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Abstract
The fractional versions of various metric related parameters have recently gained impor-
tance due to their applications in the fields of sensor networking, robot navigation and
linear optimization problems. Convex polytopes are collection of those polytopes of Eu-
clidean space which are their convex subsets. They have key importance in the field of
network designing due to their stable and resilient structure which aids optimal data trans-
fer. The identification and removal of components (nodes) of a communication network
causing abruption in its flow is of key importance for optimal data transmission. These
components are referred as strong resolving neighbourhood (SRNs) in graph theory and
assigning least weight to these components aids the computation of fractional strong met-
ric dimension (FSMD). In this paper, we compute FSMD for certain convex polytopes
which include Pn, P1

n and P2
n. In this regard, it is shown that for n ≥ 3, FSMD of Pn

and P2
n is n and 3n

2 , respectively. Also, FSMD of P1
n is n when n is odd and 3n

2 when n is
even. Finally, an application of FSMD in the context of internet connection networks is
furnished.
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1. Introduction and preliminaries
Convex polytopes are fascinating mathematical models that form building blocks of

many mathematical theories such as algebraic geometry, combinatorial optimization and
linear programming. These structures have captured the attention of mathematicians and
scientists due importance and application in many fields, including computer science, eco-
nomics, physics and chemistry. In this era of automation and computerization, robotics
and machineries substitute the human labour for cost efficient production of output re-
quired to accommodate the demand of markets with minimal use of these landmarks. In
this regard, distance based parameters of graphs have utmost importance and applica-
tion in several areas. One of the distance based parameters is metric dimension, having
applications in real life including network discovery [3], pharmaceutical chemistry [4],
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optimizations [14] and robot navigation. Slater [21] introduced the concept of metric di-
mension under the name location number in 1975. Later, in 1976, Harary and Melter [8]
independently gave the concept and named it metric dimension. In [4], metric dimension
was formulated as integer programming problem. Some developments in metric dimension
can be seen in [4, 6–8]. Different variants of metric dimension have been introduced by
researchers, some of them are local metric dimension [17], strong metric dimension [20],
fractional metric dimension [2] and etc. The main focus of researchers was to discuss
these variants of metric dimension on different families of graphs. In [20], Sebö and Tan-
nier introduced a stronger variant of metric dimension of a graph known as strong metric
dimension. Further in [18], it was identified by Oellermann and Fransen that the calcu-
lation of strong metric dimension is NP hard problem. In 2001, Currie and Oellermann
[6] used the linear relaxation of the integer programming problem for metric dimension to
define the concept of fractional metric dimension. The fractional metric dimension was
further established by Arumugam and Mathew [2] in 2012 by introducing the notion of
resolving neighbourhoods. In [16], FMD of generalized Jahangir graphs was computed.
In 2013, Kang and Yi [13] introduced the notion of FSMD by imposing a stronger condi-
tion on fractional metric dimension and also calculated it for some important families of
graphs. It was further argued that using the same scheme described in [7], the problem
of finding FSMD can be translated as linear programming problem. The localized version
of fractional metric dimension have been described in [1] and [15]. A stronger variant of
local fractional metric dimension is discussed in [10].
Let A = (V (A), E(A)) be a finite, undirected, connected and simple graph where |E(A)|
and |V (A)| are known as the order and size of the graph. The open neighbourhood of
any vertex x ∈ V (A) is the collection of all the vertices of A adjacent to x, denoted by
N(x). For any two of vertices x, y ∈ V (A), the distance d(x, y), is the length of shortest
x − y path in A also known as geodesic. If for every vertex a in N(x) where x ∈ V (A),
the condition d(a, y) ≤ d(x, y) holds, then x is maximally distant from y ∈ V (A). For
the pair of vertices x, y ∈ V (A), x is said to be mutually maximally distant from y
(x MMD y) only if x is maximally distant from y and y is maximally distant from x.
For an ordered subset S = {xi; 1 ≤ i ≤ k} of V (A), we refer to the ordered t-vector
r(x|S) =

(
d(v, xi))t

i=1 as representation of x with respect to S. The set S is called a
resolving set for the graph A if r(x|S) = r(y|S) implies that x = y for all x, y ∈ V (A).
The cardinality of resolving set of A with least number of elements is known as metric
dimension of A, denoted by dim(A). A vertex z strongly resolves two vertices x1 and x2
if x1 belongs to a shortest x2 − z path, or if x2 belongs to a shortest x1 − z path. A
vertex set S of A is a strong resolving set of A if every two distinct vertices of A are
strongly resolved by some vertex of S. The cardinality of strong resolving set having
minimum number elements is known as strong metric dimension of A, represented by
sdim(A). The set S{x1, x2} consisting of all vertices z from the vertex set of A such that
x1 lies on x2 − z geodesic or x2 lies on x1 − z geodesic is known as the strong resolv-
ing neighbourhood (SRN) of x1 and x2. A real valued function α : V (A) → [0, 1] is a
strong resolving function of A if for any distinct pair of vertices x1, x2 ∈ A, the weight
α(S{x1, x2}) is greater than or equal to 1. The FSMD of A is denoted by sdimf(A) and
defined as min{α(V (A)) : α is a strong resolving function of A}. The SRNs for a graph A
with least cardinality and its compliment are given by S(A) = {S∗| S∗ is the SRN such that
|S∗| = γ(A)}, where γ(A) is the cardinality of smallest SRN of A. Also, S(A) = {S′| S′

is the SRN of A not in S(A)}. The technique used in this paper to compute FSMD of a
graph is mentioned below:

Theorem 1.1. [11] Let Ω(A) = S(A)∪S(A) be collection of all SRNs of graph A such that
for every distinct pair of vertices x, y ∈ V (A) |S{x, y} ∩ (∪S∗∈S(A)S

∗)| ≥ γ(A) where γ(A)
is the cardinality of strong resolving neighbourhoods with minimum number of elements.



FSMD of convex polytopes and its applications 3

un

u1

u2u3

u4

u5
vn

v1

v2v3

v4

v5

wn

w1

w2

w3

w4

Figure 1. The Convex Polytope Pn

Then

sdimf (A) =
β(A)∑
t=1

1
γ(A)

, where β(A) = | ∪S∗∈S(A) S∗|.

Recent developments regarding the computation of metric variants for convex polytopes
can be seen in [5], [9], [10] and [19]. Some bounds and results introduced by Kang [12] are
mentioned below:

Lemma 1.2. [12] Let A be a connected graph with order n. Then
(1) dimf(A) ≤ sdimf(A),
(2) sdimf(A) ≤ sdim(A)
(3) S{a, b} = {a, b} if and only if the vertices a and b are MMD and γ(A) = 2, where

a ̸= b ∈ V (A) and n ≥ 2.

The main contributions of the paper are as follows:

1.1. Main results:
The research conducted in this article leads to the following novel results.

Theorem 1.3. For n ≥ 3,
(1) sdimf(Pn) = n

(2) sdimf(P1
n) =

{
3n
2 if n is even

n if n is odd

(3) sdimf(P2
n) = 3n

2

In this paper, we compute FSMD of certain convex polytopes. In section 2 and 3, SRNs
of the convex polytopes Pn and P1

n are computed. Section 4 is devoted to the discussion
of SRNs of the convex polytope P2

n. In section 5, FSMD of all convex polytopes discussed
above is computed. Section 6 contains application of FSMD in the context of internet
connection networks and finally the article is concluded in section 7.

