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Abstract
In this paper we introduce the concept of pointwise bi-slant submanifolds of locally product
Riemannian manifolds and studied warped product pointwise bi-slant submanifolds of
locally product Riemannian manifolds. We obtain some characterization results for warped
products pointwise bi-slant submanifolds. Also, we provide some non-trivial examples of
such warped product submanifolds.
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1. Introduction
In [7], Chen introduced the notion of slant submanifolds. It includes totally real as well

as holomorphic submanifolds. Numerous geometer groups continue to study and conduct
research on this idea of submanifolds. Recently, the related literature of slant submani-
folds has been compiled in the form of two books by Chen, Shahid and Solamy (see [15]).
Since the introduction of slant submanifolds, many generalizations and extensions of slant
submanifolds have been introduced, like: semi-slant, pointwise slant, hemi-slant, pointwise
hemislant and many more. The related literature of these kind of generalizations can be
be found in (see, [14, 17, 21, 23, 24]). A more generic class of submanifolds in the form of
bi-slant submanifolds was introduced by Cabrerizo and Cariazo [6]. This class of subman-
ifolds acts as a natural generalization of CR, semi-slant, slant, hemi-slant submanifolds
[21, 23, 25]. In connection to this generic notion of submanifolds, some of recent studies
can be found in [20]. Further the extended notion of pointwise bi-slant submanifolds of
Kaehler manifolds can be found in [16].

Bishop and ONeill in 1960s introduced the concept of warped product manifolds. These
manifolds find their applications both in physics as well as in mathematics. Since then
the study of warped product submanifolds has been investigated by many geometers (see,
[1, 10–12]). In particular, Chen started looking these warped products as submanifolds
of different kinds of manifolds (see, [8, 9]). In this connection, in Kaehlerian settings, he
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proved besides CR- products the non-existence of warped products of the form N⊥ ×f NT ,
where N⊥, NT is a totally real and holomorphic submanifold, respectively [32]. Now from
the past two decades this area of research is an active area of research among many of the
geometry groups. For the overall development of the subject we refer the reader to see
Chen’s book on it [13].

Now while importing the survey of warped products to slant cases, Sahin in [27] proved
the non-existence of semi-slant warped products in any Kaehler manifold. Then in [29]
he extended the study to pointwise semi-slant warped products of Kaeherian manifolds.
Sahin [28] and Atcken [2] investigated warped product semi-slant submanifolds of locally
product Riemannain manifolds. They proved there is no warped product semi-slant sub-
manifold of the form MT ×f Mθ of a locally product Riemannian manifold M̄ such that MT

and Mθ are invariant and proper slant submanifolds of M̄ , respectively. Moreover they
provided non-trival examples and proved a characterization theorem for warped product
semi-slant submanifolds of the form Mθ ×f MT .

The main motivation for our paper is a recent study of Uddin, Alghamdi and Solamy
[31], in which they have studied the geometry of warped product pointwise semi-slant sub-
manifolds of locally product Riemannian manifolds. In this paper, we try to generalize the
notion to bi-slant warped products of locally product Riemannain manifolds. We proved
several results on pointwise bi-slant submanifolds of locally product Riemannain manifolds,
in addition, we proved some characterization results for pointwise bi-slant submanifolds of
locally product Riemannain manifolds. Later, we also provide some non-trivial examples
of such submanifolds.

2. Preliminaries
Let M̄ be an m-dimensional differential manifold with a tensor field F of type (1,1)

such that F 2 = I and F 6= ±I. Then we say that M̄ is an almost product manifold with
almost product structure F . If an almost product manifold M̄ has a Riemannian metric
g such that

g(FX, FY ) = g(X, Y ), (2.1)

for any X, Y ∈ Γ(TM̄), then M̄ is called an almost product Riemannian manifold [33],
where Γ(TM̄) denotes the set of all vector fields of M̄ . Let ∇̄ denotes the Levi-Civita
connection on M̄ with respect to the Riemannian metric g. if (∇̄XF )Y = 0, for any vector
X, Y ∈ Γ(TM̄), the M̄ is called a locally product Riemannian manifold [22].
Let M be a Riemannian manifold isometrically immersed in M̄ and we denote by the
symbol g the Riemannian metric induced on M . Let Γ(TM) denote the Lie algebra
of vector fields in M and Γ(T ⊥M), the set of all vector fields normal to M . If ∇ be the
induced Levi-Civita connection on M , the Gauss and Weingarten formulas are respectively
given by

