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Abstract. This article is set to push new boundaries with leading-edge in-

novations in statistical distribution for generating up-to-the-minute contem-

porary distributions by a mixture of the second record value of the Gompertz
distribution and the classical Gompertz model (weighted Gompertz model)

using T-X characterization, especially used for two-sided schemes that provide
an accurate model. The quantile, ordinary, and complete moments, order sta-

tistics, probability, and moments generating functions, entropies, probability

weighted moments, Lin’s condition random variable, reliability in multicompo-
nent stress strength system, reversed, and moments of residuals life and other

reliability characteristics in engineering, actuarial, economics, and environmen-

tal technology were derived in their closed form. To investigate and test the
flexibility, viability, tractability, and performance of the proposed Weighted

Gompertz-G (WGG) generated model, the shapes of some sub-models of the

WGG model were examined. The shapes of the sub-models indicated J-shapes,
increasing, decreasing, and bathtub hazard rate functions. The maximum like-

lihood estimation of the WGG-generated model parameters was examined.

An illustration with simulation and real-life data analysis indicated that the
WGG-generated model provides consistently better goodness-of-fit statistics

than some competitive models in the literature.

1. Introduction

Modeling real-life data set requires a distribution that has a true reflection of the
character of that data. However, to unravel the interest of some important Poisson
scenarios, a parsimonious statistical distribution is required. Hence, new statistical
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models are often introduced to harness salient factors responsive for good decision
making.

Oftentimes, change-point models are characterized by abrupt behavioural struc-
tures that may be very complicated to handle by the usual classical statistical
distributions. These events are but not limited to macroeconomic events charac-
terized by abrupt increases interest rates and inflation. The abrupt behavioural
shift might also be the case in extreme events like the storm and rainfall events
that have ravaged some countries in recent time. The advent of the novel epidemic
COVID 19 is also not exempted. Another example is the lifetime scenario that
are subjected to unexpected and rapid shocks. Hence, this study is proposed to
deal with such change-point by constructing an appropriate weighted generated dis-
tribution called Weighted Gompertz-G (WGG) distribution that can address the
differentials. Though the method of generating new distribution is not new, using
the weighted generator concept to generate new models is a new approach targeted
at change-point problems. Thus, this article will use the weighted Gompertz gener-
ator approach to generate new continuous distributions that are more flexible, and
viable in their goodness-of-fit test statistics.

The Gompertz model has played a vital role in modeling scenarios that deal with
survival times, reliability, human mortality, and actuarial data with exponential in-
crease outcomes. Thus, it has received considerable attention from demographers,
economics, and actuaries. This includes [13], and [12] who proposed the shifted
Gompertz-G and alpha power Teissier distributions. A flexible alpha power Gom-
pertz distribution was proposed in [14]. [27] emphasised on some applications of
the Gompertz distribution in Poisson process. A negative rate of aging parameter
with Gompertz distribution was proposed in [22]. [8] proposed the Teissier distribu-
tion. [16] proposed the Marshall-Olkin Teissier distribution. The gamma–Gompertz
distribution was proposed in [29]. [15] developed the alpha power Marshall-Olkin-G
model. [23]developed the Topp-Leone Gompertz distribution with application to
glass data. The reliability properties and applications of the alpha power Topp-
Leone-G distribution was considered in [17]. However, some researches have been
contributed to generating newer classical statistical distributions include [5] and [2]
who proposed exponentiated T-X and T-X family of distributions. The type I
half-logistic family of distributions proposed by [10]. The beta and generalized
gamma-generated distributions by [30]. A tetration distribution developed by [11].
Odd Truncated Inverse Exponential Weibull Exponential by [1]. [24] proposed a
New Member from the T-X Family of distribution. A New Odd Log-Logistic Lind-
ley Distribution was proposed in [3]. The Bivariate Lack-of-Memory Distributions
was developed in [21]. [20] proposed the U family of distributions. A new estended
Weibull distribution was developed in [26]. [18] proposed the alpha power Teissier-
G Distribution and its Applications in reliability analysis. Exponentiated Gumbel
Weibull Logistic model was developed in [25]. Weighted Weibull-G was introduced
by [19].
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Let T be a nonnegative random variable with a probability density function (pdf)
f(t) such that for a suppose t > 0, weight function w(t) = β + exp(βt) − 1 ,and

expectation E[w(t)] = βλ+1
λ . Then, [7] defined the pdf and cumulative distribution

function (cdf) F (t) of the weighted Gompertz distribution as

f(t) =
βλ2

(1 + βλ)
(β − 1 + eβt)e(βt−λ(eβt−1), t > 0 β , λ > 0, (1)

and

F (t) = 1−
[
1 +

λ(eβt − 1)

(1 + βλ)

]
e−λ(eβt−1), t > 0 β , λ > 0, (2)

with λ and β as the shape and scale parameters.
Modeling abrupt behavioural structure and scenarios has become more com-

plicated as a result of their change-point. Though the method of generating new
distribution is not new, using the weighted generator concept to generate new mod-
els is a new approach. Hence, this study is motivated to propose a model with a
true reflection of the character of the data obtained. Thus, the WGG generated
model tends to improve the goodness-of-fit, and the test statistics of the existing
distributional models using weighted distribution characterization.

The study aim at introducing a class of generator with the aid of the weighted
Gompertz model called the weighted Gompertz generator. This generated model
will improve the performance, flexibility and the viability of the goodness-of-fit of
the abrupt behaviourial change-point scenarios in lifetime modeling.

