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ABSTRACT

In this paper, the spinor formulations of Mannheim curve pair are investigated. First of all,
two spinors corresponding to Mannheim curve pair are given and considering the relationships
between the Frenet frames of Mannheim curve pair the relationship between two spinors
corresponding to this curve pair are obtained. Therefore, some geometric interpretations of spinors
are obtained using the Mannheim curve pair and considering Mannheim curve as helix the
spinor formulations of Mannheim curve pair are given. Moreover, the spinor formulations for
the curvatures of the Mannheim curve pair are also obtained. Consequently, an example of these
spinors is given. Therefore, it is thought that this study will make an important contribution to the
mathematical analysis and geometric interpretation of spinors, which have many uses in physics.
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1. Introduction

Spinors form a vector space, usually on complex numbers, through a representation of the spin group.
Spinors are needed to obtain the most basic data related to the topology of the spin group, and for each
rotation the spin group has two elements that represent it. In this case, geometric vectors and other tensors
produce opposite signs when they affect any spinor under the representation because they cannot distinguish
between these two elements. Moreover, spinors, which are the main components in the definition of fermionic
particles that encode ordinary matter in the universe, have created a comprehensive mathematical study object
with various applications. Especially, in applications of quantum, mechanics in physics the spinor theory has
been used frequently [8, 9, 19, 30]. Cartan, one of the first people to study on Lie groups, was also the first to
study spinors geometrically in mathematics [6]. Cartan obtained the spinor formulas of the basic definitions
in geometry and emphasized that isotropic vectors in C3 create a surface with two-dimensional in complex
space C2. Cartan also showed that every isotropic vector in space C3 corresponds to two vectors in space
C2. Later, Cartan named these complex vectors in the space C2 as spinors [6]. After that, Vivarelli obtained
a spinor formulation of rotations by establishing a linear relationship between spinors and real quaternions
considering the representation of rotational motions with quaternions in R3 [29]. In a different study, Torres
del Castillo and Barrales expressed the curve theory in E3 with spinors [7]. In addition, the spinor equations
of relationship between Bishop frame and Frenet frame were obtained in [28]. Then, considering these studies
the spinor representation of the Darboux frame in E3 was obtained by Kişi and Tosun [18]. In addition to
that, the spinor representations of some curve pairs selected in Minkowski space were obtained [4, 10, 17]. In
addition to these studies, Erişir and Kardaǧ found spinor formulations of involute-evolute curves, which are a
special curve pair in Euclidean space E3 [11] and the spinor equations of Bertrand curves were obtained in [12].
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Many studies have been carried out in three-dimensional Euclidean space on curve theory, which covers
a large part of differential geometry, which is a sub-branch of mathematics. In particular, many curve pairs
have been studied using some special connections between Frenet frames taken at mutual points of any two
curves such as involute-evolute, Bertrand, and Mannheim curve pairs etc. The definition of Mannheim curve
pair was first introduced by Mannheim in 1878 [21]. It has been proved that the necessary and sufficient
condition for any curve to be a Mannheim curve in three-dimensional Euclidean space is κ = λ

(
κ2 + τ2

)
where λ = constant ̸= 0, κ, and τ are curvatures of Mannheim curve [21]. Then, in 1966, some theorems
about Mannheim curves were given with the help of Riccati equations in 3-dimensional Euclidean space [5].
Recently, Mannheim curve pair has been redefined by Wang and Liu [20, 31]. According to that definition
given by them, if the principal normal vector of (α) and the binormal vector of (β) in three dimensional
Euclidean space are linearly dependent therefore, (α) is called the Mannheim curve and (β) is called the
Mannheim partner curve. Moreover, (α, β) is called Mannheim curve pair. Also, the necessary and sufficient
condition for the curve (β) to be the Mannheim partner curve of (α) is τ1

′ = κ1

λ

(
1 + λ2τ21

)
where κ1 and τ1 are

the curvatures of the Mannheim partner curve [20, 31]. After these studies, many studies have been done on
Mannheim curves [1, 2, 3, 5, 13, 14, 15, 16, 22, 23, 24, 27].

