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 One of the cancers with the highest incidence in the world is breast cancer (BC). The aim of this 

study is to identify candidate biomarker genes to predict the risk of distant metastases in patients 

with BC and to compare the performance of machine learning (ML) based models. In the study; 

Genomic dataset containing 24,481 gene expression levels of 97 patients with BC was analyzed. 

Biomarker candidate genes were determined by ML approaches and models were created with 

XGBoost, naive bayes (NB) and multilayer perceptron (MLP) algorithms. The accuracy values 

of XGBoost, NB and MLP algorithms were obtained as 0.990, 0.907 and 0.979, respectively. Our 

results showed that XGBoost has higher performance. The top five genes associated with BC 

metastasis were AL080059, Ubiquilin 1, CA9, PEX12, and CCN4. In conclusion, when the ML 

method and genomic technology are used together, the distant metastasis risk of patients with BC 

can be successfully predicted. The developed XGBoost model can distinguish patients with 

distant metastases. Identified biomarker candidate genes may contribute to diagnostic, therapeutic 

and drug development research in patients with metastases. 
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1. INTRODUCTION  

THE cancer is the health problem with the highest incidence 

of cardiovascular diseases in the world. In the report published 

by the International Agency for Research on Cancer in 2012, 

with information on 184 countries, it was announced that 14.1 

million new cancer cases and 8.2 million deaths were due to 

cancer [1, 2]. Breast cancer (BC) is a systemic disease that 

occurs as a result of the rapid spread and proliferation of cells 

in the mammary glands and ducts of the breast to tissues in 

different parts of the body. Cancer types with the highest 

incidence are lung (13%), breast (11.9%) and colon (9.7%) 

cancers in the world. The cancer types with the highest 

mortality are lung (19.4%), liver (9.1%) and stomach (8.8%) 

cancers. The predicted cancer cases for 2025 are 19.3 million  

[3, 4]. 

Risk factors affecting BC are demographic variables, 

hormonal system changes, lifestyles, and benign breast 

anomalies, environmental and hereditary factors [4, 5]. Gene 

analysis has an important place in the determination of genetic 

factors. Mutations in oncogene/anthioncogene structures 

affect processes and formations. For BC; HER 2 and HER 1  

 

 

(c-erbB-2 and 1), Ras, c-Mys, TP53, BRCA1, BRCA2, 

STK11, PTEN, CDH1, CHRK, ATM, PALB2 genes have 

been revealed in previous studies [5]. 

Gene expression, which forms the basis of analyzes in 

molecular structure studies for BC, is used in the diagnosis 

and treatment of BC  [6, 7]. The use of large-scale genomic 

analyzes in today's studies reveals complex structures. In most 

of the studies, the relationship between tumor metastasis and 

widespread mutational structures were examined clonally [8]. 

Microarray technology developing depending on the 

developments in medical technologies; It offers researchers 

the opportunity to measure more than one gene structure at the 

same time. The gene structures of the diseased and non-

disease groups are clearly analyzed for distinguishing 

features. Although it is difficult for researchers to analyze with 

multidimensional data, these difficulties disappear with ML 

[9]. 

ML offers researchers a dynamic analysis process and is 

frequently used. In ML, many different processes such as 

classification, summarization, clustering of data, methods of 
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establishing variable models are applied. ML also presents 

unobservable relationships in large databases to researchers. 

In the ML database system, this unobservable information is 

made with database technologies, modeling methods, 

statistical and mathematical analysis [10, 11]. 

When constructing ML classification models on high-

dimensional microarray datasets, biomarker candidate genes 

associated with the disease of interest must first be identified. 

It will be possible to improve the performance metrics of the 

classification model to be created by identifying biomarker 

candidate genes [12]. 

Microarray technology, which is used together with ML, is 

a method that will facilitate the early diagnosis of BC. With 

Microarray technology, researchers can analyze the 

expression level of thousands of genes simultaneously and 

qualitatively. Accurate classification techniques for BC 

prognosis and treatment process with ML will also help 

clinicians. A prediction model is created by analyzing 

complex BC datasets with ML [13].  

The aim of this study; to establish a supportive clinical 

prediction model for early diagnosis by identifying biomarker 

candidate genes that cause metastasis in patients with BC with 

ML approaches. 