2. The Weighted Gompertz-G Distribution

Suppose a nonnegative random variable T is defined on the interval T ∈ [m,n]
for −∞ < m < n < ∞ with pdf r(G(t)) such that r(G(t)) = − log[1 − G(t)] is
monotonically non-decreasing; r(G(t)) is closed in the interval [m,n]; and r(G(t))
approaches m as t tends to negative infinity, and r(G(t)) approaches n as t tends
to positive infinity. Thus, by [4] the cdf and the pdf of the WGG generated class
of distribution can be expressed as

F (t) = 1−
[
1 +

λ[(1−G(t))−β − 1]

1 + βλ

]
e−λ[(1−G(t))−β−1] t > 0, λ, β > 0, (3)

and

f(t) =
λ2β

(1 + βλ)(1−G(t))(1+β)
g(t)((1−G(t))−β + β − 1)e−λ[(1−G(t))−β−1], (4)

for t > 0, λ, β > 0, where g(t), and G(t) are the parents pdf and cdf.
The WGG generated reliability model can be expressed as

SWGG(t) =

[
1 +

λ[(1−G(t))−β − 1]

1 + βλ

]
e−λ[(1−G(t))−β−1] t > 0, λ, β > 0. (5)
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The hazard rate function that corresponds to the WGG generated model is defined
as

hWGG(t) =

λ2β
(1+βλ)(1−G(t))(1+β) g(t)((1−G(t))−β + β − 1)[

1 + λ[(1−G(t))−β−1]
1+βλ

] t > 0, λ, β > 0. (6)

The reversed hazard rate function is obtained as

rWGG(t) =

λ2β
(1+βλ)(1−G(t))(1+β) g(t)((1−G(t))−β + β − 1)e−λ[(1−G(t))−β−1]

1−
[
1 + λ[(1−G(t))−β−1]

1+βλ

]
e−λ[(1−G(t))−β−1]

, (7)

for t > 0, λ, β > 0.
The cumulative hazard rate function of the WGG generated function is give as:

HWGG(t) = log(1+βλ)−log([1+βλ]+λ[(1−G(t))−β−1])+λ([1−G(t)]−β−1). (8)

3. The Quantile Function

Quantile is fundamental for the simulation and estimation of a distribution pa-
rameter(s). Hence, it is a function that associates the probability distribution
function of the WGG generated model of a random variable T such that the prob-
ability of the variable being less than or equal to that value equals the probability
for a uniform interval q ∈ (0, 1) is defined as

t = G−1

[
1−

[
W−1((q − 1)(1 + βλ)e(1+βλ))− (1 + βλ)

λ
+ 1

]− 1
β
]
, (9)

where W−1 is the Lambert-W or omega function as defined in [13] and [16] such
that W (t) = e(W (t)) = t ∈ [−1,∞).

In particular, the median is obtained when q = 0.5.

Theorem 1. The shape, characteristics, and behaviour of the WGG generated
model can be examined by investigating the first and second derivatives of the log
of the WGG generated pdf model. Thus, for f ′(t) < 0. Then, then cdf F (t) will
be decreasing monotonically for all values of t. The WGG generated model will be
bimodal if f ′′(t) changes its signs from negative to non-negative, viz-a-viz.

Proof. The log f(t) is give as

log f(t) =2 log λ+ log β − log(1 + βλ) + log g(t)− (1 + βλ) log(1−G(t))

+ log([1−G(t)]−β + β − 1)− λ([1−G(t)]−β − 1).

Thus, taking the derivative with respect to the variable,we have

∂ log f(t)

∂t
=
g′(t)

g(t)
+ (1 + βλ)

g(t)

S(t)
+
βg(t)S−β−1(t)

Sβ(t) + β − 1
− λg(t)S−β−1(t),

where S(t) = 1−G(t). Hence, f ′(t) < 0 if g(t) < 0.
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The second derivative was implemented to determine if the model was bimodal.
Thus, the second derivative is given as

∂2 log f(t)

∂t2
=
g′′(t)

g(t)
− 1

g′(t)
+ (1 + βλ)[

g′(t)

S(t)
+
g2(t)

S2(t)
]− λg′(t)

S(β+1)(t)

+ λ(1 + βλ)
g2(t)

S(β+2)(t)
+
βg′(t)S−β−1(t)

Sβ(t) + β − 1

+β(β + 1)
g2(t)S−(β+2)(t)

Sβ(t) + β − 1
+
β2g2(t)S−2(β+1)(t)

(Sβ(t) + β − 1)2
.

□

4. Order statistics

Order statistics are useful tools to improve the robustness of sampling plans by
variables, and shorten test times of Poisson processes.

Let T(1), T(2), T(3), . . . , T(k) be the order statistics for a random variable T1, T2, T3, . . . , Tk
with WGG distribution. Then, the WGG density of the uth order statistics is given
as

fu(t) =
k!

(u− 1)!(k − u)!
Fu−1(t)Sk−u(t)f(t) −∞ < t <∞. (10)

However, using the binomial expansion, and noting that S = 1−G(t), we have the
order statistics as

fu(t) =
βλ2S−(β+1)k!

(u− 1)!(k − u)!
(S−β + β − 1)

u−1∑
j=0

(−1)u−j−1

(
u− 1

j

)

×
[
(1 + βλ) + λ(S−β − 1)

]k+j−u+1

e−λ(S−β−1)(k+j−u+1).

(11)

The minimum order statistics is obtained when u = 1, and the maximum order
statistics is obtained when u = k respectively.

4.1. Record value distributions of the WWG model. Let Ti for i = 1, 2, 3, . . . , k
be a finite sequence of independently identically distributed random variables with
WGG generated cdf F (t) and a record times given as U(1) = 1 and U(k + 1) =
min{j > U(k); Tj > Tu(k)}; k ∈ N with the random variable Tu(k) (k ∈ N) as the
upper record values. Then, the pdf of the i upper record value URi = Tu(k) with a
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special case of UR1 = T1 is given as

fURi
(t) =

f(t)

Γ(i)
{− log[1− F (t)]}i−1

=
λ2βg(t)((1−G(t))−β + β − 1)e−λ[(1−G(t))−β−1]

(1 + βλ)(1−G(t))(1+β)Γ(i)

×
{
− log

[[
1 +

λ[(1−G(t))−β − 1]

1 + βλ

]
e−λ[(1−G(t))−β−1]

]}i−1

(12)

5. Sub-models

Some special sub-models were considered for flexibility, viability, and tractability
using the proposed WGG generated model. We present some special cases of the
WGG generated family of distributions since it extends several useful distributions
in the literature. For all cases listed next, we consider t, λ, β > 0. Especially sub-
models with increasing, decreasing shaped data with or without a flat region in
modeling. These special sub-models include Burr-XII, Lomax, and Frechet distri-
butions.