∇̄XY = ∇XY + σ(X, Y ), (2.2)

and

∇̄XN = −AN X + ∇⊥
XN, (2.3)

for any X, Y ∈ Γ(TM) and N ∈ Γ(T ⊥M), where ∇⊥ is the normal connection on T ⊥M
and A the shape operator. The shape operator and the second fundamental form of M
are related by

g(AN X, Y ) = g(σ(X, Y ), N), (2.4)
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for any X, Y ∈ Γ(TM) and N ∈ Γ(T ⊥M), and g denotes the induced metric on M as well
as the metric on M̄ .
For a tangent vector field X and a normal vector field N of M , we can write

FX = TX + ωX, FN = BN + CN, (2.5)
where TX and ωX (respectively, BN and CN) are the tangential and normal components
of FX (respectively, of FN).
Moreover, from (2.1) and (2.5), we have

g(TX, Y ) = g(X, TY ), (2.6)
for any X, Y ∈ Γ(TM).
We can now specify the following classes of submanifolds of locally product Riemannian
manifolds:
(1) A submanifold M of a locally product Riemannian manifold M̄ is said to be slant (see
[3, 7, 26]), if for each non-zero vector X tangent to M , the angle θ(X) between FX and
TpM is a constant, i.e., it does not depend on the choice of p ∈ M and X ∈ TpM .
(2) A submanifold M of a locally product Riemannian manifold M̄ is called semi-invariant
submanifold (see [4, 30]) of M̃ if there exists a differentiable distribution D : p → Dp ⊂
TpM such that D is invariant with respect to F and the complementary distribution D⊥

is anti-invariant with respect to F .
(3) A submanifold M of a locally product Riemannian manifold M̄ is called semi-slant
(see [22, 25]), if it is endowed with two orthogonal distributions D and Dθ, where D is
invariant with respect to F and Dθ is slant, i.e., θ(X) is the angle between FX and Dθ

p is
constant for any X ∈ Dθ

p and p ∈ M .

Definition 2.1. A submanifold M of a locally product Riemannian manifolld M̄ is called
pointwise slant [18], if at each point p ∈ M , the Wirtinger angle θ(X) between FX and
TpM is independent of the choice of the non-zero vector X ∈ TpM . In this case, the
Wirtinger angle gives rise to a real valued function θ : TM − {0} → R which is called
Wirtinger function or slant function of the pointwise slant function.

We note that a pointwise slant submanifold of a locally product Riemannian manifold
is called slant, in the sense of [3, 26], if its Wirtinger function θ is globally constant. We
also note that every slant submanifold is a pointwise slant slant submanifold.

From Chen’s result (Lemma 2.1) of [14], we can easily show that M is a pointwise slant
submanifold of a locally product Riemannian manifold M̄ if and only if

T 2 = (cos2 θ)I, (2.7)
for some real-valued function θ defined on M , where I denotes the identity transformation
of the tangent bundle TM of M . The following relations are the consequences of (2.7) as

g(TX, TY ) = (cos2 θ)g(X, Y ), g(ωX, ωY ) = (sin2 θ)g(X, Y ). (2.8)
Also, for a pointwise bi-slant submanifold of locally product Riemannian manifold, (2.5)
and (2.7) yields

BωX = (sin2 θ)X CωX = −ωTX. (2.9)

3. Pointwise bi-slant submanifolds
In this section, we define and study pointwise bi-slant submanifolds of a locally product

Riemannian manifold.