2. Strong resolving neighbourhoods of convex polytope Pn

In this section, SRNs of the convex polytope Pn will be calculated. The convex polytope
Pn is obtained by attaching adjacent pentagons with a cycle. The vertex and edge set of Pn

are V (Pn) = {ui, vi, wi | 1 ≤ i ≤ n} and E(Pn) = {uiui+1, uivi, viwi, wivi+1 | 1 ≤ i ≤ n},
respectively, with the indices taken mod n. The convex polytope Pn is shown in Figure
1. In order to compute SRNs of the graph Pn, its vertices are to be pairwise classified
depending upon either being on the same cycle or on different cycle. In the following
lemmas SRNs of pair of MMD vertices in Pn are computed.
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Lemma 2.1. Let Pn be a convex polytope where n is even. Then, |S{vp, vp+ n
2
}| =

|S{wp, wp+k}| = 2 where 1 ≤ p ≤ n and 4 ≤ p + k ≤ n
2 . Also, |(

n⋃
p=1

S{vp, vp+ n
2
})

⋃
(

n⋃
p=1

S{wp, wp+k})| = 2n.

Proof. It is clear from the construction of the graph Pn that vp and vp+ n
2

are MMD.
Also, wp and wp+k are MMD in Pn therefore, in view of Lemma 1.2, the SRNs of pair
of vertices vp and vp+ n

2
is {vp, vp+ n

2
}. Also, the SRN S{wp, wp+k} = {wp, wp+k}. Here,

|S{vp, vp+ n
2
}| = |S{wp, wp+k}| = 2. From the above it implies that (

n⋃
p=1

S{vp, vp+ n
2
})

⋃
(

n⋃
p=1

S{wp, wp+k}) = {vb, wb | 1 ≤ b ≤ n}. Hence, |(
n⋃

p=1
S{vp, vp+ n

2
})

⋃
(

n⋃
p=1

S{wp, wp+k})|

= 2n. □
Lemma 2.2. Let Pn be a convex polytope where n is odd. Then, |S{vp, wp+⌊ n

2 ⌋}| =

|S{wp, wp+k}| = 2 where 1 ≤ p ≤ n and 4 ≤ p + k ≤ ⌈n
2 ⌉. Also, |(

n⋃
p=1

S{vp, wp+⌊ n
2 ⌋})

⋃
(

n⋃
p=1

S{wp, wp+k})| = 2n.

Proof. The vertices vp and wp+⌊ n
2 ⌋ of the graph Pn are MMD. Also, the pair of ver-

tices wp and wp+k are MMD in Pn therefore, in view of Lemma 1.2, the SRNs of
pair of vertices vp and wp+⌊ n

2 ⌋ is {vp, wp+⌊ n
2 ⌋}. Also, S{wp, wp+k} = {wp, wp+k}. It

is clear that |S{vp, wp+⌊ n
2 ⌋}| = |S{wp, wp+k}| = 2. From the above it implies that

(
n⋃

p=1
S{vp, wp+⌊ n

2 ⌋})
⋃

(
n⋃

p=1
S{wp, wp+k}) = {vb, wb | 1 ≤ b ≤ n}. Hence, |(

n⋃
p=1

S{vp, wp+⌊ n
2 ⌋})

⋃
(

n⋃
p=1

S{wp, wp+k})| = 2n. □

Consider

H(Pn) =
{

A if n is even
B if n is odd

(2.1)

where |A| = |
n⋃

p=1
S{vp, vp+⌊ n

2 ⌋}
⋃

(
n⋃

p=1
S{wp, wp+k}| = 2n and |B| = |

n⋃
p=1

S{vp, wp+⌊ n
2 ⌋}⋃

(
n⋃

p=1
S{wp, wp+k}| = 2n where 4 ≤ p + k ≤ ⌊n

2 ⌋. In the following lemmas, we will show

that the collection H(Pn) coincides with the collection S(Pn). Also, it will be shown that
the intersection of

⋃
H∗ ∈ H(Pn)

H∗ with the SRNs of any other pair of vertices of Pn contain

at-least |H∗| vertices of Pn. The symmetry of the convex polytope Pn allows us to consider
the SRNs of only the pair of vertices discussed in the following lemmas.

The SRNs of pair of vertices in Pn lying on the inner cycle are computed in the following
lemma.

Lemma 2.3. Let Pn be a convex polytope. Then, |H∗| ≤ |S{ui, ui+m}| where 1 ≤ i ≤ n.
Also, |S{ui, ui+m}

⋂
A| ≥ |H∗| for n even and |S{ui, ui+m}

⋂
B| ≥ |H∗| for n odd.

Proof. In the view of Table 1, it can be seen that |S{ui, ui+m}
⋂

A| ≥ |H∗| for n even
and |S{ui, ui+m}

⋂
B| ≥ |H∗| for n odd. □

In the following lemma, SRNs of pair of vertices of degree three lying in different cycles
are considered.

Lemma 2.4. Let Pn be a convex polytope. Then, |H∗| ≤ |S{ui, vi+m}| where 1 ≤ i ≤ n.
Also |S{ui, vi+m}

⋂
A| ≥ |H∗| for n even and |S{ui, vi+m}

⋂
B| ≥ |H∗| for n odd.
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Table 1. SRNs S{ui, ui+m} for Pn.

m S{ui, ui+m} when n is even S{ui, ui+m} when n is odd
1 {wi, wi+ n

2
}c {wi, ui+⌈ n

2 ⌉, vi+⌈ n
2 ⌉}c

2 {ua, va, wi, wa, ub, vb, wb, wb−1| {ua, va, wi, wa, ub, ub+1, vb, vb+1, wb|
a = i + 1, b = i + n

2 + 1}c a = i + 1, b = i + ⌈n
2 ⌉}c

{ux, vx, wy, wq, up, vp|i + 1 ≤ x {ux, vx, wy, wq, up, vp|i + 1 ≤ x
3 ≤ m ≤ ⌊n

2 ⌋ ≤ i + m − 1, i ≤ y ≤ i + m − 1, ≤ i + m − 1, i ≤ y ≤ i + m − 1,
i + n

2 + 1 ≤ p ≤ i + n
2 + m − 1, i + ⌊n

2 ⌋ + 1 ≤ p ≤ i + ⌊n
2 ⌋ + m − 1,

i + n
2 ≤ q ≤ i + n

2 + m − 1}c i + ⌊n
2 ⌋ ≤ q ≤ i + ⌊n

2 ⌋ + m − 1}c

Proof. It can be seen from Table 2 that |S{ui, vi+m}
⋂

A| ≥ |H∗| = 2 and for n even
and |S{ui, vi+m}

⋂
B| ≥ |H∗| for n odd. □

Table 2. SRNs S{ui, vi+m} for Pn.