5.1. Weighted Gompertz-G Burr-XII (WGG-B) distribution. Consider the
Burr XII distribution with positive parameters θ and ρ, and cdf and pdf given as
G(t) = 1 − (1 + tθ)−ρ and g(t) = θρtθ−1(1 + tθ)−ρ−1 . Then, inserting these
expressions into Equations (3) and (4) gives the WGG-B density function with the
cdf and pdf given as

F (t) = 1−
[
1 +

λ[(1 + tθ)βρ − 1]

1 + βλ

]
e−λ[(1+tθ)βρ−1], t > 0, λ, β, θ, ρ > 0, (13)

and

f(t) =
λ2β(1 + tθ)ρ(1+β)

(1 + βλ)
((1 + tθ)βρ + β − 1)e−λ[(1+tθ)βρ−1]

×θρtθ−1(1 + tθ)−ρ−1, t > 0, λ, β, θ, ρ > 0.

(14)

Plots of the WGG-B density function for the selected parameter values are dis-
played in Figure 1a. Figure 1b displays the corresponding hazard rate function
(hrfs) for particular values of the parameters. The shapes of the hazard rate func-
tion indicated increasing, and decreasing.

5.2. Weighted Gompertz-G Lomax (WGG-L) distribution. Consider the
Lomax distribution with positive shape parameters θ and scale parameter ρ, and
cdf and pdf given as G(t) = 1 − (1 + t

ρ )
−ρ and g(t) = θ

ρ [1 + t
ρ ]

−(θ+1) . Then,

inserting these expressions into Equations (3) and (4) gives the WGG-L density
function with the cdf and pdf given as
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F (t) = 1−
[
1 +

λ[(1 + t
ρ )

βρ − 1]

1 + βλ

]
e−λ[(1+ t

ρ )
βρ−1], t > 0, λ, β, θ, ρ > 0, (15)

and

f(t) =
λ2β(1 + t

ρ )
ρ(1+β)

(1 + βλ)
((1 +

t

ρ
)βρ + β − 1)e−λ[(1+ t

ρ )
βρ−1],

×θ
ρ
[1 +

t

ρ
]−(θ+1), t > 0, λ, β, θ, ρ > 0.

(16)

Plots of the WGG-L density function for the selected parameter values are dis-
played in Figure 2a. Figure 2b displays the corresponding hrfs for some particular
values of the parameters. The shapes of the hazard rate function indicated increas-
ing, and decreasing.

5.3. Weighted Gompertz-G Frechet (WGG-F) distribution. Consider the
Frechet distribution with positive shape parameters θ and scale parameter ρ, and

cdf and pdf given as G(t) = e−( θ
t )

ρ

and g(t) = ρθρt−ρ−1e−( θ
t )

ρ

. Then, inserting
these expressions into Equations (3) and (4) gives the WGG-F density function
with the cdf and pdf given as
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F (t) = 1−
[
1 +

λ[(1− e−( θ
t )

ρ

)−β − 1]

1 + βλ

]
e−λ[(1−e−( θ

t
)ρ )−β−1], t > 0, λ, β, θ, ρ > 0,

(17)
and

f(t) =
λ2β

(1 + βλ)(1− e−( θ
t )

ρ
)(1+β)

((1− e−( θ
t )

ρ

)−β + β − 1)e−λ[(1−e−( θ
t
)ρ )−β−1]

×ρθρt−ρ−1e−( θ
t )

ρ

, t > 0, λ, β, θ, ρ > 0.

(18)

Plots of the WGG-F density function for the selected parameter values are dis-
played in Figure 3a. Figure 3b displays the corresponding hrfs for some particular
values of the parameters. The shapes of the hazard rate function indicated an
increase.

6. Mathematical Expression

To examine the productivity of the WGG generated model, mathematical ex-
pansion of the pdf and cdf is carried out. The exponential term in (3) and (4) can
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be expressed as

e−λ((1−G(t))−β−1) =

∞∑
w=0

(−1)wλw((1−G(t))−β − 1)w

w!
.

Also, by binomial expansion, we have

((1−G(t))−β − 1)w =

w∑
u=0

(−1)w−u

(
w

u

)
(1−G(t))−uβ .

Hence, the WGG generated pdf can be expressed as power function as

f(t) =
∞∑

i,w=0

w∑
u=0

αµ(i,w,u)g(t)G
i(t), (19)

where

α =
Γ(uβ + 2β + i+ 1)

Γ(uβ + 2β + 1)
+ (β − 1)

Γ(uβ + β + i+ 1)

Γ(uβ + β + 1)
,

and

µ(i,w,u) = (−1)2w−u+i

(
w

u

)
λw+2

i!w!

β

(1 + βλ)
,

where Γ(·) is a gamma function.
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7. Statistical Properties

The viability and performance of the proposed model will be investigated by
examining some general statistical properties of the WGG generated model in this
section.

Oftentimes, the expectation, variance, and moments of random variables can be
obtained from some characteristics of the distribution function. Some of these func-
tions are the probability generating function and the moment generating function.

Lin’s condition random variable The Lin’s function for a pdf f of a random
variable T with a support t > 0 is defined as

Lf(t) = −tf
′(t)

f(t)
= −t

∞∑
i,w=0

w∑
u=0

αµ(i,w,u)

ig2(t)Gi−1(t) + g′(t)Gi(t)

g(t)Gi(t)
.

Incomplete moments
The incomplete moments of the WGG generated model allow the shape of the

moments of WGG generated distribution, which is of interest for many areas, in-
cluding econometrics, finance, and reliability, to be visible.

The kth incomplete moment, say τk(t) of the WGG generated moment is given
as

τk(y) =

∞∑
i,w=0

w∑
u=0

αµ(i,w,u)ηk,i(y),

where ηk,i =
∫ y

0
tkg(t)Gi(t)dt.

Probability generating function
This is a useful mechanism for characterizing the distribution of the random

variable T with the WGG generated model. It can succinctly be used to describe the
sequence of the probability of the random variable T with the WGG distribution.
Hence, a random variable T with a WGG distribution has the probability generating
function defined as

P (z) =

∞∑
i,w=0

w∑
u=0

∫ ∞

0

ztαµ(i,w,u)g(t)G
i(t)dt

=

∞∑
i,w,a=0

w∑
u=0

(log z)aαµ(i,w,u)

a!