Definition 3.1. Let M̄ be a locally product Riemannian manifold and M a real subman-
ifold of M̄ . The we say M is a bi-slant submanifold if there exists a pair of orthogonal
distributions D1 and D2 of M , at a point p ∈ M such that
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(a) TM = D1 ⊕ D2;
(b) JD1 ⊥ D2 and JD2 ⊥ D1;
(c) The distributions D1, D2 are pointwise slant with slant functions θ1, θ2, respectively.

The pair {θ1, θ2} of slant functions is called the bi-slant function. A pointwise bi-slant
submanifold M is called proper if its bi-slant function satisfies θ1, θ2 6= 0, π

2 and both θ1, θ2
are not constant on M .

Note that (2.5) and condition (b) in the Definition 3.1 imply that

T (Di) ⊂ Di, i = 1, 2. (3.1)

Given a pointwise bi-slant submanifold M of locally product Riemannian manifold M̄ , for
any X ∈ Γ(TM), we put

X = P1X + P2X (3.2)

where Pi is the projection from Γ(TM) onto Di. Clearly, PiX is the components of X in
Di, i = 1, 2. In particular, if X ∈ Di, we have X = PiX. If we put Ti = Pi ◦ T , then we
can find (3.2) that

FX = T1X + T2X + ωX, (3.3)

for any X ∈ Γ(TM).
From now onwards, we assume the ambient manifold M̄ is locally product Riemannian
manifold and M is pointwise bi-slant submanifold in M̄ .
Now we give the following useful lemma for later use.

Lemma 3.2. Let M be a pointwise bi-slant submanifold of a locally product Riemannian
manifold M̄ with pointwise slant distributions D1 and D2 with distinct slant functions θ1
and θ2, respectively. Then
(i) For X, Y ∈ D1 and Z ∈ D2, we have

(sin2 θ2 − sin2 θ1)g(∇XY, Z) = g
{
(σ(X, Z), ωT1Y ) + (σ(X, T2Z), ωY )

}
+g

{
(σ(X, Y ), ωT2Z) + (σ(X, T1Y ), ωZ)

}
.

(3.4)

(ii) For Z, W ∈ D2 and X ∈ D1, we have

(sin2 θ1 − sin2 θ2)g(∇ZW, X) = g
{
(σ(X, Z), ωT2W ) + (σ(Z, T1X), ωW )

}
+g

{
(σ(Z, W ), ωT1X) + (σ(Z, T2W ), ωX)

}
.

(3.5)

Proof. For X, Y ∈ D1 and Z ∈ D2, we have

g(∇XY, Z) = g(∇̄XY, Z) = g(F ∇̄XY, FZ).

Using the locally product structure and (2.5), we have

g(∇XY, Z) = g(∇̄XT1Y, FZ) + g(∇̄XωY, T2Z) + g(∇̄XωY, ωZ).
= g(∇̄XT 2

1 Y, Z) + g(∇̄XωT1Y, Z) − g(AωY X, T2Z)
−g(∇̄XωZ, ωY ).

Again using (2.5) and (2.7), we obtain

g(∇XY, Z) = cos2 θ1g(∇̄XY, Z) − sin 2(θ1)X(θ1)g(Y, Z) − g(AωT1Y X, Z)
−g(AωY X, T2Z) − g(∇̄XωZ, FY ) + g(∇̄XωZ, T1Y ).
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By using the orthogonality of two distributions and the symmetry of shape operator, the
above equation reduces to

sin2 θ1g(∇XY, Z) = −g(σ(X, Z), ωT1Y ) − g(σ(X, T2Z), ωY )
−g(∇̄XBωZ, Y ) − g(∇̄XCωZ, Y ) − g(AωZX, T1Y ).

Thus, from (2.9), we obtain

sin2 θ1g(∇XY, Z) = −g(σ(X, Z), ωT1Y ) − g(σ(X, T2Z), ωY )
− sin2 θ2g(∇̄XZ, Y ) − sin 2(θ2)X(θ2)g(Y, Z)
+g(∇̄XωT2Z, Y ) − g(AωZX, T1Y ).