m S{ui, vi+m} when n is even S{ui, vi+m} when n is odd
0 {vi−1, vi+1, wi−2, wi+1}c {vi−1, vi+1, wi−2, wi+1}c

{ux, vi, wi, wi−1, vy, wy′ |
1 {ux, vi, wi, wi−1|i + 1 ≤ x ≤ i + n

2 }c i + 1 ≤ x ≤ i + m + ⌊n
2 ⌋,

i + m + 1 ≤ y ≤ i + m + ⌊n
2 ⌋,

i + m + 1 ≤ y′ ≤ i + m + ⌊n
2 ⌋ − 1}c

{ux, vy, vz, wy′ , wz|i + 1 ≤ x {ux, vy, vz, wy′ , wz′ |i + 1 ≤ x
3 ≤ m < n

2 ≤ i + n
2 + k − 1, i + 1 ≤ y ≤ i + k − 1, ≤ i + m + ⌊n

2 ⌋, i + 1 ≤ y ≤ i + m − 1,
i + k + 1 ≤ z ≤ i + n

2 + k − 1, i + m + 1 ≤ z ≤ i + m + ⌊n
2 ⌋,

i ≤ y′ ≤ i + k − 1}c i ≤ y′ ≤ i + m − 1,
i + m + 1 ≤ z ≤ i + m + ⌊n

2 ⌋ − 1}c

n
2 {ui, vi, vi+ n

2
}

In the following lemma, SRNs of pair of vertices with degree three lying on the outer
cycle are computed.

Lemma 2.5. Let Pn be a convex polytope. Then, |H∗| ≤ |S{vi, vi+m}| where 1 ≤ i ≤ n.
Also, |S{vi, vi+m}

⋂
A| ≥ |H∗| for n even and |S{vi, vi+m}

⋂
B| ≥ |H∗| for n odd.

Proof. Due to symmetry of the graph Pn, the cases discussed in Table 3 show that
|S{vi, vi+m}

⋂
A| ≥ |H∗| for n even and |S{vi, vi+m}

⋂
B| ≥ |H∗| for n odd. □

Table 3. SRNs S{vi, vi+m} for Pn.

m S{vi, vi+m} when n is even S{vi, vi+m} when n is odd
1 {vi−1, vi, vi+1, vi+2, wi−1, wi−2, wi+1, wi+2} {vi−1, vi, vi+1, vi+2, wi, wi−1, wi+1, wi+2}

2 ≤ m < n
2 {vi, vi+m, wi−1, wi+m} {vi, vi+m, wi−1, wi+m}

n
2 {vi, vi+ n

2
}

SRNs of vertices with degree two and three lying on different cycles will be computed
in the following lemma.

Lemma 2.6. Let Pn be a convex polytope. Then, |H∗| ≤ |S{ui, wi+m}| where 1 ≤ i ≤ n.
Also, |S{ui, wi+m}

⋂
A| ≥ |H∗| for n even and |S{ui, wi+m}

⋂
B| ≥ |H∗| for n odd.

Proof. Taking table 4 into consideration we have, |S{ui, wi+m}
⋂

A| ≥ |H∗| for n even
and |S{ui, wi+m}

⋂
B| ≥ |H∗| for n odd. □
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Table 4. SRNs S{ui, wi+m} for Pn.

m S{ui, wi+m} when n is even S{ui, wi+m} when n is odd
{ut, vs, wx, vi+m, vi+m−1, wi+m−1, {ut, vs, ws, va, va−1, wa−1, wa−2|

0 ≤ m ≤ 2 wi+m−2|i + 1 ≤ t ≤ n
2 + i + m, a = i + m, i + 1 ≤ t ≤ ⌊n

2 ⌋ + i + m,
i + m + 1 ≤ s ≤ n

2 + i + m, i + m + 1 ≤ s ≤ ⌊n
2 ⌋ + i + m}c

i + m + 1 ≤ x ≤ n
2 + i + m − 1}c

{ut, vs, wx, vy, wy′ |i + 1 ≤ t {ut, vs, ws, vy, wy′ |i + 1 ≤ t ≤ ⌊n
2 ⌋ + i + m,

3 ≤ m < ⌊n
2 ⌋ ≤ n

2 + i + m, i + m + 1 ≤ s ≤ n
2 + i + m, i + m + 1 ≤ s ≤ ⌊n

2 ⌋ + i + m,
i + m + 1 ≤ x ≤ n

2 + i + m − 1, i + m − (m − 1) i + m − (m − 1) ≤ y ≤ i + m,
≤ y ≤ i + m, (i + m) − m ≤ y′ ≤ i + m − 1}c i + m − m ≤ y′ ≤ i + m − 1}c

{ut, vs, wx, vy, wy′ |i + 1 ≤ t
⌊n

2 ⌋ ≤ n
2 + i + m, i + m + 1 ≤ s ≤ n

2 + i + m, {ui, vi, wi+m}
i + m + 1 ≤ x ≤ n

2 + i + m − 1, i + m − (m − 1)
≤ y ≤ i + m, (i + m) − m ≤ y′ ≤ i + m − 1}c

SRNs of vertices with degree two and three lying on same outer cycle will be computed
in the following lemma.

Lemma 2.7. Let Pn be a convex polytope. Then, |H∗| ≤ |S{vi, wi+m}| where 1 ≤ i ≤ n.
Also, |S{vi, wi+m}

⋂
A| ≥ |H∗| for n even and |S{vi, wi+m}

⋂
B| ≥ |H∗| for n odd.

Proof. In view of Table 5 we have, |S{vi, wi+m}
⋂

A| ≥ |H∗| for n even and |S{vi, wi+m}⋂
B| ≥ |H∗| for n odd. □

Table 5. SRNs S{vi, wi+m} for Pn.

m S{vi, wi+m} when n is even S{vi, wi+m} when n is odd
0 {ut, vs, ws′ |i + 1 ≤ t ≤ n

2 + i, {ut, vs, ws|i + 1 ≤ t ≤ ⌊n
2 ⌋ + i,

4 ≤ s ≤ n
2 + i, 4 ≤ s′ ≤ n

2 }c 4 ≤ s ≤ ⌊n
2 ⌋ + i}c

1 {ut, vs, ws′ , vi+1, wi|1 ≤ t ≤ n, {ut, vs, ws′ , vi+1, wi|1 ≤ t ≤ n,
4 ≤ s ≤ n − 1, 4 ≤ s′ ≤ n − 2}c 4 ≤ s ≤ n − 1, 4 ≤ s′ ≤ n − 2}c

2 ≤ m ≤ ⌊n
2 ⌋ − i {vi, wi+m, wi−1} {vi, wi+m, wi−1}

⌈n
2 ⌉ − i {vi, wi+m, wi−1} {vi, wi+m}

SRNs of vertices with degree two on outer cycle will be computed in the following
lemma.

Lemma 2.8. Let Pn be a convex polytope. Then, |H∗| ≤ |S{wi, wi+m}| where 1 ≤ i ≤ n.
Also, |S{wi, wi+m}

⋂
A| ≥ |H∗| for n even and |S{wi, wi+m}

⋂
B ≥ |H∗| for n odd.