∫ ∞

0

tag(t)Gi(t)dt

=

∞∑
i,w,a=0

w∑
u=0

(log z)aαµ(i,w,u)

a!
p(z),

(20)

where

p(z) =

∫ ∞

0

tag(t)Gi(t)dt |z| ≤ 1.

Moment generating function
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The probability density function of the random variable T can be identified
using the moment generating function instrument. This is, however, possible since
the moment generating function is a non-negative integral of measurable function.
Thus, for a random variable T with a WGG distribution, the moment generating
function is given as

MT (z) =

∞∑
i,w=0

w∑
u=0

∫ ∞

0

eztαµ(i,w,u)g(t)G
i(t)dt

=

∞∑
i,w,a=0

w∑
u=0

zaαµ(i,w,u)

a!

∫ ∞

0

tag(t)Gi(t)dt

=

∞∑
i,w,a=0

w∑
u=0

zaαµ(i,w,u)

a!
p(z)

(21)

Probability weighted moments
One of the widely used characteristics of a distribution is called L-moments or

probability weighted moments. This characteristic is used in hydrology to estimate
the parameters of flood distributions. This might be because it is less sensitive to
outliers, lower sampling variability, and fast convergence to asymptotic normality.
The shape of the WGG generated probability distribution can also be summarized
using the L-moments. Thus, L-moments are defined as:

Pwm(w, v) =

∫ ∞

0

twF v(t)f(t)dt. (22)

However, F v can be expressed as

F v =

∞∑
i,w=0

w+p∑
u=0

v∑
p=0

(−1)2w+v+i−u

(
v

p

)(
w + p

u

)
λw+ppwΓ(kβ + i)

w!i!Γ(kβ)(1 + βλ)p
Gi(t)

where Γ(·) is a gamma function. Hence, L-moments is given as

Pwm(w, v) =

∞∑
i,w=0

w+p∑
u=0

v∑
p=0

R(i,w,u,p)αµ(i,w,u)Ti (23)

where

Ti =

∫ ∞

0

twg(t)G2i(t)dt

and

R(i,w,u,p) = (−1)2w+v+i−u

(
v

p

)(
w + p

u

)
λw+ppwΓ(kβ + i)

w!i!Γ(kβ)(1 + βλ)p
.

Entropies
The heterogeneity or impurity of the target variable of Poisson process can be

measured by the amount of uncertainty associated in the value of a random variable.
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Thus, the Shannon entropy of WGG generated random variable T is defined as

Se(T ) = E

[
−

∞∑
i,w=0

w∑
u=0

(
logµ(i,w,u) + log µ+ log g(t) + i logG(t)

)]
(24)

The Renyi entropy is a measure that increasingly weighs all WGG generated
random events with nonzero probability. As θ approaches zero, the WGG generated
Renyi entropy is given as

Rθ =
1

(1− θ)
log

∫ ∞

0

fθ(t)dt θ > 0, θ ̸= 0. (25)

This implies

Rθ =
1

(1− θ)
log

∫ ∞

0

( ∞∑
i,w=0

w∑
u=0

µ(i,w,u)αg(t)G
i(t)

)θ

dt

=
1

(1− θ)
log

[( ∞∑
i,w=0

w∑
u=0

µ(i,w,u)α

)θ ∫ ∞

0

g(t)θGi(t)θ
]
dt

=
1

(1− θ)
log

[( ∞∑
i,w=0

w∑
u=0

µ(i,w,u)αDi

)θ]
,

(26)

where

Di =

∫ ∞

0

g(t)Gi(t)dt. i = 1, 2, 3, . . .

Moment of the residual In reliability theory, and life testing scenarios, the addi-
tional lifetime a process or a product that a component or chain has survived up to
time t is called the vitality function or residual life function or truncated moment.
It can also be used to obtain the distribution function F (t). Thus, the kth moment
of the residual life defined as Mrs(x) = E[(T − x)k | T ≥ t]. Hence, it is expressed
as

Mrs(x) =
1

1− F (x)

∫ ∞

x

(T − x)kf(t)dt =
1

1− F (x)

k∑
a=1

(−1)k−axk−a

∫ ∞

x

taf(t)dt

=
α

1− F (x)

∞∑
i,w=0

w∑
u=0

k∑
a=1

(−1)k−axk−aµ(i,w,u)ℑi,

(27)

where

ℑi =

∫ ∞

x

tag(t)Gi(t)dt.

Theorem 2. Let T be a random variable with a WGG generated probability distri-
bution function F (t). Let S(t) = 1−F (t) and Mk(y) = E[(T −y)k | T > y], y ≥ 0.
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Then,

M ′
k(y) + kMk(y)

Mk(y)
=
M ′

k−1(y) + (k − 1)Mk−1(y)

Mk−1(y)
or

equivalently,

M ′
k−1(y) = −(k − 1)M ′

k−2(y) +
M ′

k(y)

Mk(y)
Mk−1(y) +

kM2
k−1(y)

Mk(y)
.

Proof. Let

Mk(y) =
1

S(y)

∫ ∞

y

k(t− y)k−1S(t)dt.

Then,

logMk(y) = log

∫ ∞

y

k(t− y)k−1S(t)dt− logS(y).

Thus, differentiating with respect to y, we have

M ′
k(y)

Mk(y)
=

∫∞
y

−k(k − 1)(t− y)k−2S(t)dt∫∞
y
k(t− y)k−1S(t)dt

− S′(y)

S(y)
=

−kMk−1(y)

Mk(y)
− S′(y)

S(y)
.

Hence,

M ′
k(y) + kMk−1(y)

Mk(y)
= −S

′(y)

S(y)
=
M ′

k−1(y) + (k − 2)Mk−2(y)

Mk−1(y)
.