In this study, we study a new and interesting representation (spinor representation) of the Mannheim curve
pair, which is a pair of curves in Euclidean space E3. For this, we first give the spinors corresponding to
the Mannheim curve pair. Then, using the relations between the Frenet frames of this pair of curves, we
obtain the relations between two spinors corresponding to these curves. We also give geometric interpretations
and results about the spinors corresponding to these curves and the angles between these spinors. As an
application, we consider the Mannheim curve as a helix and obtain the results of the spinors corresponding to
these curves. Consequently, we give an example to these spinors.

2. Preliminaries

In this section, Mannheim curve pairs and spinors have been briefly mentioned. Now, we assume that the
curves α : I → E3 and β : J → E3 are two curves with arc-length parameter s and s1 in Euclidean space E3,
respectively. In addition, let the Frenet vector fields of the curves (α) and (β) be {T,N,B} and {T1,N1,B1},
respectively. Therefore, we can give the following definition and theorems.

Definition 2.1. Assume that α : I → E3 and β : J → E3 are two arbitrary curves in E3. Therefore, if the normal
vector field of (α) is linearly dependent with the binormal vector field of (β), the curve (α) is called Mannheim
curve, the curve (β) is called Mannheim partner curve, and the curve pair {α, β} is called Mannheim curve
pair [20, 31].

Theorem 2.1. Suppose that (α, β) is Mannheim curve pair and the parameters s and s1 are the arc-length parameters of
the curves (α) and (β), respectively. In this case, the distance between mutually points of these curves is constant [20, 31].

Therefore, from this theorem the equation

α (s1) = β (s1) + λB1 (s1) (2.1)

can be written where λ = constant [20, 31].

Theorem 2.2. Assume that α : I → E3 and β : J → E3 are Mannheim curve and Mannheim partner curve,
respectively. Moreover, the angle between the tangent vector fields T and T1 is θ. In this case, the relationship between
Frenet vector fields of these curves is

T = cos θT1 + sin θN1

N = −B1

B = − sin θT1 + cos θN1

(2.2)

[24].

Theorem 2.3. Assume that the pair (α, β) is Mannheim curve pair. Let Frenet curvatures of these curves (α) and (β) be
{κ, τ} and {κ1, τ1}, respectively. In this case, the equation

τ1 =
κ

λτ
(2.3)

is provided where λ = constant ̸= 0 [24].
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Theorem 2.4. There are relationships between the curvatures {κ, τ} and {κ1, τ1} of Mannheim curve pair (α, β) as
follows

i) τ1 = (−κ sin θ + τ cos θ) ds
ds1

,

ii) κ = −τ1 sin θ
ds1
ds ,

iii) τ = τ1 cos θ
ds1
ds ,

(2.4)

where θ is the angle between T and T1, s and s1 are the arc-length parameter of Mannheim curve pair (α, β), respectively
[24].

Proposition 2.1. Consider that (α) is Mannheim curve and (β) is Mannheim partner curve. In this case, if Mannheim
curve (α) is a helix, Mannheim partner curve (β) is a straight line [31].

Spinors usually construct a vector space over complex numbers with the aid of a linear group representations
of the spin group. Cartan [6] was the first to express spinors on complex numbers in the geometric sense. In
addition, Cartan also obtained the vector ξ with two complex components corresponding to an isotropic vector
x = (x1, x2, x3) in C3. In this case, the set of isotropic vectors in C3 generate a surface in C2. Therefore, we
assume the surface with the parameters ξ1 and ξ2, then we have x1 = ξ1

2 − ξ2
2, x2 = i(ξ1

2 + ξ2
2), x3 = −2ξξ1ξ2

and ξ1 = ±
√

x1−ix2

2 , ξ2 = ±
√

−x1−ix2

2 [6]. Cartan said that the complex vectors mentioned above are called
spinors such that