Proof. It can be seen from Table 6 that |S{wi, wi+m}
⋂

A| ≥ |H∗| for n even and
|S{wi, wi+m}

⋂
B| ≥ |H∗| for n odd. □

Table 6. SRNs S{wi, wi+m} for Pn.

m S{wi, wi+m} when n is even S{wi, wi+m} when n is odd
{ut, vs, vs′ , wx|1 ≤ t ≤ n, {ut, vs, vs′ , wx, wy|1 ≤ t ≤ n,

2 ≤ i + m ≤ 3 i + 1 ≤ s ≤ i + m, i + 4 ≤ s′ ≤ i + 1 ≤ s ≤ i + m, i + 4 ≤ s′ ≤ n + m − 2,
n + m − 2, i + 4 ≤ x ≤ n + m − 3}c i + 4 ≤ x ≤ n − 2, i + 1 ≤ y ≤ i + m − 1}c

1 {ut, vs, ws′ , vi+1, wi|1 ≤ t ≤ n, {ut, vs, ws′ , vi+1, wi|1 ≤ t ≤ n,
4 ≤ s ≤ n − 1, 4 ≤ s′ ≤ n − 2}c 4 ≤ s ≤ n − 1, 4 ≤ s′ ≤ n − 2}c

2 ≤ m ≤ ⌊n
2 ⌋ − i {vi, wi+m, wi−1} {vi, wi+m, wi−1}

⌈n
2 ⌉ − i {vi, wi+m, wi−1} {vi, wi+m}
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Figure 2. The convex polytope P1
n

3. Strong resolving neighbourhoods of convex polytope P1
n

In this section, SRNs of the convex polytope P1
n will be calculated. The convex polytope

P1
n is formed by joining the degree three vertices that are adjacent to degree two vertices, vt

and vt+1 by an edge in Pn. The order and size of P1
n are given by |V (P1

n)| = |{ui, vi, wi | 1 ≤
i ≤ n}| = 3n and |E(P1

n)| = |{uiui+1, uivi, vivi+1, viwi, wivi+1 | 1 ≤ i ≤ n}| = 5n,
respectively with the indices taken mod n. The convex polytope P1

n is shown in Figure
2. In order to compute SRNs of the graph P1

n, its vertices are to be pairwise classified
depending upon either being on the same cycle or on different cycle or on the outer
triangles of P1

n.
In the following lemmas SRNs of pair of MMD vertices in P1

n are computed.

Lemma 3.1. Let P1
n be a convex polytope, where n is even. Then, |S{up, vp+ n

2
}| =

|S{up, wp+ n
2 −1}| = |S{wp, wp+k}| = 2 where 1 ≤ p, k ≤ n. Also, |(

n⋃
p=1

S{up, vp+ n
2
})

⋃
(

n⋃
p=1

S{wp, wp+k})
⋃

(
n⋃

p=1
S{up, wp+ n

2 −1})| = 3n.

Proof. From the construction of the graph P1
n and in view of Lemma 1.2, the cardinality

of SRNs of pair of vertices that are MMD is given by |S{up, vp+ n
2
}| = |S{up, wp+ n

2 −1}|

=|S{wp, wp+k}| = 2. From above it implies that (
n⋃

p=1
S{up, vp+ n

2
})

⋃
(

n⋃
p=1

S{wp, wp+k})
⋃

(
n⋃

p=1

S{up, wp+ n
2 −1}) = {ub, vb, wb | 1 ≤ b ≤ n}. Hence, |

n⋃
p=1

S{up, vp+ n
2
})

⋃
(

n⋃
p=1

S{wp, wp+k})
⋃

(
n⋃

p=1
S{up, wp+ n

2 −1})| = 3n. □

Lemma 3.2. Let P1
n be a convex polytope, where n is odd. Then |S{up, wp+⌊ n

2 ⌋}| =

|S{wp, wp+k}| = 2 where 1 ≤ p, k ≤ n. Also, |(
n⋃

p=1
S{up, wp+⌊ n

2 ⌋})
⋃

(
n⋃

p=1
S{wp, wp+k})| =

2n.

Proof. The pair of vertices up, wp+⌊ n
2 ⌋ and wp, wp+k of the graph P1

n are MMD. There-
fore, in view of Lemma 1.2, the cardinality of SRNs of pair of vertices up, wp+⌊ n

2 ⌋ and wp,
wp+k is given by |S{up, wp+⌊ n

2 ⌋}| = |S{wp, wp+k}| = 2. From the above it implies that
n⋃

p=1
S{up, wp+⌊ n

2 ⌋})
⋃

(
n⋃

p=1
S{wp, wp+k} = {ub, wb | 1 ≤ b ≤ n}. Hence, |

n⋃
p=1

S{up, wp+⌊ n
2 ⌋})

⋃
(

n⋃
p=1

S{wp, wp+k}| = 2n. □
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Consider

H(P1
n) =

{
C if n is even
D if n is odd

(3.1)

where C = (
n⋃

p=1
S{up, vp+ n

2
})

⋃
(

n⋃
p=1

S{wp, wp+k})
⋃

(
n⋃

p=1
S{up, wp+ n

2 −1}) and D = (
n⋃

p=1

S{up, wp+⌊ n
2 ⌋})

⋃
(

n⋃
p=1

S{wp, wp+k}). In the following lemmas, we will show that the collec-

tion H(P1
n) coincides with the collection S(P1

n). Also, it will be shown that the intersection
of

⋃
H∗ ∈ H(P1

n)
H∗ with the SRNs of any other pair of vertices of P1

n contain at-least |H∗|

vertices of P1
n. The symmetry of the convex polytope P1

n allows us to consider the SRNs
of only the pair of vertices discussed in the following lemmas.

The SRNs of pair of vertices in P1
n lying on the same cycle (inner and outer) are com-

puted in the following lemma.

Lemma 3.3. Let P1
n be a convex polytope. Then, |H∗| ≤ |S{ui, ui+m}| = |S{vi, vi+m}|

where 1 ≤ i ≤ n. Also, |S{ui, ui+m}
⋂

C| ≥ |H∗|, |S{vi, vi+m}
⋂

C| ≥ |H∗| for n even and
|S{ui, ui+m}

⋂
D| ≥ |H∗|, |S{vi, vi+m}

⋂
D| ≥ |H∗| for n odd.