□

8. Parameter Estimation

It is intuitive to note that the parameters of the WGG generated model are
descriptive measures of the entire population that determine the shape and location
of the curve on the plot of the WGG generated distribution. Hence, for a better
forecasting and regression analysis of the proposed WGG model to be efficient,
there is a need to obtain the parameter estimates of the WGG generated model.
Thus, in this section, the parameters of the WGG generated model are estimated
using the maximum likelihood estimation (MLE) method.

8.1. Maximum Likelihood. Let T = (T1, T2, . . . , Tk) be a random sample ob-
tained from the WGG generated distribution with unknown parameter vector Θ =
(β, λ, ψ)T . Let t = (t1, t2, . . . , tk) be a sample value of a random sample T. Then,
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we can obtain the log-likelihood as

ℓ =2k log λ+ k log β +

k∑
a=1

log g(ta, ψ)− k log(1 + βλ)

− (1 + βλ)

k∑
a=1

log(1−G(ta, ψ)) +

k∑
a=1

log((1−G(ta, ψ))
−β + β − 1)

−
k∑

a=1

λ((1−G(ta, ψ))
−β − 1).

(28)

The parameters of the WGG generated model are obtained by taking the first
partial derivative of the log-likelihood of the WGG model with respect to each of
the parameters and equate to zero. Thus, we have

∂ℓ

∂λ
=

2k

λ
− kβ

1 + βλ
−β

k∑
a=1

log(1−G(ta, ψ))−
k∑

a=1

((1−G(ta, ψ))
−β − 1) = 0, (29)

∂ℓ

∂ψ
=

k∑
a=1

g′(ta, ψ)

g(ta, ψ)
+ β

k∑
a=1

g(ta, ψ)(1−G(ta, ψ))
−β−1

((1−G(ta, ψ))−β + β − 1)

+ (1 + βλ)

k∑
a=1

g(ta, ψ)

1−G(ta, ψ)
− βλ

k∑
a=1

g(ta, ψ)(1−G(ta, ψ))
−β−1 = 0,

(30)

and

∂ℓ

∂β
=
k

β
− λ

k∑
a=1

log(1−G(ta, ψ)) +

k∑
a=1

(1−G(ta, ψ))
−β log(1−G(ta, ψ))

(1−G(ta, ψ))−β + β − 1

− kλ

1 + βλ
− λ

k∑
a=1

(1−G(ta, ψ))
−β log(1−G(ta, ψ)) = 0.

(31)

However, the solutions to the nonlinear equations (29), (30), and (31) are ob-
tained in closed form using numerical methods. These numerical methods are
beyond the scope of this article.

9. Applications

The viability, tractability, and performance of the WGG generated model is ex-
amined by first performing a Monte Carlo simulation of some sub-models of the
proposed model. The real-life applications of some of the sub-models of the pro-
posed model were investigated and compared to some competitive-related models
in the literature. The WGG sub-models were compared with some existing models
based on their mean squared errors in the simulation cases and goodness-of-fit test
statistics in life applications.
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9.1. Simulation study. A Monte Carlo simulation was carried out to test the
flexibility and efficiency of the proposed distribution. The simulation was achieved
using the quantile function in (9) to generate random data for the proposed model
with 0 < q < 1 for various values of λ = 1.0, β = 1.0, θ = 0.2 and ρ = 1.0 for
the Burr XII sub-model. λ = 0.9, β = 2.3, θ = 0.1 and ρ = 0.01 for the Lomax
sub-model, and λ = 0.1, β = 0.1, θ = 0.3 and ρ = 0.8 for the Frechet sub-model for
1000 replicated trials.

The sample size n are taken as n = 5, 10, 20, 50, 100, 150, 200, 250,300, 350, 400, 450,
and 500 The simulation studied the mean estimated (ME), biases, and mean squared
errors (MSE). The result of the simulation is as shown in Table 1. In Table one, we
observed that the biases converge to zero as sample sizes increase. The estimated
mean also converges to the true value as the sample sizes increases. The mean
square errors converge to zero.

The bias is obtained for (W = λ, β, θ, ρ) as

ˆBiasW =
1

1000

1000∑
i=1

(
Ŵi −W

)
.

Also, the MSE is obtained as

ˆMSEW =
1

1000

1000∑
i=1

(
Ŵi −W

)2

.

9.2. Life applications. In most cases of statistical modeling, the interest is to
estimate the model parameters and evaluate their test statistics goodness-of-fit.
Thus, in this section, the viability, tractability, and effectiveness of the proposed
model is investigated with the illustration of real-life data sets. The measures of
the test statistics’ goodness-of-fit were examined with some existing neighbourhood
models in the literature. These models in the literature include, but are not limited
to, the class of Weibull, Gompertz, Kumaraswamy, and Frechet distributions. The
test statistics considered include the Akaike information criterion (AIC), Anderson-
Darling (A), Cramer-von Mises (W), Kolmogrov-Smirnov (KS), and p-value (p-val).
The larger the p-value and the smaller the test statistics the better the model fits
the data.

9.2.1. Obesity Data. The first data consist of 22 obesity among children and adoles-
cents aged 12-19 by selected characteristics: United States, selected between 2015
- 2018 as reported by [9]. The data are available in https://www.cdc.gov/nchs/hus
/contents.htm-Table-027. The data were measured based on height and weight.
The data are as follows:

18.9,15.1,23.1,9.8,25.7,26.9,19.8,16.0,19.2,12.0,28.0,29.2,
17.9,14.2,27.0,7.4,23.3,24.6,23.9,21.7,18.4,10.6.
The descriptive statistics of the data are given in Table 2.
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Table 1. The mean estimates (ME), biases and mean squared
errors (MSE) for λ, β, θ and ρ with WGG generated sub-models

Distribution Parameters n ME Bias MSE
Burr XII 05 1.0602 0.8288 0.1762 1.0033 0.3603 0.3288 0.8306 0.7033 0.3597 0.1811 0.6907 0.6271

10 1.1340 0.8115 0.1718 0.9558 0.3592 0.3157 0.2286 0.6779 0.3544 0.1581 0.6873 0.5358
20 1.1951 0.7708 0.1694 0.9466 0.3592 0.3157 0.1285 0.6740 0.3474 0.1303 0.1871 0.5326