ξ =

(
ξ1
ξ2

)
[6]. By means of the study [6], in [7] the isotropic vector u + iv ∈ C3 corresponds to the spinor ξ = (ξ1, ξ2) where
u, v ∈ R3. Therefore, with the aid of the Pauli matrices (P1, P2, P3), the complex symmetric matrices σ with 2x2
dimensional can be obtained that

σ1 = CP1 =

(
1
0

0
−1

)
, σ2 = CP2 =

(
i
0

0
i

)
, σ3 = CP3 =

(
0
−1

−1
0

)
(2.5)

where C =

(
0 1
−1 0

)
[7, 25, 26]. Moreover, in [7] for u,v,w ∈ R3 the spinor formulations are

u + iv = ξtσξ,

w = −ξ̂tσξ
(2.6)

where u + iv is the isotropic vector in the space C3, w ∈ R3 and the spinor mate ξ̂ of the spinor ξ is

ξ̂ = −
(

0 1
−1 0

)
ξ = −

(
0 1
−1 0

)(
ξ1
ξ2

)
=

(
−ξ2
ξ1

)
.

In addition, we can say that the lengths of the vectors u,v,w ∈ R3 are ∥u∥ = ∥v∥ = ∥w∥ = ξ
t
ξ. At the same time,

these vectors are also mutually orthogonal and {u,v,w}, {v,w,u} and {w,u,v} correspond to different spinors
[7].

Proposition 2.2. Assume that the arbitrary two spinors are ξ and δ. In this case, we have the equations

i) δtσξ = −δ̂tσξ̂

ii) λ̂δ + µξ = λδ̂ + µξ̂

iii)
ˆ̂
ξ = −ξ

iv) δtσξ = ξtσδ

where ”− ” is complex conjugate and λ, µ ∈ C [7].

Consider that an arbitrary curve is α : I ⊆ R → E3 with arc-length parameter s and also ∥α′ (s)∥ = 1.
Moreover, we assume that the Frenet frame corresponding to the spinor η of (α) is {N,B,T}. In this case,
with the aid of the equation (2.6) we can write the spinor equations

N + iB = ηtση =
(
η1

2 − η2
2, i(η1

2 + η2
2), − 2η1η2

)
T = −η̂tση = (η1η2 + η1η2, i(η1η2 − η1η2), η1η1 − η2η2)

(2.7)

with ηtη = 1 [7].
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Theorem 2.5. Assume that the spinor η corresponds to the Frenet frame {N,B,T} of (α) with arc-length parameter s.
Therefore, the Frenet curvatures κ and τ can be written in terms of a single spinor equation as

dη

ds
=

1

2
(−iτη + κη̂)

where κ and τ are the curvature and torsion of (α), respectively [7].

3. Main Theorems and Results

In this section, two spinors corresponding to the Mannheim curve pair have been considered. Then,
using the relationships between the Frenet frames of the Mannheim curve pair the relationships between
the spinors corresponding to this curve pair have been given. In addition, the geometric interpretations
of the angles between these spinors have been made and some main theorems and corollaries have been
obtained by considering the case of the Mannheim curve being helix. Consequently, an example has been given.

3.1. Spinor Equations of Mannheim Curve Pair

Now, the curve α : I → E3 is Mannheim curve with the arc-length parameter s and the curve β : J → E3 is
Mannheim partner curve of (α) with the arc-length parameter s1. Moreover, the spinors ζ and ϕ correspond to
the Frenet vectors {B,T,N} of the Mannheim curve (α) and {T1,N1,B1} of the Mannheim partner curve (β).
Firstly, we consider the Mannheim curve (α). In this case, for the spinor ζ corresponding to the Frenet frame
{B,T,N} of the Mannheim curve (α), the spinor equations

B + iT = ζtσζ

N = −ζ̂tσζ
(3.1)

can be written where ”t” is the transpose, ζ̂ is mate of the spinor ζ, and the matrices σ obtained by Pauli
matrices in (2.5). Thus, the following theorem can be given for the spinor ζ.