Using (2.3) and the orthogonality of vector fields, we have

sin2 θ1g(∇XY, Z) = −g(σ(X, Z), ωT1Y ) − g(σ(X, T2Z), ωY )
+ sin2 θ2g(∇̄XY, Z) − g(AωT2ZX, Y )
−g(AωZT1Y, X).

Now, part (i) of the lemma follows from the above equation by using (2.4). In the similar
fashion, we can prove part (ii). �

The following corollary is the immediate consequence of the Lemma 1(i)

Corollary 3.3. Let M be a pointwise semi-slant submanifold of a locally product Rie-
mannian manifold M̄ . Then,

sin2 θg(∇XY, Z) = g(σ(X, Y ), ωTZ) + g(σ(X, FY ), ωZ),
for any X, Y ∈ D1 and Z ∈ D2.

Proof. If we put θ1 = 0 and θ2 = θ, a slant function, then the submanifold M of locally
product Riemannian manifold M̄ becomes pointwise semi-slant submanifold. In this case,
the first two terms in the right hand size of (3.4) vanish identically. Thus the relation
(3.4) reduces to

sin2 θg(∇XY, Z) = g(σ(X, Y ), ωTZ) + g(σ(X, FY ), ωZ).

The same result has been proved in [31]. �

4. Warped product pointwise bi-slant submanifolds of locally product
Riemannian manifold

Let (M1, g1) and (M2, g2) be two Riemannian manifolds and f > 0, be a positive differ-
entiable function on M1. Consider the product manifold M1 × M2 with its canonical pro-
jections π : M1 × M2 → M1 and ρ : M1 × M2 → M2. The warped product M = M1 ×f M2
is the product manifold M1 × M2 equipped with the Riemannian metric g such that

g(X, Y ) = g1(π∗(X), π∗(Y )) + (f ◦ π)2g2(ρ∗(X), ρ∗(Y )),
for any tangent vector X, Y ∈ TM , where ∗ is the symbol for the tangent maps. It was
proved in [5] that for any X ∈ TM1 and Z ∈ TM2, the following holds

∇XZ = ∇ZX = (Xlnf)Z, (4.1)
where ∇ denotes the Levi-Civita connection of g on M . A warped product manifold
M = M1×f M2 is said to be trivial if the warping function f is constant. If M = M1×f M2
is a warped product manifold then M1 is totally geodesic and M2 is a totally umbilical
(see [5, 9]).
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Lemma 4.1. Let MT ×f Mθ be a warped product pointwise bi-slant submanifold of a locally
product Riemannian manifold M̄ such that MT and Mθ are pointwise slant submanifolds
with slant functions θ1 and θ2, respectively of M̄ . Then we have the following

g(σ(X, W ), ωT2Z) + g(σ(X, T2Z), ωW ) = −(sin 2θ2)X(θ2)g(Z, W ), (4.2)
for any X ∈ TMT and Z, W ∈ TMθ.

Proof. For any X ∈ TMT and Z, W ∈ TMθ, we have
g(∇̄XZ, W ) = g(∇XZ, W ) = X(lnf)g(Z, W ). (4.3)

On the other hand, we also have
g(∇̄XZ, W ) = g(F ∇̄XZ, FW ) = g(∇̄XFZ, FW ).

Now for any X ∈ TMT and Z, W ∈ TMθ. Using (2.5), we obtain

g(∇̄XZ, W ) = g(∇̄XT2Z, T2W ) + g(∇̄XT2Z, ωW ) + g(∇̄XωZ, FW ).

Then from (2.1), (2.2), (4.1) and the locally product Riemannian structure, we derive
g(∇̄XZ, W ) = cos2 θ2X(lnf)g(Z, W ) + g(σ(X, T2Z), ωW ) + g(∇̄XFωZ, W )

= cos2 θ2X(lnf)g(Z, W ) + g(σ(X, T2Z), ωW ) + g(∇̄XBωZ, W )
+g(∇̄XCωZ, W ).