λ = 1.0 50 1.1601 0.7416 0.1715 0.9556 0.2284 0.1115 0.1283 0.0667 0.3349 0.1255 0.0370 0.5226
100 1.0615 0.7558 0.1724 0.9740 0.1244 0.0192 0.1283 0.0648 0.1345 0.0240 0.0269 0.4176

β = 1.0 150 1.0219 0.7796 0.1714 0.9648 0.1159 0.0178 0.1282 0.0582 0.0400 0.0221 0.0269 0.3150
200 0.9716 0.7961 0.1717 0.9779 0.1089 0.0130 0.0278 0.0575 0.0331 0.0211 0.0261 0.2107

θ = 0.2 250 0.9756 0.7893 0.1729 0.9582 0.0181 0.0101 0.0176 0.0418 0.0317 0.0180 0.0256 0.1012
300 0.9397 0.8078 0.1722 0.9667 0.0028 0.0098 0.0173 0.0406 0.0259 0.0164 0.0152 0.0196

ρ = 1.0 350 0.9408 0.8157 0.1717 0.9575 0.0021 0.0096 0.0101 0.0466 0.0158 0.0149 0.0148 0.0190
400 0.9408 0.8157 0.1717 0.9575 0.0010 0.0078 0.0062 0.0298 0.0028 0.0142 0.0134 0.0106
450 0.9841 0.8092 0.1727 0.9269 0.0001 0.0058 0.0058 0.0269 0.0009 0.0084 0.0127 0.0094
500 0.9911 0.8030 0.1742 0.9152 0.0001 0.0016 0.0038 0.0152 0.0006 0.0063 0.0101 0.0092

Lomax 05 1.0055 2.1054 0.0956 0.0143 0.7055 0.4735 1.3044 0.0918 0.7714 0.4765 1.3050 0.0919
10 0.9631 2.1852 0.0959 0.0109 0.6631 0.4724 1.3041 0.0917 0.7078 0.4740 1.3046 0.0917
20 0.9085 2.2429 0.0963 0.0098 0.6085 0.4718 1.3037 0.0916 0.6287 0.4727 1.3042 0.0917

λ = 0.9 50 0.8801 2.2735 0.0951 0.0084 0.6071 0.1010 1.3049 0.0416 0.1091 0.1720 0.1043 0.0216
100 0.8806 2.2724 0.0958 0.0082 0.0232 0.0208 0.0142 0.0391 0.0254 0.0420 0.0138 0.0116

β = 2.3 150 0.8870 2.2708 0.0977 0.0083 0.0196 0.0192 0.0123 0.0313 0.0238 0.0300 0.0125 0.0113
200 0.8870 2.2718 0.0991 0.0084 0.0133 0.0184 0.0109 0.0212 0.0147 0.0292 0.0114 0.0112

θ = 0.1 250 0.8896 2.2710 0.0987 0.0084 0.0132 0.0181 0.0093 0.0211 0.0136 0.0198 0.0111 0.0111
300 0.8962 2.2692 0.1010 0.0087 0.0096 0.0173 0.0082 0.0210 0.0122 0.0180 0.0092 0.0110

ρ = 0.01 350 0.8993 2.2684 0.1020 0.0088 0.0070 0.0159 0.0080 0.0199 0.0100 0.0166 0.0082 0.0109
400 0.9016 2.2681 0.1028 0.0089 0.0030 0.0129 0.0072 0.0195 0.0097 0.0121 0.0073 0.0098
450 0.9002 2.2673 0.1014 0.0090 0.0006 0.0057 0.0066 0.0191 0.0055 0.0089 0.0067 0.0094
500 0.9001 2.2659 0.1005 0.0091 0.0001 0.0054 0.0055 0.0157 0.0038 0.0075 0.0056 0.0069

Frechet 05 0.0488 0.3418 0.0439 1.0031 0.1515 0.4418 0.1193 0.8031 0.1978 0.6305 0.1201 0.9035
10 0.0485 0.3282 0.0472 0.9886 0.1512 0.4282 0.1191 0.7886 0.1899 0.6233 0.1195 0.8846
20 0.0556 0.2775 0.0467 0.9320 0.1444 0.3775 0.1185 0.7320 0.1740 0.5772 0.1193 0.8254

λ = 0.1 50 0.0830 0.1931 0.0453 0.8610 0.1170 0.2931 0.1183 0.0610 0.1355 0.2597 0.1189 0.1302
100 0.0973 0.1332 0.0384 0.8298 0.1027 0.2332 0.1175 0.0435 0.0227 0.0289 0.0188 0.0141

β = 0.1 150 0.1020 0.1129 0.0352 0.8287 0.0980 0.2129 0.1174 0.0423 0.0205 0.0269 0.0182 0.0113
200 0.1054 0.1054 0.0334 0.8234 0.0946 0.2024 0.1166 0.0402 0.0191 0.0225 0.0179 0.0104

θ = 0.3 250 0.1069 0.1046 0.0326 0.8244 0.0935 0.1976 0.1148 0.0368 0.0177 0.0138 0.0176 0.0094
300 0.1084 0.1036 0.0325 0.8352 0.0916 0.2036 0.1116 0.0352 0.0154 0.0131 0.0167 0.0083

λ = 0.8 350 0.1102 0.1024 0.0317 0.8068 0.0898 0.2024 0.1061 0.0298 0.0124 0.0110 0.0160 0.0074
400 0.1041 0.1016 0.0315 0.8012 0.0889 0.2036 0.1047 0.0287 0.0113 0.0102 0.0153 0.0066
450 0.1021 0.1014 0.0309 0.8003 0.0879 0.2037 0.1033 0.0244 0.0100 0.0099 0.0137 0.0053
500 0.1006 0.1007 0.0307 0.8005 0.0874 0.2034 0.1028 0.0234 0.0092 0.0091 0.0127 0.0029

Table 2. The Descriptive statistics of obesity among children and
adolescents data set to 2 decimal points

Mean Median σ IQR Variance Kurtosis Skewness 25% 75% 99%
19.67 19.50 6.30 9.10 39.66 -1.12 -0.29 15.33 24.43 28.95

We observed from Table 2 that the a negative kurtosis and skewness were ob-
tained. This implies that the distribution of the obesity data is flatter than a
normal curve with the same mean and standard deviation. Hence, the data are left
skewed.
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Table 3 shows the test statistics of the goodness-of-fit measure of comparison
adopted for comprehensive comparison.