Theorem 3.1. Let the curve α : I → E3 be Mannheim curve with arc-length parameter s. In addition, the spinor ζ
corresponds to {B,T,N} of the Mannheim curve (α). Therefore, the spinor equation of the curvatures κ and τ of the
Mannheim curve (α) is

dζ

ds
=

(
τ − iκ

2

)
ζ̂. (3.2)

Proof. Consider that ζ is a spinor corresponding to {B,T,N} of the Mannheim curve (α). Thus, if the derivative
of the equation (3.1) according to the arc-length parameter s is considered, then the equation

dB
ds

+ i
dT
ds

=

(
dζ

ds

)t

σζ + ζtσ

(
dζ

ds

)
(3.3)

can be written. On the other hand, since the spinor pair
{
ζ, ζ̂
}

is formed a basis for the spinors there is the
equation

dζ

ds
= f1ζ + f2ζ̂ (3.4)

for the spinor dζ
ds where f1 and f2 are two arbitrary complex functions. In this case, from the equations (3.3) and

(3.4), it is obtained
(−τ + iκ)N = 2f1

(
ζtσζ

)
+ 2f2

(
ζ̂tσζ

)
and using the equation (3.1) we have

f1 = 0, f2 =
τ − iκ

2
.

Also, the spinor dζ
ds is written as dζ

ds =
(
τ−iκ

2

)
ζ̂.
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Now, we investigate that how the spinors corresponding to the vector fields T and B in the equation (3.1)
are written separately. For this, if we use the equation T = Im (ζtσζ) and B = Re (ζtσζ) then, we can give the
following conclusion.

Conclusion 3.1. Let ζ be the spinor corresponding to {B,T,N} of the Mannheim curve (α). In this case, the component
vectors T and B of the isotropic vector B + iT can be obtained separately that

T = − i
2

(
ζtσζ + ζ̂tσζ̂

)
,

B = 1
2

(
ζtσζ − ζ̂tσζ̂

)
.

(3.5)

In addition, we can write the spinor equations of the Frenet vectors in terms of components with some
algebraic calculations as

T = − i
2

(
ζ1

2 − ζ2
2 + ζ2

2 − ζ1
2
, i
(
ζ1

2 + ζ2
2 + ζ1

2
+ ζ2

2
)
,−2ζ1ζ2 + 2ζ1ζ2

)
,

N =
(
ζ1ζ2 + ζ1ζ2, i

(
ζ1ζ2 − ζ1ζ2

)
, ζ1ζ1 − ζ2ζ2

)
,

B = 1
2

(
ζ1

2 − ζ2
2 − ζ2

2
+ ζ1

2
, i
(
ζ1

2 + ζ2
2 − ζ1

2 − ζ2
2
)
,−2ζ1ζ2 − 2ζ1ζ2

)
.

(3.6)

Now, let Mannheim partner curve of Mannheim curve (α) be the curve β : J → E3. Moreover, consider that
Frenet frame of Mannheim partner curve (β) is {T1,N1,B1} and the spinor ϕ corresponds to this frame of the
Mannheim partner curve (β). Therefore, similar to the equation (3.1) it can be obtained

T1 − iN1 = ϕtσϕ

B1 = −ϕ̂tσϕ
(3.7)

where T1 − iN1 is isotropic vector in C3. Thus, the spinor equations of the Frenet frame {T1,N1,B1} in terms
of spinor ϕ can be written by