Using (2.9), we find

g(∇̄XZ, W ) = cos2 θ2X(lnf)g(Z, W ) + g(σ(X, T2Z), ωW ) (4.4)
+ sin2 θ2g(∇̄XZ, W ) + sin 2θ2X(θ2)g(Z, W )
−g(∇̄XωT2Z, W ).

Thus the lemma follows from (4.3) and (4.4) by using (2.3) and (4.1). �

Lemma 4.2. Let MT ×f Mθ be a warped product pointwise bi-slant submanifold of a locally
product Riemannian manifold M̄ such that MT and Mθ are pointwise slant submanifolds
with slant functions θ1 and θ2, respectively of M̄ . Then we have the following

g(σ(X, Z), ωW ) + g(σ(X, W ), ωZ) = −2(tan θ2)X(θ2)g(T2Z, W ), (4.5)
for any X ∈ TMT and Z, W ∈ TMθ.

Proof. The proof of this lemma follows by Interchanging Z by T2Z for any Z ∈ TM2 in
(4.2) and then by using (2.7). �

Lemma 4.3. Let MT ×f Mθ be a warped product pointwise bi-slant submanifold of a locally
product Riemannian manifold M̄ such that MT and Mθ are pointwise slant submanifolds
with slant functions θ1 and θ2, respectively of M̄ . Then

(i) g(σ(X, Z), ωW ) = g(σ(X, W ), ωZ), (4.6)

(ii) g(σ(X, Z), ωY ) = −g(σ(X, Y ), ωZ), (4.7)
for any X ∈ TMT and Z, W ∈ TMθ.

Proof. For any X ∈ TMT and Z, W ∈ TMθ, we have
g(σ(X, Z), ωW ) = g(∇̄ZX, ωW )

= g(∇̄ZX, FW ) − g(∇̄ZX, T2W ).
Using (2.1),(2.5) and (4.1), we obtain

g(σ(X, Z), ωW ) = g(∇̄ZT1X, W ) + g(∇̄ZωX, W ) − X(lnf)g(Z, T2W ).
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On simplification and using (2.3), (2.4) and (4.1), we derive

g(σ(X, Z), ωW ) = T1X(lnf)g(Z, W ) − g(σ(Z, W ), ωX) − X(lnf)g(Z, T2W ).
(4.8)

Then from polarization, we get

g(σ(X, W ), ωZ) = T1X(lnf)g(Z, W ) − g(σ(Z, W ), ωX) − X(lnf)g(T2Z, W ).
(4.9)

Subtracting (4.9) from (4.8) and using (2.6), we obtain

g(σ(X, Z), ωW ) − g(σ(X, W ), ωZ) = 0.

Hence, the proof follows from the above relation.
For part (ii), the proof follows same as part (i). �

Theorem 4.4. Let M = MT ×f Mθ be a warped product pointwise bi-slant submanifold
of a locally product Riemannian manifold M̄ such that MT and Mθ are pointwise slant
submanifolds with distinct slant functions θ1 and θ2, respectively of M̄ . Then we have

g(AωT1XW + AωXT2W, Z) + g(AωT2W X + AωW T1X, Z)
= (sin2 θ2 − sin2 θ1)X(lnf)g(Z, W ), (4.10)

for any X, Y ∈ TMT and Z, W ∈ TMθ.

Proof. For any X, Y ∈ TMT and Z, W ∈ TMθ, we have

g(∇̄ZX, W ) = g(∇ZX, W ) = X(lnf)g(Z, W ). (4.11)

On the other hand, for X, Y ∈ TMT and Z, W ∈ TMθ, we have

g(∇̄ZX, W ) = g(F ∇̄ZX, FW ) = g(∇̄ZFX, FW ).

Therefore, by using (2.5), we get

g(∇̄ZX, W ) = g(∇̄ZT1X, FW ) + g(∇̄ZωX, T2W ) + g(∇̄ZωX, ωW ).

Using (2.1), (2.3) and definition of locally product Riemannian manifold, we obtain

g(∇̄ZX, W ) = g(∇̄ZFT1X, W ) − g(AωXZ, T2W ) − g(∇̄ZωW, ωX).