Proof. It can be seen from Table 7 that |S{ui, ui+m}
⋂

C| ≥ |H∗|, |S{vi, vi+m}
⋂

C| ≥
|H∗| for n even and |S{ui, ui+m}

⋂
D| ≥ |H∗|, |S{vi, vi+m}

⋂
D| ≥ |H∗| for n odd. □

Table 7. SRNs S{ui, ui+m} and S{vi, vi+m} for Pn.

m S{ui, ui+m}/S{vi, vi+m} when n is even S{ui, ui+m}/S{vi, vi+m} when n is odd
1 {wi, wi+ n

2
}c {wi, ui+⌈ n

2 ⌉, vi+⌈ n
2 ⌉}c

2 {ua, va, wa−1, wa, ub+1, vb+1, wb, wb+1| {ua, va, wa−1, wa, uc, uc+1, vc, vc+1, wc|c = i + ⌈n
2 ⌉}c

a = i + 1, b = i + n
2 }c

3 ≤ m ≤ ⌊n
2 ⌋ {ux, vx, wy, wq, up, vp|i + 1 ≤ x ≤ i + m − 1, {ux, vx, wy, wp, up, vp|i + 1 ≤ x ≤ i + m − 1, i ≤ y

i ≤ y ≤ i + m − 1, i + n
2 + 1 ≤ p ≤ ≤ i + m − 1, c ≤ p ≤ c + m − 2}c

i + n
2 + m − 1, i + n

2 ≤ q ≤ i + n
2 + m − 1}c

In the following lemma, SRNs of pair of vertices of degree three lying in different cycles
are considered.

Lemma 3.4. Let P1
n be a convex polytope. Then, |H∗| ≤ |S{ui, vi+m}| where 1 ≤ i ≤ n.

Also, |S{ui, vi+m}
⋂

C| ≥ |H∗| for n even and |S{ui, vi+m}
⋂

D| ≥ |H∗| for n odd.

Proof. It can be seen from Table 8 that |S{ui, vi+m}
⋂

C| ≥ |H∗| for n even and |S{ui, vi+m}⋂
D| ≥ |H∗| for n odd. □

Table 8. SRNs S{ui, vi+m} for P1
n.

m S{ui, vi+m} when n is even S{ui, vi+m} when n is odd
0 V (P1

n) V (P1
n)

1 {ux, vy, wz|i + 1 ≤ x ≤ i + n
2 , i + n

2 + 1 {ux, vy, vz, wy, wz|i + 1 ≤ x ≤ i + ⌈n
2 ⌉ + m − 1,

≤ y ≤ i + n, i + n
2 ≤ z ≤ i + n}c i ≤ y ≤ i + m − 1, i + ⌈n

2 ⌉ + m − 1 ≤ z ≤ n}c

{ux, vy, wz|i + 1 ≤ x ≤ i + n
2 + m − 1, {ux, vy, vz, wy, wz|i + 1 ≤ x

2 ≤ m < ⌊n
2 ⌋ i + n

2 + 1 ≤ y ≤ n + i + m − 1, ≤ i + ⌈n
2 ⌉ + m − 1, i ≤ y ≤ i + m − 1,

i + n
2 ≤ z ≤ n + i + m − 1}c i + ⌈n

2 ⌉ ≤ z ≤ n + i − 1}c

⌊n
2 ⌋ {ui, vi+ n

2
} {ui, vi+⌊ n

2 ⌋, wi+⌊ n
2 ⌋}

SRNs of vertices with degree two and three lying on different cycles will be computed
in the following lemmas.
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Lemma 3.5. Let P1
n be a convex polytope. Then, |H∗| ≤ |S{ui, wi+m}| where 1 ≤ i ≤ n.

Also, |S{ui, wi+m}
⋂

C| ≥ |H∗| for n even and |S{ui, wi+m}
⋂

D| ≥ |H∗| for n odd.

Proof. In view of Table 9 we conclude, |S{ui, wi+m}
⋂

C| ≥ |H∗| for n even and |S{ui, wi+m}⋂
D| ≥ |H∗| for n odd. □

Table 9. SRNs S{ui, wi+m} for P1
n

m S{ui, wi+m} when n is even S{ui, wi+m} when n is odd
0 {ut, wi|i + n

2 + m + 1 ≤ t ≤ i} {ut, wi+m|i + ⌈n
2 ⌉ ≤ t ≤ n + i}

1 ≤ m < 3 {ut, wi|i + n
2 + m + 1 ≤ t ≤ i} {ut, wi+m; i + ⌈n

2 ⌉ + m ≤ t ≤ n + i}
3 ≤ m < ⌊n

2 ⌋ {ui, wi+m} {ut, wi+m; i + ⌈n
2 ⌉ + m ≤ t ≤ n + i}

⌊n
2 ⌋ {ui, wi+m} {ui, wi+m}

Lemma 3.6. Let P1
n be a convex polytope. Then, |H∗| ≤ |S{vi, wi+m}| where 1 ≤ i ≤ n.

Also, |S{vi, wi+m}
⋂

C| ≥ |H∗| for n even and |S{vi, wi+m}
⋂

D| ≥ |H∗| for n odd.

Proof. It can be seen from Table 10 that |S{vi, wi+m}
⋂

C| ≥ |H∗| for n even and
|S{vi, wi+m}

⋂
D| ≥ |H∗| for n odd. □

Table 10. SRNs S{vi, wi+m} for P1
n.

m S{vi, wi+m} when n is even S{vi, wi+m} when n is odd
0 {ut, vt, ws, ws′ |i + 1 ≤ t ≤ i + n

2 + m, {ut, vt, wt|i + 1 ≤ t ≤ ⌊n
2 ⌋ + i}c

i ≤ s ≤ i + m − 1, i + m + 1 ≤ s ≤ i + n
2 + m − 1}c

1 ≤ m ≤ ⌊n
2 ⌋ {ut, vt, ws, ws′ |i + 1 ≤ t ≤ i + n

2 + m, {ut, vt, wx, ws|i + 1 ≤ t ≤ ⌈n
2 ⌉ + m,

i ≤ s ≤ i + m − 1, i + m + 1 ≤ s ≤ i + n
2 + m − 1}c i + 2 ≤ s ≤ ⌈n

2 ⌉ + m, i ≤ s ≤ i + m − 1}c

Lemma 3.7. Let P1
n be a convex polytope. Then, |H∗| ≤ |S{wi, wi+m}| where 1 ≤ i ≤ n.

Also, |S{wi, wi+m}
⋂

C| ≥ |H∗| when n is even and |S{wi, wi+m}
⋂

D| ≥ |H∗| when n is
odd.

Proof. The SRNs of the vertices wi and wi+m are S{wi, wi+m} = {ui, wi+m}. It will fol-
lows from the above that |S{wi, wi+m}

⋂
C| ≥ |H∗| for P1

n when n is even and |S{wi, wi+m}⋂
D| ≥ |H∗| when n is odd. □

4. Strong resolving neighbourhoods of convex polytope P2
n

In this section, SRNs of the convex polytope P2
n will be calculated. P2

n is formed by
adding the edges vtvt+1 and vtut+1 in Pn. The order and size of P2

n are represented as
|V (P2

n)| = |{ui, vi, wi | 1 ≤ i ≤ n}| = 3n and |E(P2
n)| = |{uiui+1, uivi, vivi+1, viwi, wivi+1,

viui+1 | 1 ≤ i ≤ n}| = 6n respectively, with the indices taken mod n. The convex polytope
P2

n is shown in Figure 3. In order to compute SRNs of the graph P2
n, its vertices are to be

pairwise classified depending upon either being on the same cycle or on different cycle or
on the outer triangles of P2

n.
In the following lemmas SRNs of pair of MMD vertices in P2

n are computed.