T1 = 1
2

(
ϕtσϕ− ϕ̂tσϕ̂

)
,

N1 = i
2

(
ϕtσϕ+ ϕ̂tσϕ̂

)
,

B1 = −ϕ̂tσϕ

where

T1 = 1
2

(
ϕ2
1 − ϕ2

2 + ϕ1
2 − ϕ2

2
, i
(
ϕ2
1 + ϕ2

2 − ϕ1
2 − ϕ2

2
)
,−2

(
ϕ1ϕ2 + ϕ1ϕ2

))
,

N1 = − i
2

(
ϕ2
1 − ϕ2

2 + ϕ2
2 − ϕ1

2
, i
(
ϕ2
1 + ϕ2

2 + ϕ1
2
+ ϕ2

2
)
,−2

(
ϕ1ϕ2 − ϕ1ϕ2

))
,

B1 =
(
ϕ1ϕ2 + ϕ1ϕ2, i

(
ϕ1ϕ2 − ϕ1ϕ2

)
, ϕ1ϕ1 − ϕ2ϕ2

)
.

(3.8)

Therefore, the following theorem about Mannheim partner curve (β) can be given.

Theorem 3.2. Consider that the spinor ϕ corresponds to the Frenet frame {T1,N1,B1} of Mannheim partner curve (β).
Therefore, the curvatures κ1 and τ1 of (β) can be written in terms of the single spinor equation

dϕ

ds1
=

i

2

(
κ1ϕ+ τ1ϕ̂

)
(3.9)

where s1 is the arc-length parameter of Mannheim partner curve (β) and the spinor ϕ̂ is the mate of the spinor ϕ.

Proof. Let the curve (β) with the arc-length parameter s1 be Mannheim partner curve of (α) and ϕ be the spinor
corresponding to the Mannheim partner curve (β). Therefore, if the derivative of the first equation in (3.7) is
taken making necessary arrangements, it can be obtained

dT1

ds1
− i

dN1

ds1
=

(
dϕ

ds1

)t

σϕ+ ϕtσ

(
dϕ

ds1

)
.

Here, since the spinor pair
{
ϕ, ϕ̂

}
represents the Frenet frame {T1,N1,B1} the pair

{
ϕ, ϕ̂

}
forms a basis for

spinors. Thus, we can write dϕ
ds1

= g1ϕ+ g2ϕ̂ where g1 and g2 are two arbitrary complex functions. Therefore, if
we use this equation in the last equation, we have

iκ1 (T1 − iN1)− iτ1B1 = 2g1
(
ϕtσϕ

)
+ 2g2

(
ϕ̂tσϕ

)
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and
iκ1 (T1 − iN1)− iτ1B1 = 2g1 (T1 − iN1)− 2g2B1.

Consequently, we obtain

g1 =
iκ1

2
, g2 =

iτ1
2
,

and dϕ
ds1

= i
2

(
κ1ϕ+ τ1ϕ̂

)
.

Theorem 3.3. Assume that the curves α : I → E3 and β : J → E3 are Mannheim curve and Mannheim partner curve,
respectively, and ζ and ϕ are the spinors corresponding to the curves (α) and (β), respectively. In this case, the relationship
between spinors corresponding to Mannheim curve pair (α, β) is

ζ = ±ei(
π
4 + θ

2 )ϕ. (3.10)

Proof. Let (α, β) be Mannheim curve pair and (ζ, ϕ) be the spinor pair corresponding to Frenet frames {B,T,N}
and {T1,N1,B1} of the curves (α, β), respectively. In this case, using the equation (2.2) the relationship between
the isotropic vectors including Frenet frames of the Mannheim curve pair can be written

B + iT = − sin θT1 + cos θN1 + i (cos θT1 + sin θN1)
= (− sin θ + i cos θ)T1 + (cos θ + i sin θ)N1

= eiθ (iT1 + N1)
= ieiθ (T1 − iN1) .

Here, if we use the spinor equation in the equations (3.1) and (3.7) then, we obtain

ζtσζ = ieiθ
(
ϕtσϕ

)
.

In this case, from the equations (3.6) and (3.8) we have

ζ21 = ieiθϕ2
1,

ζ22 = ieiθϕ2
2

and consequently,
ζ = ±ei(

π
4 + θ

2 )ϕ.