  

2. MATERIAL AND METHODS 

2.1. Data 

Gene expression data were obtained from the National Center 
for Biotechnology Information Gene Expression Omnibus 
(NCBI GEO) database and analyzed. The study examined 
24,481 gene expression levels in 97 patients with BC, 46 
(47%) of whom had developed distant metastases within 5 
years and 51 (53%) were lymph node negative (pN0) who did 
not develop distant metastases [14, 15]. 

 

2.2. Methods 

2.2.1. Machine Learning Approach 

Feature selection for genomic data are methods used in 

machine learning to shorten analysis time, identify 

disease/state of interest-associated biomarker candidate 

genes, and improve the performance of predictive models. In 

the study, recursive feature elimination (RFE) method based 

on logistic regression (LR) classifier was used to select 

candidate gene biomarkers associated with BC metastasis. 

RFE is a popular method as it is effective in selecting the 

features that are most relevant for estimating the target feature 

RFE is a wrapper feature selection method. The method 

selects features using a machine learning algorithm [16]. 

The LR used in the RFE is a method that uses the maximum 

likelihood estimation approach for regression and 

classification tasks and estimates the values of the parameters 

that maximize the probability obtained [17]. 

XGBoost, naïve bayes (NB), and multilayer perception 

(MLP) classifiers were used to predict BC metastasis after 

feature selection. An algorithm based on decision-tree (DT) 

and gradient-boosting (GB), XGBoost is a faster running 

algorithm compared to GB algorithms, with different 

regularization penalties to avoid overfitting [18]. NB is an 

algorithm based on conditional probability, which is assumed 

to be equal and independent from each other in the 

classification of all attributes based on conditional probability 

[19]. 

MLP is a type of neural network used to support feed 

forward neural networks. In MLP, the input layer receives the 

signal to be processed and the output layer does the estimation 

and classification [20, 21]. 

The 10-fold cross validation (CV) method was used to 

validate the models. The k-fold CV splits the data into k 

blocks randomly and the algorithm uses the k-1 block as the 

training set and the remaining single block as the test set. The 

process continues until all blocks are used as a test set, and the 

average of all results represents the overall performance [22]. 

The performance of the models was evaluated with accuracy, 

Sensitivity, specificity, positive predictive value, negative 

predictive value, and F1-score, and the performance results of 

the models were compared. 
 

3. RESULTS 
In Table 1, the results of the performance measures for the 

models created for BC metastasis prediction are given. When 

Table 1 is examined, the accuracy, sensitivity, specificity, 

positive predictive value, negative predictive value, and F1-

score values of the XGBoost model were obtained as 0.990, 

0.978, 1.000, 1.000, 0.981, and 0.989, respectively. Accuracy, 

sensitivity, specificity, positive predictive value, negative 

predictive value and F1-score values for the NB model were 

obtained as 0.907, 0.978, 0.843, 0.849, 0.977 and 0.909, 

respectively.  

In the MLP model, accuracy, sensitivity, specificity, 

positive predictive value, negative predictive value and F1-

score values were obtained as 0.979, 0.957, 0.843, 0.849, 

0.977 and 0.909, respectively. The results showed that the 

XGBoost model had higher performance in predicting BC 

metastasis compared to the NB and MLP models. 

 

 
   NB: Naive Bayes; MLP: Multilayer Perception 

 

 

In Table 2 and Figure 1, the importance of genes according 

to their contribution to the prediction of BC metastasis of the 

XGBoost model was examined. According to the results of the 

study, the importance of AL080059, Ubiquilin 1, CA9, 

PEX12, and CCN4 genes were 100, 90.621, 53.731, 46.485, 

and 45.775, respectively.  

 

TABLE I 
The Performance of the Models 

Metric XGBoost NB MLP 

Accuracy 0.990 0.907 0.979 

Sensitivity 0.978 0.978 0.957 

Specificity 1.000 0.843 1.000 
Positive predictive value 1.000 0.849 1.000 

Negative predictive value 0.981 0.977 0.962 

F1-score 0.989 0.909 0.978 
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Fig. 1. Importance plot for biomarker genes 

 

 

4. DISCUSSION 
Even though there have been significant advances in the 

treatment of BC in recent years, the prognosis for the majority 

of patients who have distant metastasis is still not good. 

