663
CH(1.5) 0.9091 0.8536 0.8265 0.8572 0.9229 0.8008 0.7458 0.9390
LF (2) 0.9653 0.9439 0.9130 0.9338 0.9683 0.9137 0.9042 0.9580
LF (4) 0.9574 0.9321 0.9013 0.9238 0.9614 0.9026 0.8852 0.9542
EV (0.5) 0.9754 0.9564 0.9271 0.9448 0.9771 0.9203 0.9139 0.9659
EV (1.5) 0.9834 0.9673 0.9544 0.9653 0.9861 0.9365 0.9240 0.9864
DL(1) 0.5117 0.4537 0.3520 0.4016 0.5198 0.5080 0.4455 0.4284
DL(1.5) 0.4260 0.3664 0.2901 0.3374 0.4426 0.4327 0.3514 0.4110
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The power of the aforementioned test statistic depends on the alternative distribution
and the window size. It is not possible to have the best value of m which attains the
maximum powers for all alternatives. Therefore, based on a broad Monte Carlo analysis,
we determine the optimal m to be the values of m which attain good (not best) powers
for all alternative distributions. The value of m can be obtained from heuristic formula
m = [n/3 + 1] for a given n, where [x] means the integer part of x. For example, we
recommend m = 4 for n = 10, m = 7 for n = 20, m = 11 for n = 30, and m = 17 for
n = 50 as the optimal values which the proposed test attains good (not best) power values
against all alternatives. We observe that the optimal m increases as n increases.

It is evident from Tables 3-6 that there is no one uniformly most powerful test against
all alternatives. Under various alternatives, sometimes the proposed test has a higher
power, and sometimes other tests do. However, for almost alternatives the tests based on
A2 and DAmn statistics have the most power.

Power study reveals the tests A2 and DAmn have a high power and generally they
outperform the other tests under the different alternatives. The power differences between
these tests and the other tests are substantial. In other hand, from Table 2, we found that
the actual size of the proposed test based on DAmn was acceptable. Consequently, the
proposed test based on DAmn statistic should be recommended in practice. Finally, we can
generally conclude that the test DAmn has a good performance against almost alternatives
and this test can be confidently recommended in practice.

4. Illustrative examples
In this section, we illustrate how the tests can be applied to test the GOF for the IG

distribution when the observations are available.

Example 4.1. Folks and Chhikara [18] considered the following dataset, consisting of 19
fracture toughness of MIG (metal inert gas) welds.

54.4, 62.6, 63.2, 67.0, 70.2, 70.5, 70.6, 71.4, 71.8, 74.1, 74.1, 74.3, 78.8, 81.8, 83.0, 84.4,
85.3, 86.9, 87.3.

They concluded by using the KS statistic that the IG distribution is a reasonable fit.
Histogram of the considered data set is presented in Figure 3.

Figure 3. Histogram of data in Example 1 and a fitted IG density function.
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Here, we apply the considered tests to these data. First, the ML estimates of µ and λ are
computed as:

µ̂ = 74.3 and λ̂ = 4923.952 .

Then, the value of each test statistic is computed and also the critical value of each test at
the significance level 0.05 is obtained by Monte Carlo simulation. Results are summarized
in Table 7.

Table 7. The value of the test statistics and critical values at 5% level.

Test Value of the test statistic Critical value Decision
W 2 0.05379 0.83473 Not reject H0
D 0.13339 0.21478 Not reject H0
V 0.24056 0.33114 Not reject H0
U2 0.05030 0.12381 Not reject H0
A2 0.37997 0.83192 Not reject H0
T1 0.96487 0.90046 Not reject H0
T2 0.02417 1.44810 Not reject H0

DAmn 0.29149 0.34384 Not reject H0

Because the value of each test statistic is smaller than the corresponding critical value,
the IG hypothesis is not rejected for these data at the significance level of 0.05. Based on
the considered tests, the data did not provide evidence against the null hypothesis. Also,
two tests T1 and T2 do not reject the null hypothesis. Therefore, we can conclude that the
underlying distribution of these data is an IG distribution.

Example 4.2. The following data represent active repair times (in hours) for an airborne
communication transceiver.

0.2, 0.3, 0.5, 0.5, 0.5, 0.5, 0.6, 0.6, 0.7, 0.7, 0.7, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0, 1.1, 1.3, 1.5, 1.5,
1.5, 1.5, 2.0, 2.0, 2.2, 2.5, 3.0, 3.0, 3.3, 3.3, 4.0, 4.0, 4.5, 4.7, 5.0, 5.4, 5.4, 7.0, 7.5, 8.8, 9.0,
10.3, 22.0, 24.5.

These data are used by [27] and [40]. They fitted the IG distribution and finally concluded
that the fit is good. Histogram of the considered data set is presented in Figure 4.

Figure 4. Histogram of data in Example 2 and a fitted IG density function.
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The ML estimates of µ and λ for the considered data are computed as:

µ̂ = 3.6267 and λ̂ = 1.6242 .

In Table 8, the values of test statistics and also the critical values of tests at the significance
level 0.05 are presented.

Table 8. The value of the test statistics and critical values at 5% level.

Test Value of the test statistic Critical value Decision
W 2 0.03677 0.15440 Not reject H0

D 0.07245 0.14281 Not reject H0

V 0.14081 0.22023 Not reject H0

U2 0.03676 0.12505 Not reject H0

A2 0.23926 0.85266 Not reject H0

T1 0.98273 0.95020 Not reject H0

T2 0.32354 1.47697 Not reject H0

DAmn 0.23126 0.27266 Not reject H0

Since the value of each test statistic is smaller than the corresponding critical value,
the IG hypothesis is not rejected for these data at the significance level of 0.05. Also, two
tests T1 and T2 do not reject the null hypothesis. Consequently, we conclude that these
data follow an IG distribution.

5. Conclusions
In this paper, we have proposed a new GOF test for the IG distribution based on an

estimate of KL information. We have stated the properties of the proposed test and com-
puted the critical values, the actual sizes and powers of the test. Through a Monte Carlo
simulation, we have shown that the proposed test is powerful against some alternatives.
Also, we have shown that the actual sizes of the proposed test are acceptable. Therefore,
the proposed test can be confidently used in practice. Finally, we have considered two real
data sets and have illustrated how the proposed test can be employed to test the GOF for
the IG distribution when a sample is available.
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