Lemma 4.1. Let P2
n be a convex polytope, where n is even. Then, |S{up, up+ n

2
}| =

|S{vp, vp+ n
2
}| = |S{up, wp+ n

2
}| = |S{wp, wp+k}| = 2 where 1 ≤ p, k ≤ n. Also, |(

n⋃
p=1

S{up,

up+ n
2
})

⋃
(

n⋃
p=1

S{vp, vp+ n
2
})

⋃
(

n⋃
p=1

S{up, wp+ n
2
})

⋃
(

n⋃
p=1

S{wp, wp+k})| = 3n.
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Figure 3. The Convex Polytope P2
n

Proof. In view of Lemma 1.2, the SRNs of pair of vertices that are mutually maxi-
mally distant in P2

n are given by |S{up, up+ n
2
}| = |S{vp, vp+ n

2
}| = |S{up, wp+ n

2
}| =

|S{wp, wp+k}| = 2. From above it implies that (
n⋃

p=1
S{up, up+ n

2
})

⋃
(

n⋃
p=1

S{vp, vp+ n
2
})

⋃
(

n⋃
p=1

S{up, wp+ n
2
})

⋃
(

n⋃
p=1

S{wp, wp+k}) = {ub, vb, wb | 1 ≤ b ≤ n}. Hence, |(
n⋃

p=1
S{up, up+ n

2
})

⋃
(

n⋃
p=1

S{vp, vp+ n
2
})

⋃
(

n⋃
p=1

S{up, wp+ n
2
})

⋃
(

n⋃
p=1

S{wp, wp+k})| = 3n. □

Lemma 4.2. Let P2
n be a convex polytope, where n is odd. Then |S{up, vp+⌊ n

2 ⌋}| =
|S{vp, wp+⌊ n

2 ⌋}| = |S{up, wp+t}| = |S{wp, wp+k}| = 2 where 1 ≤ p, k ≤ n and ⌊n
2 ⌋ − 1 ≤

t ≤ ⌊n
2 ⌋. Also, |(

n⋃
p=1

S{up, vp+⌊ n
2 ⌋})

⋃
(

n⋃
p=1

S{vp, wp+⌊ n
2 ⌋})

⋃
(

n⋃
p=1

S{up, wp+t})
⋃

(
n⋃

p=1
S{wp, wp+k})| = 3n.

Proof. When n is odd, then for P2
n in view of Lemma 1.2, the cardinality of SRNs of

pair of MMD vertices is given by |S{up, vp+⌊ n
2 ⌋}| = |S{vp, wp+⌊ n

2 ⌋}| = |S{up, wp+t}| =

|S{wp, wp+k}| = 2. From the above it implies that |(
n⋃

p=1
S{up, vp+⌊ n

2 ⌋})
⋃

(
n⋃

p=1
S{vp,

wp+⌊ n
2 ⌋})

⋃
(

n⋃
p=1

S{up, wp+t})
⋃

(
n⋃

p=1
S{wp, wp+k})| = |{ub, wb | 1 ≤ b ≤ n}| = 3n. □

Consider

H(P2
n) =

{
C ′ if n is even
D′ if n is odd

(4.1)

where C ′ = (
n⋃

p=1
S{up, up+ n

2
})

⋃
(

n⋃
p=1

S{vp, vp+ n
2
})

⋃
(

n⋃
p=1

S{up, wp+ n
2
})

⋃
(

n⋃
p=1

S{wp,

wp+k}) and D′ = (
n⋃

p=1
S{up, vp+⌊ n

2 ⌋})
⋃

(
n⋃

p=1
S{vp, wp+⌊ n

2 ⌋})
⋃

(
n⋃

p=1
S{up, wp+t})

⋃
(

n⋃
p=1

S{wp, wp+k}). In the following lemmas, we will show that the collection H(P2
n) coincides

with the collection S(P2
n). Also, it will be shown that the intersection of

⋃
H∗ ∈ H(P2

n)
H∗

with the SRNs of any other pair of vertices of P2
n contain at-least |H∗| vertices of P2

n. The
symmetry of P2

n allows us to consider the SRNs of only the pair of vertices discussed in
the following lemmas. The SRNs of pair of vertices in P2

n lying on the same cycle are
computed in the following lemma.
Lemma 4.3. Let P2

n be a convex polytope. Then, |H∗| ≤ |S{ui, ui+m}| where 1 ≤ i ≤ n.
Also, |S{ui, ui+m}

⋂
C ′| ≥ |H∗| for n even and |S{ui, ui+m}

⋂
D′| ≥ |H∗| for n odd.
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Proof. In view of the Table 11, it can be seen that |S{ui, ui+m}
⋂

C ′| ≥ |H∗| for n even
and |S{ui, ui+m}

⋂
D′| ≥ |H∗| for n odd. □

Table 11. SRNs S{ui, ui+m} for P2
n.

m S{ui, ui+m} when n is even S{ui, ui+m} when n is odd
1 {vi, wi, wi−1, vi+ n

2
}c {vi, wi, wi−1, wi+⌊ n

2 ⌋}c

{ui+1, vi, vi+1, wi−1, wi, wi+1, ui+ n
2 +1, {ui+1, ui+⌈ n

2 ⌉, ui+⌈ n
2 ⌉+1, vi, vi+1, vi+⌈ n

2 ⌉,

2 vi+ n
2
, vi+ n

2 +1, wi+ n
2
}c wi−1, wi, wi+1, wi+⌈ n

2 ⌉−1, wi+⌈ n
2 ⌉}c

{ua, vb, wb, wq, up, vp′ |i + 1 ≤ a ≤ i + m − 1, {ux, vy, wy′ , wq, up, vp′ |i + 1 ≤ x ≤ i + m − 1,
3 ≤ m ≤ ⌊n

2 ⌋ i ≤ b ≤ i + m − 1, i − 1 ≤ b′ ≤ i + m − 1, i + n
2 + 1 i ≤ y ≤ i + m − 1, i − 1 ≤ y′ ≤ i + m − 1,

≤ p ≤ i + n
2 + m − 1, i + n

2 ≤ p′ ≤ i + n
2 + m − 1, i + ⌈n

2 ⌉ ≤ p ≤ i + ⌈n
2 ⌉ + m − 1, i + ⌈n

2 ⌉ ≤ p′ ≤
i + n

2 ≤ q ≤ i + n
2 + m − 2}c i + ⌈n

2 ⌉ + m − 2, i + ⌈n
2 ⌉ − 1 ≤ q ≤ i + ⌈n

2 ⌉ + m − 2}c

The SRNs of vertices with degree four and degree six in P2
n lying on different cycles are

computed in the following lemma.

Lemma 4.4. Let P2
n be a convex polytope. Then, |H∗| ≤ |S{ui, vi+m}| where 1 ≤ i ≤ n.

Also, |S{ui, vi+m}
⋂

C ′| ≥ |H∗| for n even and |S{ui, vi+m}
⋂

D′| ≥ |H∗| for n odd.