From (2.5) and symmetry of shape operator, we derive

g(∇̄ZX, W ) = g(∇̄ZT 2
1 X, W ) + g(∇̄ZωT1X, W ) − g(AωXT2W, Z)

−g(F ∇̄ZωW, X) + g(∇̄ZωW, T1X)
= cos2 θ1g(∇̄ZX, W ) − sin 2θ1Z(θ1)g(X, W ) − g(AωT1XZ, W )

−g(AωXT2W, Z) − g(∇̄ZFωW, X) − g(AωW Z, T1X).

Using (2.2), (2.5), (4.1), (4.11) and the orthogonality of vector fields and symmetry of
shape operator, we get

sin2 θ1X(lnf)g(Z, W ) = −g(AωT1XW + AωXT2W, Z) − g(∇̄ZBωW, X)
−g(∇̄ZCωW, X) − g(AωW T1X, Z).

Using (2.9), we arrive at

sin2 θ1X(lnf)g(Z, W ) = −g(AωT1XW + AωXT2W, Z) − sin2 θ2g(∇̄ZW, X)
− sin 2θ2Z(θ2)g(X, W ) + g(∇̄ZωT2W, X)
−g(AωW T1X, Z).
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Further, using orthogonality of vector fields and the relation (2.2), (2.3) and (4.1), we
obtain

sin2 θ1X(lnf)g(Z, W ) = −g(AωT1XW + AωXT2W, Z)
+ sin2 θ2X(lnf)g(Z, W ) − g(AωT2W Z, X)
−g(AωW T1X, Z).

Again using the symmetry of shape operator, we obtain (4.10) from the above relation.
Hence the proof is complete. �

5. Characterization for warped product pointwise bi-slant submanifolds
of locally product Riemannian manifolds

In this section, we will prove the characterization for warped product pointwise bi-slant
submanifolds of locally product Riemannian manifolds. For this, we need the following
well known theorem of Hiepko’s.

Theorem 5.1 ([19]). Let D1 and D2 be two orthogonal distribution on a Riemannian
manifold M . Suppose that D1 and D2 both are involutive such that D1 is totally geodesic
folation and D2 is a spherical foliation. Then M is locally isometric to a non-trial warped
product M1 ×f M2, where, M1 and M2 are integral manifolds of D1 and D2, respectively.

The following result provides a characterization for warped product pointwise bi-slant
submanifolds of locally product Riemannian manifolds.

Theorem 5.2. Let M be a proper pointwise bi-slant submanifold of a locally product
Riemannian manifold M̄ with pointwise slant distributions D1 and D2. Then M is locally
a warped product pointwise bi-slant submanifold of the form MT ×f Mθ, where MT and
Mθ are pointwise slant submanifolds with distinct slant functions θ1 and θ2, respectively
of M̄ if and only if the shape operator of M satisfies

AωT1XZ + AωXT2Z + AωT2ZX + AωZT1X = (sin2 θ2 − sin2 θ1)X(µ)Z, (5.1)

for X ∈ D1, Z ∈ D2 and for a smooth function µ on M satisfying W (µ) = 0 for any
W ∈ D2.

Proof. Let M = MT ×f Mθ be a warped product pointwise bi-slant submanifold of a
locally product Riemannian manifold M̄ . Then from Lemma 4.3(ii), we have

g(AωY Z + AωZY, X) = 0 (5.2)

for any X, Y ∈ TM1 and Z ∈ TM2. Interchanging Y by T1Y in (5.2), we obtain
g(AωT1Y Z + AωZT1Y, X) = 0. (5.3)

Again interchanging Z by T2Z in (5.2), we obtain
g(AωY T2Z + AωT2ZY, X) = 0. (5.4)

Adding equations (5.3) and (5.4), we get
g(AωT1Y Z + AωZT1Y + AωY T2Z + AωT2ZY, X) = 0. (5.5)

Then (5.1) follows from (4.10) by using the above fact.