In this case, as a result of the Theorem 3.3 the following geometric interpretation can be expressed.

Conclusion 3.2. Consider that the spinors ζ and ϕ represent the Mannheim curve pair (α) and (β), respectively.
Therefore, if the angle between tangent vectors of (α) and (β) is θ, then the angle between spinors ζ and ϕ is

(
π
4 + θ

2

)
.

In addition, the equation (3.10) giving the relationship between spinors can be written in another way as
follows.

Conclusion 3.3. There is the relationship

ζ = ±
√
2

2
(1 + i) ei

θ
2ϕ

between the spinors ζ and ϕ corresponding to Mannheim curve pair (α, β).

Moreover, with the aid of Proposition 2.2 and Theorem 3.3 the following conclusion can be expressed.

Conclusion 3.4. The relationship between the spinor mates ζ̂ and ϕ̂ of spinors ζ and ϕ corresponding to Mannheim
curve pair (α, β), respectively, is

ζ̂ = ±e−i(π
4 + θ

2 )ϕ̂.

Therefore, we give the following corollary using the result in Conclusion 3.4.

Corollary 3.1. Assume that the spinors ζ and ϕ represent the Mannheim curve pair (α, β), respectively. In this case,
the spinor ζ returns to the spinor ϕ, while the spinor ζ̂ makes a reverse rotation to the spinor ϕ̂ with the same angle(
π
4 + θ

2

)
.
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3.2. Spinor Equations If Mannheim Curve is Helix

We know that the curves (α) and (β) in E3 are Mannheim curve and Mannheim partner curve, and the
spinor pair (ζ, ϕ) corresponds to this Mannheim curve pair (α, β), respectively. Now, especially we assume that
Mannheim curve (α) is helix. Therefore, the following theorems and conclusions can be given.

Theorem 3.4. Consider that the spinor pair (ζ, ϕ) corresponds to Mannheim curve pair (α, β). If Mannheim curve (α)
is helix, then the spinor dζ

ds is

dζ

ds
=

κ

2 sin γ
e−iγ ζ̂ (3.11)

where ⟨T,U⟩ = cos γ and U is axis of helix (α).

Proof. Let Mannheim curve (α) be helix. In this case, for the curvatures of Mannheim curve (α), τ
κ = cot γ =

constant can be written. Then, using the equation (3.2) we obtain

dζ

ds
=

κ

2

(cosα
sinα

− i
)
ζ̂ =

κ

2 sinα
(cosα− i sinα) ζ̂

and
dζ

ds
=

κ

2 sinα
e−iαζ̂.

Theorem 3.5. Let ζ and ϕ be the spinors corresponding to Mannheim curve pair (α) and (β). In this case, Mannheim
curve (α) is helix, then the necessary and sufficient condition is that the constant vector U is written as

U = − i

2

(
eiγζtσζ + e−iγ ζ̂tσζ̂

)
(3.12)

where γ = arccos (⟨T,U⟩) and the vector U is axis of the helix.

Proof. (⇒) : Consider that the spinor ζ corresponds to Mannheim curve (α) especially selected as helix.
Therefore, there is the constant vector U = cos γT + sin γB (axis of the helix) where ⟨T,U⟩ = cos γ = constant. If
we use the equations (3.1) and (3.5), we have

U = − i

2
cos γ

(
ζtσζ + ζ̂tσζ̂

)
+

1

2
sin γ

(
ζtσζ − ζ̂tσζ̂

)
and

U = − i

2

[
eiγζtσζ + e−iγ ζ̂tσζ̂

]
where U is the constant vector. Namely, if we derivate the vector U with respect to s, then we obtain

U′ = − i

2

[
eiγ
(
dζ

ds

t

σζ + ζtσ
dζ

ds

)
+ e−iγ

(
dζ̂

ds

t

σζ̂ + ζ̂tσ
dζ̂

ds

)]
where γ = constant. Therefore, using the equation (3.11) we have

U′ = − i

2

[
κ

2 sin γ

(
ζ̂tσζ + ζtσζ̂

)
− κ

2 sin γ

(
ζtσζ̂ + ζ̂tσζ

)]
.