Patients diagnosed with BC who are at the same stage of the 

disease may have very different responses to treatment and 

very different outcomes overall. In order to pave the way for 

earlier detection of metastasis and more effective treatments, 

it is critical to have an in-depth understanding of the molecular 

phenotype of distant metastasis. Based on this, the purpose of 

this study was to predict the presence of distant metastases in 

BC patients using ML methods that were based on genomic 

biomarkers [14]. From this point of view, the aim of this study 

is to predict the presence of distant metastases in BC patients 

using ML methods based on genomic information and data.  

Genomic data including 24,481 gene expression levels of 

97 patients with and without metastasis were used in the study. 

Genomic data containing thousands of gene expression levels 

belonging to a small number of patients in ML models require 

some preprocessing at the analysis stage due to their high 

dimensionality. Therefore, before creating ML models in the 

study, biomarker candidate genes were selected by LR-based 

RFE method. As a result of the analyses, 20 genes associated 

with BC distant metastasis were identified. Models based on 

XGBoost, NB and MLP algorithms were created with these 

biomarker candidate genes. Our results showed that XGBoost 

has higher performance compared to NB and MLP models. 

The accuracy, sensitivity, specificity, positive predictive 

value, negative predictive value, and F1-score values of the 

XGBoost model were obtained as 0.990, 0.978, 1.000, 1.000, 

0.981, and 0.989, respectively. The first five genes that made 

a preliminary significant contribution to the prediction 

performance of the optimal model, XGBoost, and thus to 

differentiate BC distant metastasis, were AL080059, 

Ubiquilin 1, CA9, PEX12, and CCN4. The results of the trait 

significance analysis showed that the significance of the 

AL080059, Ubiquilin 1, CA9, PEX12, and CCN4 genes were 

100, 90,621, 53,731, 46,485, and 45,775, respectively. 

Our biomarker gene selection results were similar to the 

literature. In a study, it was reported that the AL080059 gene 

had a significant difference in BC patients compared to 

healthy controls and could be a candidate for a biomarker [23]. 

In different studies, it was found that UBQLN1 increased 

abnormally for BC [24, 25]. Similarly, in our study, it was 

reported that the Ubiquilin 1 (UBQLN1) gene showed a 

significant difference in BC patients and could be a biomarker 

candidate. CA9 has an important place in the distribution of 

tissues in the body and has been found to be an important 

factor for BC [26]. In our study, CA9 was found to be the third 

most important risk variable for BC. PEX 12 is an important 

risk factor in BC as in liver cancer [27-29]. In our study, 

PEX12 was found to be one of the most important risk 

variables for BC. CNN proteins enable the activation of signal 

transduction within the cell. CNN4 gene is effective on cancer 

because it is effective in cell migration and increases 

epithelial-mesenchymal transition [30], which was found to 

be an important risk factor for BC as well in our study. NMU, 

which affects the invasive capacity of cancer cells, has been 

identified as a risk factor for BC in different studies [31, 32]. 

In the factors examined in our study, NMU was found to be a 

risk factor for BC. 
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TABLE II 

The Genes and Importance 

Feature (Gene) Importance 

AL080059 100 

Ubiquilin-1 90.621 

CA9 53.731 

PEX12 46.485 

CCN4 45.775 

NMU 40.069 

SSX2 38.24 

ALDH4A1 36.249 

RAB5 35.927 

ALDH6A1 34.281 

ARL4D 31.954 

PHF1 29.893 

UBE2T 27.616 

AF052087 24.889 

KIAA0906 21.185 

PRAME 20.766 

TGFB3 19.256 

CDKN3 8.622 

SLC37A1 8.217 

SCUBE2 7.583 
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As a result, genes identified in the early diagnosis and 

treatment of BC distant metastasis can be examined and the 

XGBoost model can successfully differentiate metastases. 

 
5. CONCLUSIONS  
In conclusion, with the methodology combined with genomic 

technology and ml method, the risk of distant metastasis of 

patients with bc can be successfully predicted. identified 

biomarker candidate genes may contribute to diagnosis, 

treatment and drug development research in patients with 

metastasis. the developed XGBoost model can distinguish 

patients with distant metastases. 
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