Conversely, if M be a pointwise bi-slant subamnifold of a locally product Riemannian
manifold with pointwise slant distributions D1 and D2 such that (5.1) holds, then from
Lemma 3.2(i), we have

(sin2 θ2 − sin2 θ1)g(∇XY, Z) = g(AωT1Y Z + AωZT1Y

+AωY T2Z + AωT2ZY, X)
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for any X, Y ∈ D1 and Z ∈ D2. Using the above condition (5.1), we have
g(∇XY, Z) = X(µ)g(X, Z) = 0

which indicates that the leaves of the distributions are totally geodesic in M .
On the other hand, from Lemma 3.2(ii), we have

(sin2 θ1 − sin2 θ2)g(∇ZW, X) = g(AωT2W X + AωW T1X

+AωT1XW + AωXT2W, Z).
From the hypothesis of the theorem i.e., (5.1), we get

g(∇ZW, X) = −X(µ)g(Z, W ). (5.6)
By polarization, we arrive at

g(∇W Z, X) = −X(µ)g(Z, W ). (5.7)

On subtracting (5.7) from (5.6) and by the definition of Lie bracket, we obtain g([Z, W ], X)
= 0, which depicts that the distribution D2 is integrable. If we consider a leaf M2 of D2
and the second fundamental form σ2 of M2 in M , then from (5.6), we have

g(σ2(Z, W ), X) = g(∇ZW, X) = −X(µ)g(Z, W ).

Now, by the definition of the gradient we have σ2(Z, W ) = −∇̄µg(Z, W ), such that ∇̄µ

is the gradient of µ. The above relations shows that the leaf of M2 is totally Umbilical
in M with the mean curvature vector H2 = −∇̄µ. Since W (µ) = 0 for any W ∈ D2,
which clearly shows that the mean curvature is parallel. Thus, the spherical condition is
satisfied. Then by Hiepko’s Theorem M is locally a warped product pointwise bi-slant
submanifold. Hence the proof is complete. �

The following immediate consequences of the above theorem are given below:

1. In Theorem 5.2, if θ1 = 0 and θ2 = θ, a slant function, then the submanifold M
of locally product Riemannian manifold M̄ becomes a pointwise semi-slant submanifold
which has been studied in [31]. In this case, the first two terms in the left hand side of
(5.1) vanish identically. Thus, the relation (5.1) is true for pointwise semi-slant warped
product and it reduces to

AωT ZX + AωZFX = (sin2 θ)X(µ)Z,

for X ∈ D1 and Z ∈ D2, where D1 and D2 are complex and proper pointwise slant distri-
butions of M . The same has been proved in [31].

2. In Theorem 5.2, if we consider θ1 = θ a constant slant angle and θ2 = π
2 , then it

is a case of hemi-slant warped products. In this case, the second and third term in the left
hand side of (5.1) vanish identically. Thus the relation (5.1) is true for hemi-slant warped
products and it reduces to

AωT XZ + AF ZTX = (cos2 θ)X(µ)Z,

for X ∈ Dθ and Z ∈ D⊥, where Dθ and D⊥ are proper slant and totally real distributions.

3. In Theorem 5.2, if θ1 = 0 and θ2 = π
2 , then it is a case of CR-warped product.

In this case all the terms in the left hand side of(5.1) vanish identically. Thus the relation
(5.1) is true for CR-warped products and it will be

AF ZFX = X(µ)Z,

for X ∈ D and Z ∈ D⊥, where D and D⊥ are complex and totally real distributions of
M .
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6. Some examples on warped product pointwise bi-slant submanifolds of
locally product Riemannian manifold

Example 6.1. Let R4 be the Euclidean space with the cartesian coordinates given by
(x1, x2, y1, y2) and the almost product structure

F

(
∂

∂xi

)
= ∂

∂xi
, F

(
∂

∂yj

)
= − ∂

∂yj
, 1 ≤ i, j ≤ 2.

A submanifold M of R4 defined by
χ(u, v, w) = (wu cos v, wu sin v, w cos v, w sin v).