Thus, U′ = 0 and we get U = constant.

(⇐) : Let ζ be the spinor corresponding to Mannheim curve (α). Moreover, we assume a constant vector

U = − i

2

[
eiγζtσζ + e−iγ ζ̂tσζ̂

]
.

In this case, from the equation (3.5) we obtain

⟨T,U⟩ = −1

4


(
ζ1

2 − ζ2
2 + ζ2

2 − ζ1
2
)(

eiγ
(
ζ1

2 − ζ2
2
)
+ e−iγ

(
ζ2

2 − ζ1
2
))

−
(
ζ1

2 + ζ2
2 + ζ1

2
+ ζ2

2
)(

eiγ
(
ζ1

2 + ζ2
2
)
+ e−iγ

(
ζ1

2
+ ζ2

2
))

+
(
−2ζ1ζ2 + 2ζ1ζ2

) (
−2eiγζ1ζ2 + 2e−iγζ1ζ2

)

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and
⟨T,U⟩ = 1

2

[(
ζ1ζ1 + ζ2ζ2

)2 (
eiγ + e−iγ

)]
= cos γ

(
ζ1ζ1 + ζ2ζ2

)
.

Since the Frenet vectors {B,T,N} are unit vectors, ζ1ζ1 + ζ2ζ2 = 1 and we have ⟨T,U⟩ = cos γ. On the other
hand, the vector U is constant and U′ = 0. Thus,

U′ = 0 = − i

2

 iγ′
(
eiγζtσζ − e−iγ ζ̂tσζ̂

)
+ eiγ

(
τ−iκ

2

) (
ζtσζ + ζtσζ̂

)
−e−iγ

(
τ+iκ

2

) (
ζtσζ + ζtσζ̂

) 
and

0 = − i

2

[
iγ′
(
eiγζtσζ − e−iγ ζ̂tσζ̂

)
+ 2ζ̂tσζ (τ sin θ − κ cos θ)

]
where θ is the angle between the tangent vector fields T and T1. If we use the equations (3.1) and (3.5), we have

iγ′ sin θT − iγ′ cos θB + (τ sin θ − κ cos θ)N = 0

consequently, γ′ = 0. Therefore, we can say that γ = constant, ⟨T,U⟩ = cos γ = constant, and Mannheim curve
(α) is helix.

Now, we rewrite the axis of the helix U giving in the Theorem 3.5 in terms of the spinor ϕ corresponding
to Mannheim partner curve (β). Namely, since Mannheim curve (α) is helix, Mannheim partner curve (β) is
straight line and the curvature κ1 = 0. In this case, we say that the tangent vector field T1 of Mannheim partner
curve (β) is constant, and ⟨T,T1⟩ = cos θ = constant. Therefore, the following conclusion can be given.

Conclusion 3.5. Let ϕ be the spinor corresponding to the Mannheim partner curve (β) of Mannheim curve (α). In this
case, if the vector U is the axis of Mannheim curve specially selected as helix, then this axis can be written in terms of the
spinor ϕ as

U =
1

2

(
ϕtσϕ− ϕ̂tσϕ̂

)
.

In addition to that, using the equation (3.9) we have the following conclusion.

Conclusion 3.6. Let the curve pair (α, β) be Mannheim curve pair, the spinors corresponding to this Mannheim curve
pair be (ζ, ϕ) and Mannheim curve (α) be helix. In this case, the spinor dϕ

ds1
can be obtained as

dϕ

ds1
=

iτ1
2
ϕ̂

where s1 is the arc-length parameter and τ1 is torsion of Mannheim partner curve (β), respectively.

Now, we give the relationship between the spinors dζ and dϕ with the following conclusion.