Proof. Taking Table 12 into consideration we imply that, |S{ui, vi+m}
⋂

C ′| ≥ |H∗| for
n even and |S{ui, vi+m}

⋂
D′| ≥ |H∗| for n odd. □

Table 12. SRNs S{ui, vi+m} for P2
n.

m S{ui, vi+m} when n is even S{ui, vi+m} when n is odd
0 {ua, vb, wb′ |i + 1 ≤ a ≤ i + n

2 , i + n
2 ≤ b {ua, vb, wb′ |i + 1 ≤ a ≤ i + ⌊n

2 ⌋, i + ⌈n
2 ⌉ ≤

≤ i + n − 1, i + n
2 ≤ b′ ≤ i + n − 2}c b ≤ i + n − 1, i + ⌊n

2 ⌋ ≤ b′ ≤ i + n − 2}c

1 ≤ m < n
2 {ua, vb, wb|i + 1 ≤ a ≤ i + m + n

2 , {ua, vb, wb|i + 1 ≤ a ≤ i + m + ⌊n
2 ⌋, i + ⌈n

2 ⌉
i + n

2 ≤ b ≤ i + m − 1}c ≤ b ≤ i + m − 1, i + ⌊n
2 ⌋ ≤ b ≤ i + m − 1}c

⌊n
2 ⌋ {ua, vb, wb|i + 1 ≤ a ≤ i + m + n

2 , {ui, vi+⌊ n
2 ⌋}

i + n
2 ≤ b ≤ i + m − 1}c

Lemma 4.5. Let P2
n be a convex polytope. Then, |H∗| ≤ |S{ui, wi+m}| where 1 ≤ i ≤ n.

Also, |S{ui, wi+m}
⋂

C ′| ≥ |H∗| for n even and |S{ui, wi+m}
⋂

D′| ≥ |H∗| for n odd.

Proof. The SRNs of ui and wi+m are S{ui, wi+m} = {wi+m, ua|i+m+⌈n
2 ⌉+1 ≤ a ≤ i+n}

where 0 ≤ m ≤ ⌊n
2 ⌋ − 1. It implies from the above that, |S{ui, wi+m}

⋂
C ′| ≥ |H∗| for n

even and |S{ui, wi+m}
⋂

D′| ≥ |H∗| for n odd. □
Lemma 4.6. Let P2

n be a convex polytope. Then, |H∗| ≤ |S{vi, vi+m}| where 1 ≤ i ≤ n.
Also, |S{vi, vi+m}

⋂
C ′| ≥ |H∗| for n even and |S{vi, vi+m}

⋂
D′| ≥ |H∗| for n odd.

Proof. By considering Table 13 we have, |S{vi, vi+m}
⋂

C ′| ≥ |H∗| for n even and |S{vi,
vi+m}

⋂
D′| ≥ |H∗| for n odd. □

Table 13. SRNs S{vi, vi+m} for P2
n.

m S{vi, vi+m} when n is even S{vi, vi+m} when n is odd
1 {ui+1, ui+ n

2 +1, wi, wi+ n
2
}c {ui+1, vi+⌊ n

2 ⌋+1, wi}c

{ua, ub, va′ , vb′ , wc, wd|i + 1 ≤ a ≤ i + m, {ua, ub, va′ , vb′ , wc, wd|i + 1 ≤ a ≤ i + m, i + 1
2 ≤ m < ⌊n

2 ⌋ i + 1 ≤ a′ ≤ i + m − 1, i ≤ c ≤ i + m − 1, ≤ a′ ≤ i + m − 1, i ≤ c ≤ i + m − 1, i + ⌈n
2 ⌉ + 1

i + n
2 + 1 ≤ b ≤ i + m + n

2 , i + n
2 + 1 ≤ b′ ≤ b ≤ i + m + ⌈n

2 ⌉ − 1, i + ⌈n
2 ⌉ ≤ b′ ≤

i + m + ⌈n
2 ⌉ − 1, i + ⌈n

2 ⌉ ≤ d ≤ i + m + ⌈n
2 ⌉ − 1}c i + m + ⌈n

2 ⌉ − 1, i + ⌈n
2 ⌉ ≤ d ≤ i + m + ⌈n

2 ⌉ − 2}c

{ua, ub, va′ , vb′ , wc, wd|i + 1 ≤ a ≤ i + m, i + 1
⌊n

2 ⌋ {vi, vi+m} ≤ a′ ≤ i + m − 1, i ≤ c ≤ i + m − 1, i + ⌈n
2 ⌉ + 1

≤ b ≤ i + m + ⌈n
2 ⌉ − 1, i + ⌈n

2 ⌉ ≤ b′ ≤
i + m + ⌈n

2 ⌉ − 1, i + ⌈n
2 ⌉ ≤ d ≤ i + m + ⌈n

2 ⌉ − 2}c
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Let A be a finite, undirected, connected and simple graph. Then, FSMD of A will be
computed with the following steps of the algorithm:

Step I: Adjacency Matrix
The input adjacency matrix of the graph A, denoted by B = [bij ] is formed in such a way

that bij = 1, if xi and xj are adjacent nodes in A, otherwise and bij = 0;
Step II: Matrix of Distances

Compute the matrix of distances given by D(A);
Step III: SRNs

Compute the collection S{x1, x2} of nodes y ∈ V (A), for every pair of adjacent nodes
x1, x2 such that x1 lies on x2 − y geodesic or x2 lies on x1 − y geodesic;

Step IV: Least cardinality of SRN
Calculate γ(A) = min{|S{x1, x2}|};

Step V: Collection of all SRNs with least cardinality
Compute S(A) = {S{x1, x2}

∣∣ |S{x1, x2}| = γ(A)} and β(A) = |
⋃
S(A)|;

Step VI: Computation of FSMD
If for all x1, x2 ∈ E(A), |S{x1, x2}

⋂ ( ⋃
S(A)

)
| ≥ γ(A), then compute

sdimf(A) =
β(A)∑
t=1

1
γ(A)

Lemma 4.7. Let P2
n be a convex polytope. Then, |H∗| ≤ |S{vi, wi+m}| where 1 ≤ i ≤ n.

Also, |S{vi, wi+m}
⋂

C ′| ≥ |H∗| for n even and |S{vi, wi+m}
⋂

D′| ≥ |H∗| for n odd.

Proof. In view of Table 14 we have, |S{vi, wi+m}
⋂

C ′| ≥ |H∗| for n even and |S{vi, wi+m}⋂
D′| ≥ |H∗| for n odd. □

Table 14. SRNs S{vi, wi+m} for P2
n.

m S{vi, wi+m} when n is even S{vi, wi+m} when n is odd
0 {ua, vb, wc|i + 2 ≤ a ≤ i + n

2 , i + 1 ≤ {ua, vb, wb|i + 2 ≤ a ≤ i + ⌈n
2 ⌉,

b ≤ i + n
2 , i + 1 ≤ c ≤ i + n

2 − 1}c i + 1 ≤ b ≤ i + ⌈n
2 ⌉ − 1}c

{ua, va, wb, wc|i + 1 ≤ a ≤ i + m + n
2 , i ≤ b {ua, vb, wc, wd|i + 1 ≤ a ≤ i + m + ⌈n

2 ⌉,
1 ≤ m < ⌊n

2 ⌋ ≤ i + m − 1, i + m + 1 ≤ c ≤ i + m + n
2 − 1}c i + 1 ≤ b ≤ i + m + ⌈n

2 ⌉ − 1, i ≤ c ≤ i + m − 1,
i + m + 1 ≤ d ≤ i + m + ⌈n

2 ⌉ − 1}c

⌊n
2 ⌋ {ui+1, vi, wi, wi+m} {vi, wi+m}

For the computation of FSMD of any graph, we have the following algorithm in view
of Theorem1.1 which could be used with the help of Matlab or other simulation tools:

5. Fractional strong metric dimension of graphs
In this section, FSMD of certain convex polytopes is computed.

Theorem 5.1. For n ≥ 3, then sdimf(Pn) = n.