It is easy to see that the tangent bundle TM of M is spanned by the following vectors

v1 = w cos v
∂

∂x1
+ w sin v

∂

∂x2
,

v2 = −wu sin v
∂

∂x1
+ wu cos v

∂

∂x2
− w sin v

∂

∂y1
+ w cos v

∂

∂y2
,

v3 = u cos v
∂

∂x1
+ u sin v

∂

∂x2
+ cos v

∂

∂y1
+ sin v

∂

∂y2
.

Then , clearly we obtain

Fv1 = w cos v
∂

∂x1
+ w sin v

∂

∂x2
,

Fv2 = −wu sin v
∂

∂x1
+ wu cos v

∂

∂x2
+ w sin v

∂

∂y1
− w cos v

∂

∂y2
,

Fv3 = u cos v
∂

∂x1
+ u sin v

∂

∂x2
− cos v

∂

∂y1
− sin v

∂

∂y2
.

Then, we find that D1 = span{v1, v3} is a proper pointwise slant distribution with slant
angle θ1 = cos−1 (

u√
1+u2

)
and D2 = span{v2} is again a proper pointwise slant distribution

with slant angle θ2 = cos−1 (
u2−1
u2+1

)
. Thus, M is a proper pointwise bi-slant submanifold

of R4.

It is easy to verify that both the distributions D1 and D2 are integrable. If we denote
the integrable manifolds of D1 and D2 by MT and Mθ, respectively. Then the metric
tensor g of product manifold M is given by

g = gMT
+ w2(1 + u2)gMθ

,

where,
gMT

= w2du2 + (1 + u2)dw2 and gMθ
= dv2.

Hence, M is a proper non-trival warped product pointwise bi-slant submanifold of R4 with
warping function f =

√
w2(1 + u2) and whose bi-slant angles θ1, θ2 6= 0, π

2 .

Example 6.2. Let R6 = R3×R3 be a locally product Riemannian manifold with cartesian
coordinates (x1, x2, x3, y1, y3, y3). Consider a submanifold M of R6 defined by

χ(u, v, w) = (v cos u, v sin u, −v + w, w cos u, w sin u, v + w),
with almost product structure F defined by

F

(
∂

∂xi

)
= −

(
∂

∂xi

)
, F

(
∂

∂yj

)
=

(
∂

∂yj

)
, 1 ≤ i, j ≤ 3.
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It is easy to see that its tangent space TM of M is spanned by the following vectors

v1 = −v sin u
∂

∂x1
+ v cos u

∂

∂x2
− w sin u

∂

∂y1
+ w cos u

∂

∂y2
,

v2 = cos u
∂

∂x1
+ sin u

∂

∂x2
− ∂

∂x3
+ ∂

∂y3
,

v3 = ∂

∂x3
+ cos u

∂

∂y1
+ sin u

∂

∂y2
+ ∂

∂y3
.

Then, we have

Fv1 = v sin u
∂

∂x1
− v cos u

∂

∂x2
− w sin u

∂

∂y1
+ w cos u

∂

∂y2
,

Fv2 = − cos u
∂

∂x1
− sin u

∂

∂x2
+ ∂

∂x3
+ ∂

∂y3
,

Fv3 = − ∂

∂x3
+ cos u

∂

∂y1
+ sin u

∂

∂y2
+ ∂

∂y3
.

Let us put D1 = span{v1} is a proper slant distribution with slant angle θ1 = cos−1 (
w2−v2

w2+v2
)

and D2 = span{v2, v3} is again a proper slant distribution with slant angle θ2 = cos−1 (2
3
)
.

Hence the submanifold M defined by χ is a bi-slant submanifold.
It is easy to verify that both the distributions D1 and D2 are integrable. If we denote

the integrable manifolds of D1 and D2 by MT and Mθ, respectively. Then the metric
tensor g of product manifold M is given by

g = gMθ
+ (v2 + w2)gMT

where
gMθ

= 3(dv2 + dw2) and gMT
= du2.

Hence, M is a proper non-trival warped product bi-slant submanifold of R6 with warping
function f =

√
v2 + w2 and whose bi-slant angles θ1, θ2 6= 0, π

2 .
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