Conclusion 3.7. Assume that the spinor pair (ζ, ϕ) corresponds to Mannheim curve pair (α, β) and the Mannheim
curve (α) is helix. Therefore, the relationship between the derivative of the spinors (ζ, ϕ) is

dζ = ±ei(
θ
2−

3π
4 )dϕ

Conclusion 3.8. Consider that the spinor pair (ζ, ϕ) corresponds to Mannheim curve pair (α, β). Moreover, the
Mannheim curve (α) is considered as helix. In this case, the angle between the spinors dζ and dϕ is

(
θ
2 − 3π

4

)
.

Example:
Consider that the curve α : I → E3 with arc-length parameter s is Mannheim curve

α (s) =

(
3 cos

s

5
, 3 sin

s

5
,
4

5
s

)
.

In this case, for the Frenet vectors {T,N,B} of the curve (α), we calculate as

T(s) =
(
− 3

5 sin
s
5 ,

3
5 cos

s
5 ,

4
5

)
,

N(s) =
(
− cos s

5 ,− sin s
5 , 0
)
,

B(s) =
(
4
5 sin

s
5 ,−

4
5 cos

s
5 ,

3
5

)
.
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Consider that the spinor ζ corresponds to the Frenet frame {B,T,N}. Therefore, the spinor ζ can be written as

ζ = ±
√

3 + 4i

10

(
e−i s

10

ei
s
10

)
where s is the arc-length parameter of Mannheim curve (α). In addition to that, the spinor dζ

ds is

dζ

ds
=

(4− 3i)

50
ζ̂.

Now, we regard that Mannheim partner curve of Mannheim curve (α) is (β) where s is an arbitrary parameter
for Mannheim partner curve β. In this case, from the equation

β (s1) = α (s) + λN (s) ,

the curve (β) can be written as

β (s) =

(
cos

s

5
, sin

s

5
,
4

5
s

)
.

Therefore, we obtain that Frenet vectors of Mannheim partner curve β are

T1 = 1√
17

(
− sin s

5 , cos
s
5 , 4
)
,

N1 = 1√
17

(
4 sin s

5 ,−4 cos s
5 , 1
)
,

B1 =
(
cos s

5 , sin
s
5 , 0
)
,

and Frenet curvatures are
κ1 =

1

17
, τ1 =

4

17
.

Now, let ϕ be the spinor corresponding to Frenet frame {B1,T1,N1}. In this case, we get

ϕ = ±
√

4− i

2
√
17

(
e−i s

10

ei
s
10

)
and

dϕ

ds
=

1

10
√
17

(
ϕ+ 4ϕ̂

)
.

4. Conclusion

Spinors, expressed by Waerden in 1929, are used in quantum mechanics, relativity theory and especially
electron spin applications. However, spinors are very difficult to introduce in quantum mechanics. Because
even when spin 1/2 is taken, it is quite difficult to explain the fundamental aspects of spinors in some matters,
such as how spin will affect spinors. On the other hand, although it is thought that spinors can be used without
referring to the theory of relativity, they appear indirectly when it comes to Lorentz group discussions. From
the physicists’ point of view, spinors, like tensors, are multi-linear transformations, allowing for a more general
consideration of the concept of invariance under rotation and Lorentz boosts. Spins in quantum theory are
expressed with the help of Pauli matrices, where Pauli matrices are also a representation of Clifford spin
algebra. Regardless of a particular application, the most important feature of spinors is their behavior under
rotations. That is, when a vector or tensor object rotates by a certain angle, a spinor corresponding to this object
rotates half that angle. Therefore, for this object to return to its original position, the spinor must rotate two full
turns. In this paper, we have approached spinors from a geometric perspective and considered spinors as two-
dimensional vectors in the complex plane. From this point of view, we have taken spinors corresponding to the
Frenet frame of the Mannheim curve pair and have made geometric interpretations of the angle between these
spinors. Consequently, this study is thought to make an important contribution to the geometric interpretation
of spinors.
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