Proof. In view of Lemma 2.1 and 2.2, for n even |S{vp, vp+ n
2
}| = |S{wp, wp+k}| = 2

where 1 ≤ p ≤ n and 4 ≤ p + k ≤ n
2 and for n odd |S{vp, wp+⌊ n

2 ⌋}| = |S{wp, wp+k}|
= 2 where 1 ≤ p ≤ n and 4 ≤ p + k ≤ ⌈n

2 ⌉. Also, from Lemma 2.3 to Lemma 2.8,
|H∗| ≤ |S{x, y}| ∀ x, y ∈ V (Pn). Therefore,

S(Pn) =
{

A if n is even
B if n is odd

and β(Pn) =
{

|A| = 2n if n is even
|B| = 2n if n is odd

where A = (
n⋃

p=1
S{vp, vp+ n

2
})

⋃
(

n⋃
p=1

S{wp, wp+k}) and B = (
n⋃

p=1
S{vp, wp+⌊ n

2 ⌋})
⋃

(
n⋃

p=1
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S{wp, wp+k}). Hence, from Theorem 1.1,

sdimf(Pn) =
β(Pn)∑
z=1

1
γ(Pn)

= n.

□

Theorem 5.2. For n ≥ 3, sdimf(P1
n) =

{
3n
2 if n is even

n if n is odd

Proof. In view of Lemma 3.1 and 3.2, for n even |S{up, vp+ n
2
}| = |S{up, wp+ n

2 −1}| =
|S{wp, wp+k}| = 2 and for n odd |S{up, wp+⌊ n

2 ⌋}| = |S{wp, wp+k}| = 2 where 1 ≤ p, k ≤ n.
Also, from Lemma 3.3 to Lemma 3.7, |H∗| ≤ |S{x, y}| ∀ x, y ∈ V (P1

n). Therefore,

S(P1
n) =

{
C if n is even
D if n is odd

and β(P1
n) =

{
|C| = 3n if n is even
|D| = 2n if n is odd

where C = (
n⋃

p=1
S{up, vp+ n

2
})

⋃
(

n⋃
p=1

S{wp, wp+k})
⋃

(
n⋃

p=1
S{up, wp+ n

2 −1}) and D = (
n⋃

p=1

S{up, wp+⌊ n
2 ⌋})

⋃
(

n⋃
p=1

S{wp, wp+k}). Hence, from Theorem 1.1,

sdimf(P1
n) =

β(P1
n)∑

z=1

1
γ(P1

n)
=

{
3n
2 if n is even

n if n is odd
.

□
Theorem 5.3. For n ≥ 3, sdimf(P2

n) = 3n
2 .

Proof. In view of Lemma 4.1 and 4.2, for n even |S{up, up+ n
2
}| = |S{vp, vp+ n

2
}| =

|S{up, wp+ n
2
}| = |S{wp, wp+k}| = 2 and for n odd |S{up, vp+⌊ n

2 ⌋}| = |S{vp, wp+⌊ n
2 ⌋}| =

|S{up, wp+k}| = |S{wp, wp+k}| = 2 where 1 ≤ p, k ≤ n. Also, from Lemma 4.3 to Lemma
4.7, |H∗| ≤ |S{x, y}| ∀ x, y ∈ V (P2

n). Therefore,

S(P2
n) =

{
C ′ if n is even
D′ if n is odd

and β(P2
n) =

{
|C ′| = 3n if n is even
|D′| = 3n if n is odd

where C ′ = (
n⋃

p=1
S{up, up+ n

2
})

⋃
(

n⋃
p=1

S{vp, vp+ n
2
})

⋃
(

n⋃
p=1

S{up, wp+ n
2
})

⋃
(

n⋃
p=1

S{wp,

wp+k}) and D′ = (
n⋃

p=1
S{up, vp+⌊ n

2 ⌋})
⋃

(
n⋃

p=1
S{vp, wp+⌊ n

2 ⌋})
⋃

(
n⋃

p=1
S{up, wp+t})

⋃
(

n⋃
p=1

S{wp, wp+k}). Hence, from Theorem 1.1,

sdimf(P2
n) =

β(P2
n)∑

z=1

1
γ(P2

n)
= 3n

2
.

□

6. Applications
Consider an example of data flow in a region through internet connection network. The

objective of the study is that the flow of data should be optimal which is possible only
if it is at a uniform rate. The internet connection is potentially affected by the following
factors:

• If data transmission is required by transmission devices that is far from the node
that has router installed on it, then the data transmission will be delayed.

• If the data transmission devices increase then more routers will be required to
ensure data flow at a uniform rate.
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Figure 4. FSMD in Internet connection Network

This network can be expressed in terms of FSMD as follows. In an internet connection
network, data transmission devices are considered as nodes and interconnections between
these devices are represented by edges. In order to achieve an optimal data flow, the
nodes which are not suitable for the installation of routers for data transmission are to be
identified and excluded. The collection of such nodes are referred as SRNs of a graph and
allocating least dependency on these nodes accounts for FSMD. As an illustrative case,
we have an internet connection network consisting of different data transmission devices
and routers at nodes of P8 as shown in the Figure 4. In view of Algorithm ??, the routers
are not to be placed at the vertices vi and wi where 1 ≤ i ≤ n on the outer cycle of P8.
Each router is placed such that data transmission takes place smoothly. This results in
a cost efficient Wifi hotspot (internet connection network) which allows electronic devices
to connect to the internet and exchange data wirelessly through radio waves.

7. Conclusion
Convex polytopes are an interesting mathematical structures having importance and

application in the fields chemistry, physics, economics and computer science. These math-
ematical objects have captured the attention of mathematicians and researchers for cen-
turies. The fractional versions of various metric related parameters have been extensively
studied by reseachers due to their applications in the fields of robot navigation, sensor
networking and chemistry. In this paper, FSMD of certain convex polytopes is computed.
A combinatorial technique is used to determine exact values of FSMD for Pn, P1

n and
P2

n. The obtained results lead us to the conclusion that the structures of these convex
polytopes have FSMD that depends on the value of n. An application of FSMD is dis-
cussed for the optimal data flow in a region through internet connection network. The
computation of FSMD is an NP hard problem due to which in many cases authors are
only able to compute it for different classes or bounds for it rather than exact values for
general graphs. This underscore the significance of the computed results. In future, we
are interested to compute FMD and FSMD for some other convex polytopes and wheel
related graphs.
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