Table 3: The goodness-of-fit measure of obesity among children
and adolescents data set (standard errors in parentheses)

Distribution p-value AIC KS W A Estimates

WGG-B 0.9997 97.9173 0.0219 0.0012 0.0528 λ̂ = 0.2201(0.1022)

β̂ = 1.2315(0.0898)
ρ̂ = 0.0872(0.0098)

θ̂ = 0.2124(0.0252)

WGG-L 0.9390 102.3145 0.1071 0.0278 0.2021 λ̂ = 0.0075(0.0020)

β̂ = 1.2912(0.0125)
ρ̂ = 0.1142(0.0967)

θ̂ = 0.8494(0.3254)

WGG-F 0.9324 109.8906 0.2095 0.0452 0.3183 λ̂ = 0.0022(0.0004)

β̂ = 2.4857(0.8351)
ρ̂ = 0.8792(0.2743)

θ̂ = 1.0516(0.2778)
KB 0.7640 153.2259 0.1356 0.0811 0.5349 α̂ = 33.4661(17.9125)

β̂ = 47.4488(46.2083)
ρ̂ = 0.0331(1.8429)

θ̂ = 21.8947(7.1942)
KL 0.6961 154.7281 0.1443 0.1006 0.6475 α̂ = 14.5201(14.8943)

β̂ = 1.3267(1.7158)
ρ̂ = 0.0079(0.0030)

θ̂ = 20.3753(16.9103)
KF 0.7788 152.0259 0.1336 0.0642 0.4347 α̂ = 5.1639(6.2917)

β̂ = 166.4803(246.7566)
ρ̂ = 0.6187(0.1771)

θ̂ = 20.9740(34.9274)
KW 0.6844 147.3603 0.0915 0.0194 0.1346 α̂ = 0.2099(0.2886)

β̂ = 1.1818(1.3944)
ρ̂ = 0.0356(0.0084)

θ̂ = 12.5159(17.5384)
APG 0.6866 147.2333 0.0901 0.0296 0.2029 α̂ = 1.8905(2.7086)

β̂ = 0.0051(0.0037)
ρ̂ = 0.1627(0.0287)

GB 0.2511 156.8906 0.2095 0.0452 0.3183 α̂ = 0.0022(0.0004)

β̂ = 2.4857(0.8351)
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Table 3 – Continued from previous page

Distribution p-value AIC KS W A Estimates

ρ̂ = 0.8792(0.2743)

θ̂ = 1.0516(0.2778)
GF 0.5457 148.5009 0.1055 0.0249 0.1808 α̂ = 0.7959(3.4859)

β̂ = 6.7388(13.2331)
ρ̂ = 1.0350(0.8096)

θ̂ = 27.6166(54.6914)
GL 0.5390 149.3145 0.1071 0.0278 0.2021 α̂ = 0.0075(0.0080)

β̂ = 6.2912(4.8123)
ρ̂ = 0.1142(0.0967)

θ̂ = 0.8494(0.7254)
WL 0.4568 146.4643 0.1024 0.0245 0.1779 α̂ = 1.0199(2.1532)

β̂ = 7.5745(3.4940)
ρ̂ = 31.1218(20.4511)

θ̂ = 5.2402(0.7263)
WF 0.8703 149.7794 0.1203 0.0348 0.2507 α̂ = 0.0413(0.2325)

β̂ = 7.7834(2.0028)
ρ̂ = 7.7834(8.9362)

θ̂ = 3.4925(4.9272)
WB 0.7543 149.9324 0.1228 0.0371 0.2652 α̂ = 0.0073(0.0079)

β̂ = 6.9216(3.2352)
ρ̂ = 0.3107(0.5863)

θ̂ = 1.1514(2.4617)
GE 0.4868 147.0767 0.0900 0.0284 0.1958 α̂ = 0.0093(0.0111)

β̂ = 0.5355(0.6937)
ρ̂ = 0.3373(0.4140)

GW 0.6824 148.0124 0.0926 0.0226 0.1569 α̂ = 0.0335(0.1008)

β̂ = 0.0745(0.1903)
ρ̂ = 0.1381(0.1830)

θ̂ = 2.4173(0.3935)
TF 0.5892 149.5043 0.0883 0.0293 0.2053 α̂ = 0.0086(0.0091)

β̂ = 0.3939(2.0093)
ρ̂ = 0.6124(1.6391)

θ̂ = −0.0118(0.0251)

Figure 5 shows the empirical histogram and cdfs of the obesity real-life data
applications.

9.2.2. Precipitations in Karachi city, Pakistan Data. The second data examined
comprises 59 annual maximum precipitations in Karachi city, Pakistan, for the
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Figure 4. The Empirical densities and cdfs of obesity among chil-
dren and adolescents data set

years 1950-2009 as used in [6]. The precipitation records help water management
studies and flood defense systems to predict floods and droughts. The precipitation
data also help to minimize the risk of large hydraulic structures. The values of the
data are:

11.8, 6.5, 54.9, 39.9, 16.8, 30.2, 38.4, 76.9, 73.4, 117.6, 157.7, 148.6, 11.4, 5.6,
63.6, 62.4, 85, 256.3, 24.9, 148.6, 160.5, 131.3, 77, 155.2, 217.2, 105.5, 166.8, 157.9,
73.6, 291.4, , 30, 270.4, 160, 96.3, 185.7, 429.3, 184.9, 262.5, 80.6, 138.2, 28, 39.3,
210.3, 315.7, 107.7, 33.3, 302.6, 159.1, 78.7, 33.2, 52.2, 92.7,150.4, 43.7, 68.3, 20.8,
179.4, 245.7, 19.5.

The descriptive statistics of the data are given in Table 4.

Table 4. The Descriptive statistics of annual maximum precipi-
tations in Karachi city, Pakistan data set to 2 decimal points

Mean Median σ IQR Variance Kurtosis Skewness 25% 75% 99%
118.40 92.70 93.21 120.65 8688.99 0.64 0.99 39.60 160.25 363.41

We observed from Table 4 that the a positive kurtosis and skewness indicated
that distribution is peaked and possesses thick tails, and most values are clustered
around the left tail of the distribution while the right tail of the distribution is
longer.
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Table 5: The goodness-of-fit measure of maximum precipitations
in Karachi city, Pakistan data set (standard errors in parentheses)

Distribution p-value AIC KS W A Estimates

WGG-B 0.9470 383.7050 0.0961 0.0454 0.2577 λ̂ = 0.0951(0.1763)

β̂ = 1.2401(0.1875)
ρ̂ = 1.7186(0.2943)

θ̂ = 1.9784(0.6677)

WGG-L 0.9376 391.7440 0.0968 0.0461 0.2616 λ̂ = 0.1689(0.0778)

β̂ = 1.2239(0.0682)
ρ̂ = 1.0199(0.0332)

θ̂ = 1.5536(0.0941)

WGG-F 0.8617 401.1031 0.0989 0.0688 0.3093 λ̂ = 1.4858(0.4944)

β̂ = 1.2023(0.7353)
ρ̂ = 1.1434(0.1052)

θ̂ = 1.3496(0.9372)
KB 0.2911 691.8905 0.1276 0.1372 0.8463 α̂ = 8.3342(2.2157)

β̂ = 56.1819(92.7683)
ρ̂ = 0.0182(0.0000)

θ̂ = 11.1408(1.0780)
KL 0.4207 687.9069 0.1145 0.0848 0.4997 α̂ = 1.7166(0.2951)

β̂ = 3.3847(2.8572)
ρ̂ = 0.0040(0.0010)

θ̂ = 1.5341(1.0421)
KF 0.3786 687.6918 0.1185 0.0883 0.5257 α̂ = 6.8464(2.1692)

β̂ = 161.821(229.22)
ρ̂ = 0.2188(0.0564)

θ̂ = 30.025(31.898)
KW 0.7467 684.7171 0.0883 0.0467 0.2692 α̂ = 0.8755(0.4893)

β̂ = 0.5662(0.6176)
ρ̂ = 0.0112(0.0098)

θ̂ = 1.3454(0.3905)
APG 0.8959 682.9092 0.0748 0.0438 0.2641 α̂ = 1.5772(2.1911)

β̂ = 0.0073(0.0040)
ρ̂ = 0.0023(0.0022)

GB 0.6326 684.8519 0.0972 0.0491 0.2803 α̂ = 0.0075(0.0045)

β̂ = 2.7856(1.9958)
ρ̂ = 0.3543(0.3103)

θ̂ = 1.2401(0.9676)
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Table 5 – Continued from previous page

Distribution p-value AIC KS W A Estimates

GF 0.6774 683.6124 0.0937 0.0435 0.2460 α̂ = 0.1587(0.4962)

β̂ = 1.8235(2.5702)
ρ̂ = 0.7248(0.7488)

θ̂ = 22.8034(61.9942)
GL 0.7704 685.1274 0.0864 0.0488 0.2849 α̂ = 0.1380(2.0119)

β̂ = 1.7962(38.1464)
ρ̂ = 0.0437(0.3829)

θ̂ = 0.7748(16.8750)
WF 0.7042 681.9136 0.0916 0.0434 0.2462 α̂ = 0.0358(0.0180)

β̂ = 0.2947(0.1467)
ρ̂ = 4.1927(2.0935)

θ̂ = 8.6209(1.7749)
WB 0.5757 684.6917 0.1016 0.0519 0.2954 α̂ = 0.0073(0.0049)

β̂ = 2.4377(1.0282)
ρ̂ = 0.4476(0.4885)

θ̂ = 0.9901(1.3096)
WL 0.1985 751.7122 0.1398 0.0730 0.4267 α̂ = 3.6920(0.7601)

β̂ = 0.0923(0.0253)
ρ̂ = 0.6424(0.0600)

θ̂ = 0.1421(0.5247)
GE 0.3220 682.9042 0.0717 0.0420 0.2562 α̂ = 0.0857(0.0178)

β̂ = 0.0438(0.0473)
ρ̂ = 0.0707(0.6964)

GW 0.4824 687.6262 0.0604 0.0582 0.3764 α̂ = 0.0341(0.0082)

β̂ = 0.0787(0.0160)
ρ̂ = 0.3342(0.0000)

θ̂ = 0.7105(0.0072)
TF 0.3617 701.1031 0.1201 0.2688 1.6393 α̂ = 28.4858(29.4944)

β̂ = 31.2023(13.7353)
ρ̂ = 1.1434(0.1052)

θ̂ = 0.9372(4.2815)

Figure 6 shows the empirical histogram and cdfs of the obesity real-life data
applications.

9.3. Discussion. In Tables 3 and 5, we observed that the p-values of the WGG
generated models are the highest with the lowest AIC test statistic in Burr XII,
Lomax, and Frechet sub-models. Hence, the WGG model has provided a better
alternative to making statistical distributions more flexible, and viable compared
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Figure 5. The Empirical densities and cdfs of maximum precipi-
tations in Karachi city, Pakistan data set

to the model generated by Gompertz, Weibull, Kumaraswamy, and Alpha power
models.

10. Conclusion

Intuitively, a two-parameter weighted Gompertz-G generated distribution was
examined and introduced by making use of a weighted Gompertz and the T-X
characterizations. The newly developed model has found its uses in cases where
two-sided abrupt changes schemes occurred in applications. The WGG model has
provided a better alternative to making statistical distributions more flexible, and
viable compared to the model generated by Gompertz, Weibull, Kumaraswamy,
and Alpha power models. The statistical properties and estimations of the model
parameters were obtained. The viability and flexibility of the WGG-generated
model were demonstrated by illustration of a simulation and real data sets using
their goodness-of-fit statistics. The outcomes of the WGG-generated test statistics
indicated a better viable, tractable, flexible, and parsimonious generator compared
to some competitive models in the literature. Hence, it can be used as a better
alternative in reliability theory and extreme value theory.
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